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The risk for Alzheimer’s disease (AD) is associated with the presence of the ε4 allele
of Apolipoprotein E (APOE) gene and, recently, with a novel genetic variant of the
RNF219 gene. This study aimed at evaluating interactions between APOE-ε4 and
RNF219/G variants in the modulation of behavioral and cognitive features of two cohorts
of patients suffering from mild cognitive impairment (MCI) or AD. We enrolled a total
of 173 female MCI or AD patients (83 MCI; 90 AD). Subjects were screened with a
comprehensive set of neuropsychological evaluations and genotyped for the APOE and
RNF219 polymorphic variants. Analysis of covariance was performed to assess the
main and interaction effects of APOE and RNF219 genotypes on the cognitive and
behavioral scores. The analysis revealed that the simultaneous presence of APOE-ε4
and RNF219/G variants results in significant effects on specific neuropsychiatric scores
in MCI and AD patients. In MCI patients, RNF219 and APOE variants worked together
to impact the levels of anxiety negatively. Similarly, in AD patients, the RNF219 variants
were found to be associated with increased anxiety levels. Our data indicate a novel
synergistic activity APOE and RNF219 in the modulation of behavioral traits of female
MCI and AD patients.

Keywords: dementia, mild cognitive impairment (MCI), Alzheimer disease (AD), APOE, RNF219, genotype

Abbreviations: AD, Alzheimer disease; APOE, apolipoprotein E; APP, amyloid precursor protein; ART, Aligned
Rank Transformation; BBB, blood–brain barrier; bp, base pair; CPM, Colored Progressive Matrices; GWASs,
genome-wide-association studies; MCI, mild cognitive impairment; MMSE, Mini Mental State Examination; NPI,
Neuropsychiatric Inventory; PCR, polymerase chain reaction; RAVL, Rey Auditory Verbal Learning; RNF, Ring Finger
Protein.
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INTRODUCTION

Alzheimer’s disease is a complex syndrome characterized by a
pleiotropic array of cognitive and behavioral symptoms (Selkoe,
2011). AD is mainly driven by the intraneuronal accumulation
of β-amyloid, the extracellular formation of amyloid plaques and
the appearance of intracellular neurofibrillary tangles composed
of phosphorylated tau proteins. More recent lines of evidence
support the idea that imbalance of β-amyloid production and
clearance, along with phosphorylated tau and the interplay
with other co-morbidity factors (metabolic, vascular, and
inflammatory) work synergistically on a permissive condition
represented by the aging brain to promote AD (Herrup, 2010;
Corona et al., 2011; Selkoe and Hardy, 2016). Genetic and
environmental factors also affect the onset and progression of the
disease (Tanzi, 2012; Raskin et al., 2015).

Genome-wide-association studies have identified and
confirmed more than 20 genetic variants associated with higher
susceptibility to develop Late-Onset Alzheimer Disease (LOAD)
of the sporadic type (Winblad et al., 2015). Among these, the
ε4 allele is a specific variant of the Apolipoprotein E gene
(APOE-ε4) and a significant risk factor for AD (Saunders et al.,
1993; Bertram et al., 2007). The physio-pathological function
of APOE is complex (Ossenkoppele et al., 2013; Tai et al., 2015)
as the gene can interfere in many ways with the pillars of the
disease (Ohm et al., 1999; Tanzi, 2012). As an integral part of
cellular membranes, APOE-ε4 can influence the amyloidogenic
processing of the APP and impair its clearance from the brain
(Selkoe and Hardy, 2016). APOE-ε4 can also promote tau
phosphorylation (Zhou et al., 2016) and affect metabolic and
vascular factors such as hypertension, diabetes mellitus, as well
as the metabolic syndrome. All these factors synergistically
modulate the AD onset and progression (Duron and Hanon,
2008; Toledo et al., 2013). For instance, these factors target
the physiological functioning of the neurovascular unit and
the BBB integrity. Interestingly, APOE-ε4 has been recently
shown to converge on this critical step by affecting the operation
of the neurovascular unit and promoting the breakdown of
proteins responsible for the BBB integrity (Montagne et al.,
2015; Zhao et al., 2015). However, despite the growing body
of evidence on the APOE-related pathogenic mechanisms,
a definitive molecular roadmap on the ε4 haplotype targets
remains elusive.

Recent data also indicate that a genetic variant of the
RNF219 gene may increase the risk for the AD (Rhinn et al.,
2013). The rs2248663 A>G (RNF219/G) polymorphism of the
RNF219 gene encoding for a member of the RNF family, has
been associated with earlier onset of AD when working in
synergy with the APOE-ε4 (Rhinn et al., 2013). This accelerating
effect is not present in non-ε4 and RNF219/A carriers, thereby
indicating that the two genes may work on common pathogenic
pathways. In the study, we set out to integrate with new
evidence the original RNF219 findings (Rhinn et al., 2013) and
evaluated whether APOE-ε4 and RNF219/G work in synergy or
independently to affect the behavioral or cognitive features of
patients affected by mild cognitive impairment (MCI) or AD.
To that aim, we analyzed a comprehensive set of behavioral

and cognitive profiles in two cohorts of female MCI or AD
patients that included carriers or non-carriers of APOE-ε4 and
RNF219/G.

MATERIALS AND METHODS

Study Population
The study was approved by the Institutional and Ethics
Committee of the I.R.C.C.S. Santa Lucia-Rome. All procedures
were conducted in accordance with principles expressed in the
Helsinki Declaration. We recruited 173 total volunteers (mean
age ± standard deviation = 74 ± 7) including 83 MCI and 90
AD patients. All included subjects signed an informed consent
form before enrolment. Clinical evaluations were conducted
by trained psychologists and AD specialists (neurologists and
psychiatrists).

Neuropsychological Assessment
Subjects were assessed with the following neuropsychological
tests: MMSE, RAVL, Phonemic Verbal Fluency, CPMs, complex
figure of Rey, Stroop test, and NPI. The main functional capacity
was assessed by daily non-instrumental (ADL) (Wallace et al.,
2007) and instrumental activities (IADL) (Lawton and Brody,
1969).

Mini Mental State Examination defines the global level
of cognitive deterioration on a scale of 0–30 and targets
general mental abilities, memory, attention, and language.
A Score greater than or equal to 24 indicates the absence
of cognitive deficits, scores ≤ 9 indicate the presence of
severe cognitive deficits, scores between 10 and 18 indicate
moderate cognitive deficits, and scores between 19 and
23 indicate mild cognitive deficits (Folstein et al., 1975).
RAVL allows a quantitative assessment of the ability of
immediate and delayed recall (Snyder and Harrison, 1997).
The CPMs measure fluid intelligence (Basso et al., 1987).
The complex figure of Rey is a visual-perceptual test that
investigates the complex perceptual organization and long-
term visual memory (Shin et al., 2006). The Stroop test
examines aspects of attention and executive functions (Tremblay
et al., 2016). The NPI was developed to provide a way
to assess neuropsychiatric symptoms and psychopathology
of patients with AD and other neurodegenerative disorders
(Cummings et al., 1994). The NPI has been therefore employed
to characterize neuropsychiatric profiles and is a structured
interview that evaluates the following 12 behavioral domains:
delusions, hallucinations, agitation, dysphoria, anxiety, apathy,
irritability, euphoria, disinhibition, aberrant motor behavior,
night-time behavioral disturbance, eating disorders, and weight
changes.

DNA Extraction
For gene variants analysis, genomic DNA was isolated from
blood samples by the PureLink Genomic DNA Mini Kit (Life
Technologies, Carlsbad, CA, United States), quantified by an
Agilent 8453 Spectrophotometer (Agilent, Santa Clara, CA,
United States) and stored at−20◦C.
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APOE Genotyping
APOE genotyping was performed by direct sequencing.
PCR amplification of the region containing the rs429358
and rs7412 sites that determine the ε2, ε3, or ε4 variants of
the gene was carried out using the primers pair Forward:
5′-TAAGCTTGGCACGGCTGTCCAAGGA-3′ and Reverse:
5′-ACAGAATTCGCCCCGGCCTGGTACAC-3′, resulting in
a 244 bp fragment (Hixson and Vernier, 1990). Purified PCR
products were sequenced by the BigDye Terminator v3.1 Cycle
Sequencing Kit (Life Technologies, Carlsbad, CA, United States)
according to the manufacturer protocol. Sequence products were
then separated on an ABI 3130xl automatic sequencer (Applied
Biosystems, Paisley, United Kingdom) and analyzed using
Sequencing Analysis Software (Applied Biosystems, Paisley,
United Kingdom).

RNF219 Genotyping
RNF219 genotyping was carried out using High-Resolution
Melting Analysis in 48-well plates on a StepOneTM Real-Time
PCR System run by StepOne Software v2.2.2 (Applied
Biosystems, Paisley, United Kingdom) and analyzed with
High-Resolution Melt Software v3.0.1 (Life Technologies,
Carlsbad, CA, United States). We amplified a 103 bp
fragment using the following primers pair: Forward: 5′-GG
AAAAAGACAATGCAGGAAT-3′; Reverse: 5′-TTTTACCAA
GGGCAACATTTC-3′. The PCR reaction, containing 20 ng of
genomic DNA and the MeltDoctor HRM Master Mix (Applied
Biosystems), according to the manufacturer protocols, was run
as follow: enzyme activation at 95◦C for 10 min; 40 cycles of
denaturation and extension at 95◦C for 15 s and 60◦C for 1 min;
melt curve with a denaturation at 95◦C for 10 s, annealing at
60◦C for 1 min, high resolution melting from 60 to 95◦C with
a ramp rate of 0.3% and final re-annealing at 60◦ C for 15 s.
Fluorescence signals were measured during the amplification
and melting steps.

Statistical Analysis
APOE and RNF219 genotypic and allelic frequencies of female
MCI and AD patients were calculated as previously described
(Wigginton et al., 2005). For statistical analysis, we separated
the MCI and AD cohorts in carriers and non-carriers of the
two allelic variants ε4 and G. Allele frequencies of both APOE
and RNF219 polymorphisms were assessed for Hardy–Weinberg
equilibrium (HWE) using a chi-square (χ2) test with significance
set at p < 0.05 (Wigginton et al., 2005).

One-way analysis of variance (ANOVA) followed by Fisher
least significant difference (LSD) post hoc test was performed
to investigate the significance of differences between age,
education levels, MMSE corrected for age and education
levels, the reported (by the patient or caregivers) age of
appearance of the first symptom for MCI subjects, and
age of onset for AD patients. Levene test was performed
for assessment of homoscedasticity of the groups. Kruskal–
Wallis test followed by multiple comparison of mean ranks
was performed when the variances between groups were
non-homogeneous.

Analysis of covariance (ANCOVA) was performed using a
general linear model (GLM) approach and controlling for age
and education level. APOE and RNF219 genotypes were the
independent factors, and the neuropsychological scores were the
dependent variables. The main and interaction effects of the
APOE and RNF219 genotypes were evaluated. The employed
ANCOVA model is as follow: Yi = β0 + β1 (agei)+ β2 (education
leveli) + β3 (APOE genotypei) + β4 (RNF219 genotypei) +
β5 (APOE genotypei × RNF219 genotypei) + Ei, where Yi
indicates the specific ith neuropsychological score, β0 is the
intercept, and Ei is the error term associated with the model.
In the case of ordinal variables or when the assumption of the
homogeneity of the variance was rejected by the Levene test, the
ART procedure was applied (Wobbrock et al., 2011; Feys, 2016).
Multiple comparisons were performed using Fisher LSD post hoc
test.

In all cases, p-values were corrected for multiple
comparisons using the Benjamini–Hochberg correction at
a false discovery rate (FDR) of 5%. p-Values < 0.050 were
considered statistically significant. Statistical analysis was
performed using Statistica 6.0 software (Statsoft, Tulsa, OK,
United States).

RESULTS

Demographic and Clinical Features of
MCI and AD Cohorts
The demographic and clinical characteristic of the study groups
in the MCI or AD cohorts are shown in Table 1. The study
subgroups were matched for age, education levels, and MMSE
scores as well as for the reported age of the first symptoms (in
the case of MCI subjects) or age of onset (in the case of AD
patients).

Distribution of APOE and RNF219
Genotypes in the MCI and AD Cohorts
The distribution of APOE and RNF219 genotypes and relative
frequencies in MCI and AD patients are shown in Table 2.
Genotypes were in the Hardy–Weinberg equilibrium in MCI
(APOE p = 0.064; RNF219 p = 0.36) and AD (APOE p = 0.64;
RNF219 p = 0.29) patients.

Effects of the APOE and RNF219
Genotypes on Behavioral Features of
MCI Subjects
Our study revealed that, in MCI subjects, the anxiety-related NPI
score depends on the interaction between APOE and RNF219
genotypes (p = 0.003) (Supplementary Table S1). The APOE
genotype alone showed a trend toward significant effect on
the same NPI score (p = 0.074) (Supplementary Table S1). In
contrast, we did not find significant effects of age or education on
the anxiety trait (p = 0.063 and 0.16, respectively).

Post hoc multiple comparisons showed that MCI ε4/G
carriers displayed increased levels of anxiety compared to other
groups of patients. In fact, MCI patients carrying the ε4/G
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alleles show higher levels of anxiety [median (interquartile
range): 6 (6–9)] compared to MCI ε4/A carriers [median
(interquartile range): 2 (0–4); p = 0.009], non-ε4/A carriers
[median (interquartile range): 2 (0–4); p = 0.017] and non-ε4/G
carriers [median (interquartile range): 1 (0–2.75); p = 0.009;
Figure 1].

In contrast, we did not find significant main and/or
interaction effects of APOE and RNF219 variants on the other
neuropsychological scores (Supplementary Table S1).

Effects of the APOE and RNF219
Genotypes on Behavioral Features of AD
Patients
In the case of AD patients, we found that RNF219 variants had
significant effects on anxiety-related NPI scores (p = 0.015).
Similarly to the MCI group, in the AD cohort, we found
that ε4/G carriers show higher anxiety-related NPI scores
[median (interquartile range): 5.50 (1.75–8.25)] compared to

TABLE 1 | Demographic and clinical features of the study groups.

Characteristic MCI Levene test, p One-way ANOVA or
Kruskal–Wallis test, p

APOE-ε4 carrier APOE-ε4 non-carrier

G carrier G non-carrier G carrier G non-carrier

Number of participants 5 31 10 37

Age, years; mean (SD) 72 (7) 71 (7) 69 (7) 73 (6) 0.80 0.34

Education level, mean (SD) 9 (5) 9 (5) 6 (3) 7 (3) 0.060 0.084

Reported age of first symptom, years; mean (SD) 70 (8) 68 (7) 67 (7) 71 (6) 0.76 0.39

MMSE, mean (SD) 25.5 (0.9) 25 (2) 27 (1) 26 (2) 0.069 0.22

Characteristic AD Levene test, p One-way ANOVA or
Kruskal–Wallis test, p

APOE-ε4 carrier APOE-ε4 non-carrier

G carrier G non-carrier G carrier G non-carrier

Number of participants 8 26 10 46

Age, years; mean (SD) 79 (5) 74 (8) 79 (9) 77 (8) 0.41 0.19

Education level (years in school), mean (SD) 7 (4) 9 (5) 6 (4) 7 (3) 0.053 0.091

Age of onset, years; mean (SD) 77 (5) 72 (7) 77 (9) 75 (8) 0.52 0.18

MMSE, mean (SD) 21 (5) 20 (5) 17 (7) 20 (4) 0.41 0.21

Data are depicted as means and standard deviations (SD). Statistical analysis was performed using one-way analysis of variance (ANOVA) followed by Fisher least
significant difference post hoc test or Kruskal–Wallis test followed by multiple comparison of mean ranks. Levene test was performed for assessment of homoscedasticity
of the groups. False discovery rate (FDR) corrected p-values < 0.050 are shown in bold. MCI, patients with mild cognitive impairment; AD, patients with Alzheimer’s
disease; MMSE, mini-mental state examination score corrected for age and education levels; G carrier, RNF219/G polymorphism carrier, G non-carrier, RNF219/G
polymorphism non-carrier; APOE genotype, APOE-ε4 genotype; ε4 carrier, APOE-ε4 genotype carrier; ε4 non-carrier, APOE-ε4 genotype non-carrier.

TABLE 2 | Allele and genotype frequencies of APOE and RNF219 polymorphisms in the MCI and AD groups.

MCI (n = 83) AD (n = 90)

n Frequency (%) n Frequency (%)

APOE ε2/ε3/ε4 genotypes ε2/ε2 0 0 ε2/ε2 0 0

ε2/ε3 4 4.8 ε2/ε3 2 2.2

ε3/ε3 43 51.8 ε3/ε3 54 60

ε3/ε4 34 41 ε3/ε4 31 34.4

ε4/ε4 0 0 ε4/ε4 2 2.2

ε2/ε4 2 2.4 ε2/ε4 1 1.2

APOE ε2/ε3/ε4 alleles ε2 6 3 ε2 3 2

ε3 124 75 ε3 141 78

ε4 36 22 ε4 36 20

RNF219 rs2248663 A > G genotypes A/A 68 81.9 A/A 72 80

A/G 15 18.1 A/G 18 20

G/G 0 0 G/G 0 0

RNF219 rs2248663 A > G alleles A 151 91 A 162 90

G 15 9 G 18 10
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FIGURE 1 | Apolipoprotein E (APOE) and RNF219 interaction in the
modulation of anxiety of MCI subjects. Box plots show a comparison of
anxiety scores and statistical differences set at p < 0.05. Squares depict the
mean values. The central horizontal bars represent the median values. The
lower and the upper limits of the box represent the first and the third quartiles,
respectively. Circles represent the minimum and maximum values of anxiety
scores. Note that ε4/G carriers show increased anxiety-related NPI scores
compared to ε4/A carriers (p = 0.009), non-ε4/A carriers (p = 0.017), and
non-ε4/G carriers (p = 0.009). ∗ Indicate statistically significant differences.

ε4/A [median (interquartile range): 0.5 (0–5.5); p = 0.041;
Figure 2] and non-ε4/A carriers [median (interquartile range):
0 (0–2.75); p = 0.030; Figure 2].

As for MCI subjects, we did not find any significant
differences in other neuropsychological scores of the AD cohort
(Supplementary Table S2).

DISCUSSION

In the study we explored whether APOE-ε4 and RNF219/G work
in synergy or independently to affect the behavioral or cognitive
features of MCI and AD patients (Rhinn et al., 2013).

In a preliminary phase of the study, we attempted to
evaluate the synergistic effects of APOE and RNF219 variants on
behavioral and cognitive traits of male and female MCI or AD
patients. However, after genotyping, we found that the sample
size was too small to evaluate the effects of RNF genotype in
males. Therefore, the study was redirected to investigate the
impact of APOE-E4 and RNF219/G only in female patients. We
acknowledge that this is a limitation of our study and further
studies will need to address effects on male patients.

In the study, we found that the RNF219/G variant, in synergy
with the APOE-E4 allele, amplifies the anxiety-related NPI scores.
These scores are higher in APOE-ε4 and RNF219/G carriers of the
MCI or AD cohorts (Figures 1, 2).

Anxiety disorders are common late-life psychiatric features
and have been associated with lower cognitive performance in
older adults (Beaudreau and O’Hara, 2008). Several lines of

FIGURE 2 | Apolipoprotein E and RNF219 interaction in the modulation of
anxiety of AD patients. Box plots show a comparison of anxiety NPI scores
and statistical differences set at p < 0.05. Squares depict the mean values.
The central horizontal bars represent the median values. The lower and the
upper limits of the box represent the first and the third quartiles, respectively.
Circles represent the minimum and maximum values of anxiety scores. Note
that ε4/G carriers show higher anxiety-related NPI scores compared to ε4/A
(p = 0.041) and non-ε4/A carriers (p = 0.030). ∗ Indicate statistically significant
differences.

evidence support the modifying effect of the APOE-ε4 status on
the AD neuropsychiatric symptoms (Ungar et al., 2014). Reports
indicate that anxiety and other behavioral symptoms are more
prominent and severe in the population of female AD patients
who are APOE-ε4 carriers (Steinberg et al., 2006; Xing et al.,
2015), thereby supporting the notion of a relationship between
the interaction of APOE-ε4 and gender in the phenotypical
shaping of the AD-related behavioral features. The precise
biological underpinning of the phenomenon is difficult to
be identified. One possibility relies on the role played by
estrogens in the disease progression of female patients. These
hormones affect the synaptic plasticity of the AD brain as
well as shape the response to AD-related pathology (Yaffe
et al., 2000; Carroll and Rosario, 2012; Kang and Grodstein,
2012; Kramár et al., 2013). Hormonal changes can act on
neurotrophic mechanisms and be responsible for behavioral
symptoms. For instance, in females, decreased peri-menopausal
levels of estrogens have been suggested to favor the onset
and progression of dementia-related depression and anxiety
(Aloysi et al., 2006). These estrogen-related effects can amplify
the activity of APOE. In fact, it is well-known that APOE-ε4
allele acts as a negative modulator of neuropsychiatric features
in AD patients (Spalletta et al., 2006; Steinberg et al., 2006;
Panza et al., 2012). Moreover, levels of estradiol are known to
be influenced by the expression of the APOE-ε4 allele and
promote a worsening of neuropsychiatric symptoms in female
APOE-ε4 carriers (Xing et al., 2012). Surprisingly, we did not find
significant effects of the APOE-ε4 allele on neuropsychological
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features such as apathy, aggressiveness, and depression. These
symptoms have been previously shown in MCI or AD
patients (Panza et al., 2011). A possible explanation of
these divergent results may depend on the fact that our
study has evaluated only female subjects while others have
investigated mixed groups that included female and male
patients.

The neurobiological effects of RNF219 remain most
unexplored. RNF219 belongs to a family of proteins
pleiotropically involved in many cellular functions. Some RNF
proteins have been shown to modulate myelin formation
(Hoshikawa et al., 2008) and the stability of GABAergic
synapses (Jin et al., 2014). These proteins interfere with the
activation of the ubiquitin system (Joazeiro and Weissman,
2000), a crucial mechanism for neuronal demise (Zheng
et al., 2014). A role for selected RNF proteins has also been
proposed in neurodegenerative processes (Pranski et al., 2013;
Matz et al., 2014). In that regard, several genetic variants at the
RNF219 locus have been associated with the presence of cognitive
deficits, brain atrophy and lipid deregulation (Barber et al., 2010;
Cirulli et al., 2010; Furney et al., 2011). Of note, the RNF219/G
variant has been recently associated with an earlier onset of AD
(Rhinn et al., 2013).

Interestingly, recent studies in MCI patients have reported
a positive relationship between the presence of high levels of
anxiety and the likelihood of conversion to AD. Although
the issue remains controversial (Devier et al., 2009; Breitve
et al., 2016), it has been shown that anxiety is associated
with the earlier conversion to AD (Gallagher et al., 2011; Mah
et al., 2015). Therefore, our findings allow the speculation of a
potential correlation between anxiety, RNF219/G, APOE-ε4 and
the conversion to AD.

In our study, we did not find any significant correlation
between the anxiety levels and an earlier onset age for the
first cognitive symptoms for MCI subjects or AD clinical signs
(data not shown). RNF219/G has been shown to favor an
earlier presentation of the disease in AD patients who are
carriers of the polymorphism. The discrepancy with our study
may be related to the small sample size of our female study
groups and/or a gender effect. Our findings instead show the
presence of higher anxiety levels in patients who are carrying
APOE-ε4 and RNF219/G. This result may support the idea of
a synergistic effect of these alleles on the behavioral alteration
of the disease. Future studies are needed to clarify whether and

how RNF219/G plays in synergy with the gender and APOE-ε4
status to affect the neurodegenerative processes underlying
dementia.
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