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Resting-state functional connectivity (rs-FC) is a promising neuromarker for cognitive

decline in aging population, based on its ability to reveal functional differences associated

with cognitive impairment across individuals, and because rs-fMRI may be less taxing

for participants than task-based fMRI or neuropsychological tests. Here, we employ

an approach that uses rs-FC to predict the Alzheimer’s Disease Assessment Scale (11

items; ADAS11) scores, which measure overall cognitive functioning, in novel individuals.

We applied this technique, connectome-based predictive modeling, to a heterogeneous

sample of 59 subjects from the Alzheimer’s Disease Neuroimaging Initiative, including

normal aging, mild cognitive impairment, and AD subjects. First, we built linear regression

models to predict ADAS11 scores from rs-FC measured with Pearson’s r correlation. The

positive network model tested with leave-one-out cross validation (LOOCV) significantly

predicted individual differences in cognitive function from rs-FC. In a second analysis,

we considered other functional connectivity features, accordance and discordance,

which disentangle the correlation and anticorrelation components of activity timecourses

between brain areas. Using partial least square regression and LOOCV, we again built

models to successfully predict ADAS11 scores in novel individuals. Our study provides

promising evidence that rs-FC can reveal cognitive impairment in an aging population,

although more development is needed for clinical application.

Keywords: aging, Alzheimer’s disease, mild cognitive impairment, functional connectivity, resting state

INTRODUCTION

Cognitive decline occurs in both normal aging and neurodegenerative disorders (Hedden and
Gabrieli, 2004; Jagust, 2013) and has a profound impact on individuals’ quality of life as well as
life satisfaction (St John and Montgomery, 2010; Abrahamson et al., 2012). Elucidating the neural
processes underlying such decline is of critical importance to developing strategies for healthy aging
and treatments for neurodegenerative disease. However, the brain aging process accompanying
such cognitive decline in normal aging is characterized by a tremendous level of heterogeneity,
with various extents of dysfunction in multiple brain systems, most notably the default-mode
network (DMN), which is critical for memory and the frontoparietal network, which is critical
for executive functioning (Ferreira and Busatto, 2013; Jagust, 2013). Critically such brain systems
are also subject to influences by neurodegenerative disorders, such as Alzheimer’s Disease (AD) and
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mild cognitive impairment (MCI) (Buckner, 2004; Badhwar et al.,
2016). How can we characterize the different levels of cognitive
decline using a neural marker despite such heterogeneity?

Recent efforts have been made to develop and validate aging-
and AD-related neural markers that can be incorporated into
clinical practice. Resting-state functional connectivity (rs-FC)
measured with functional magnetic resonance imaging (fMRI)
is a promising neuromarker for characterizing cognitive decline
because it can reveal features of intrinsic functional brain
organization relevant to cognitive abilities and disease status
(Gabrieli et al., 2015; Woo et al., 2017). Compared to traditional
diagnostic tools such as, neuropsychological tests, rs-fMRI may
be less demanding on the participant. In addition, rs-fMRI does
not involve the presentation of stimuli and thus is easier to
standardize and share across different study sites.

Functional connectivity, the statistical interdependence
between the blood oxygenation level dependent (BOLD) contrast
signal time-courses of a pair of brain regions (Friston et al.,
1994), has been used to assessed the intrinsic fluctuations of
brain activity at rest (Biswal et al., 1995; Raichle et al., 2001).
Functional alterations in resting-state networks have been
implicated in AD and mild cognitive impairment (MCI) (Sheline
and Raichle, 2013; Dennis and Thompson, 2014). However,
most work on this topic focuses on a priori defined regions or
networks such as the DMN and frontoparietal network (e.g.,
(Greicius et al., 2004; Sorg et al., 2007; Wang et al., 2007; Bai
et al., 2009; Qi et al., 2010; Agosta et al., 2012; Damoiseaux et al.,
2012; Vemuri et al., 2012). In addition, these studies typically
investigate group differences among healthy control, MCI and
AD participants and thus provide limited information about the
cognitive impairment of individual subjects.

Recent advancements in rs-FC analyses demonstrate the
exciting possibility of predicting an individual’s cognitive abilities
(e.g., sustained attention and fluid intelligence) from whole-
brain FC (Finn et al., 2015; Rosenberg et al., 2016; Shen et al.,
2017). Using Pearson’s r as the measure of FC, Rosenberg et al.
(2016) used connectome-based predictive modeling (CPM) to
identify two functional networks related to sustained attention
task performance: a high-attention network of functional
connections positively correlated with performance on a
sustained attention task across individuals, and a low-attention
network of functional connections negatively correlated with
task performance. Employing internal (leave-one-subject-out)
and external (cross-dataset) validation procedures, they built
predictive models based on the strength of these networks and
showed that such models not only predicted task performance
in novel individuals from both task-based and rs-fMRI, but also
generalized to predict attention-deficit/hyperactivity disorder
(ADHD) symptom severity in an independent group of children
and adolescents from rs-fMRI (Rosenberg et al., 2016, 2017).

In another framework, Meskaldji et al. (2016) introduced
two different measures of FC, accordance and discordance.
Unlike Pearson’s r, which is a summary measure of correlation
between two regions, accordance and discordance respectively
capture the correlation component and the anti-correlation
component between the time-courses of two regions. Using
partial least square regression (PLSR) and internal validation

procedure, the authors demonstrated that accordance and
discordance significantly predicted long-term memory scores in
novel individuals in a group of MCI participants.

These results suggest that an individual’s functional
connectome—his or her unique pattern of whole-brain FC—
contains important behavioral and clinical information. Since
Alzheimer’s disease and, more generally, the neurodegenerative
process, evolve on a system level (Eidelberg and Martin, 2013),
the whole-brain functional connectome should be particularly
suitable for developing a neuromarker for clinically relevant
cognitive decline in aging. Employing the two frameworks above
(Pearson’r with CPM and accordance/discordance with PLSR),
the current study sought to predict cognitive impairment related
to Alzheimer’s disease on an individual level in a heterogeneous
sample including healthy control, MCI and AD participants
tested at multiple study sites across the US. We additionally
assessed and compared the performance of these different
predictive models.

METHODS

Participants
Data analyzed here were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (Weiner et al., 2010).
ADNI was launched in 2003 as a public-private partnership
with the primary goal of testing whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI
and early AD. ADNI consists of three phases: ADNI-1, ADNI-
Grand Opportunity (ADNI-GO), and ADNI-2. For up-to-date
information, see http://adni.loni.usc.edu/.

Because the ADNI-1 protocol did not include fMRI, all data
in the current study were collected as part of ADNI-GO and
ADNI-2. In this sample, 164 participants have at least one 7-min
resting state fMRI scan, a corresponding magnetization prepared
rapid gradient echo sequence (MPRAGE) scan, demographic
information, and behavioral assessments available. Only data
from the first visit with available 7-min fMRI scan were used
in the current study. 103 participants were excluded due to
excessive headmotion during the resting state fMRI scan (defined
a priori as >2mm translation, >3◦ rotation, or >0.15mm mean
frame-to-frame displacement). An additional 2 participants were
excluded because voxel size (2.5 × 2.5 × 2.5mm) different from
the standard ADNI fMRI voxel size (3.3 × 3.3 × 3.3mm).
The final sample included 59 participants (mean age = 72.53,
range: 56–89; 31 females). The sample spanned a wide range of
baseline diagnoses: (1) cognitively normal (CN), 14 participants;
(2) significant memory concern (SMC), 5 participants; (3) early
MCI, 14 participants; (4) late MCI, 15 participants; (5) AD, 11
participants.

Alzheimer’s Disease Assessment
Scale—Cognitive Subscales (ADAS-Cog)
We used the ADAS-Cog (11-item) score as the target
variable for prediction. ADAS-Cog is a widely-used measure
of cognitive performance in Alzheimer’s disease trials. It
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measures impairments across several cognitive domains that
are considered to be affected early and characteristically in
Alzheimer’s disease (Rosen et al., 1984). The 11-item version of
ADAS-Cog (referred to as ADAS11) consists of the following
items: word recall, commands, construction, naming, ideation
praxis, orientation, word recognition, recall instructions, spoken
language, word finding difficulty and comprehension. Higher
ADAS11 scores indicate more severe cognitive impairment.

In the current sample, ADAS11 scores were not significantly
correlated with age (Pearson’s r = 0.04, p = 0.76) or average
frame-to-frame displacement (Pearson’s r = 0.13, p = 0.34).
There is no difference in ADAS11 scores between male and
female participants [t(57) = −0.30, p = 0.76]1. ADAS11 scores
were negatively correlated with years of education (Pearson’s
r = 0.25, p = 0.05) and therefore we controlled for the effects
of years of education in our prediction (see section Education-
Control Methods).

Image Acquisition
All imaging data were acquired on a 3-T Philips scanner at
rigorously validated sites with a standardized protocol (Jack
et al., 2010). Scan sessions included: localizer, sagittal MPRAGE,
resting state fMRI, and axial PD and/or T2-weighted fast spin
echo sequence. The ADNI MRI core optimized the acquisition
parameters of these sequences for eachmodel of scanner included
in the study. All scanner sites were required to pass a strict
scanner validation test before testing ADNI participants.

Image Preprocessing
Imaging data were preprocessed using AFNI (Cox, 1996). The
first 3 frames were excluded. Data were despiked, slice-time and
motion corrected. Mean signal from CSF in ventricles and mean
global signal were regressed out from the data. A 24-parameter
motion model, including six motion parameters, six temporal
derivatives, and their squares, were also regressed from the data.
The data were then detrended (quadratic trends) and band-pass
filtered ([0.01 0.1Hz]), to limit the analysis at the resting-state
frequency range.

Brain Parcellation
Network nodes were defined using the Shen 268-node functional
brain atlas, which includes the cortex, subcortex, and the
cerebellum (Shen et al., 2013). Using the 3dWarp and 3dQwarp
functions in AFNI (Cox, 1996), the atlas was warped from
MNI space into single-subject space via concatenation of a
linear and nonlinear registration between the functional images,
anatomical scan, and the MNI brain. The two transformations
were calculated independently and combined into a single
transformation. After obtaining a subject-specific atlas, for every
node, we calculated a mean time course by averaging the time
courses of all of its constituent voxels using the roimeans function
in BioImage Suite (Joshi et al., 2011) and obtained 268 mean time
courses for each subject.

1However, other studies with larger samples have found that younger age is
associated with lower ADAS-Cog scores (Zec et al., 1992; Doraiswamy et al.,
1997b; Peña-Casanova, 1997) and males exhibit modestly lower ADAS-Cog scores
(Doraiswamy et al., 1997a).

Model Definition and Evaluation
To build predictive models, we employed two frameworks:
a linear model using Pearson’s r to assess whole-brain FC
(Rosenberg et al., 2016; Shen et al., 2017) and a partial least square
regression (PLSR) model using accordance and discordance
scores to assess whole-brain FC (Meskaldji et al., 2015b, 2016).

CPM With Pearson’s r as Connectivity
Measure
Pairwise correlations were computed between all pairs of the
268 nodes, and Pearson’s r correlation coefficients were Fisher z-
transformed to yield symmetric 268× 268 connectivity matrices.

To assess the relevance of FC (measured with Pearson’s
r) to behavior, we applied the CPM approach, described in
detail in previous work (Finn et al., 2015; Rosenberg et al.,
2016; Shen et al., 2017). The following steps were performed
in MATLAB (R2016b, MathWorks). First, Spearman’s rank
correlation between each functional connection, or edge, in
the connectivity matrices and ADAS 11 was performed across
participants. As suggested by Shen et al. (2017), here we used the
Spearman’s rank correlation instead of the Pearson’s r correlation
because the distribution of ADAS11 scores in our sample is
skewed (Kurtosis = 5.70). The resulting Spearman’s rho values
were statistically thresholded at p < 0.01. This edge selection
threshold was chosen to remain consistent as in Rosenberg
et al. (2016). See Supplementary Figure 1 for the effects of edge
selection on the CPM model performance. All the chosen edges
were separated into a positive tail (edges whose strength was
associated with higher ADAS11 scores) and a negative tail (edges
whose strength was associated with lower ADAS11 scores). A
single summary statistic, network strength (i.e., the sum of all
edges in the positive or negative tail), was used to characterized
each participant’s degree of connectivity in the selected positive
edge set and negative edge set.

To determine whether network strength predicted ADAS11
scores in novel individuals, a leave-one-out cross-validation
(LOOCV) procedure was employed. In each set of n-1
participants, two linear models were fit relating positive and
negative network strength to ADAS11 scores. These models were
used to predict the left-out individual’s ADAS11 score from
the strength of his or her positive and negative network. The
Spearman’s rank correlations between observed and predicted
ADAS11 scores were used to assess predictive power. Non-
parametric p-values were calculated based on 10,000 permutation
tests.

PLSR With Accordance and Discordance
Scores as Connectivity Measures
In addition to using Pearson’s r correlation, which computes how
correlated the activities of two ROIs are on average, as a measure
of functional connectivity, we also calculated two recently
developed functional connectivity measures, accordance and
discordance (Meskaldji et al., 2015a, 2016). Accordance measures
how much two ROIs are co-activated and co-deactivated at
the same time, whereas discordance measures how often the
activities of two ROIs are decoupled. In this way, accordance
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and discordance disentangle the correlated and anti-correlated
elements in the BOLD activity timecourses of each pair of ROIs.

To calculate accordance and discordance, the mean timeseries
of each ROI (zi = z

(i)
1 , z

(i)
2 , . . . z

(i)
T . i = 1, 2, . . . , 268)

was normalized by subtracting the median and dividing by the
median absolute deviation of each time course as in Meskaldji
et al. (2016). To keep only significant activations or deactivations,
each ROI time course is compared to a positive threshold (u) and
negative threshold (l) based on the quantile q = 0.8 applied in
Meskaldji et al. (2016). An activation vector, zu, is constructed
such that for all t ∈ {1, . . . , T} : zut = 0 if zt < u and zut =

1 otherwise. Similarly, a deactivation vector zl is constructed such
that for all t ∈ {1, . . . , T} : zlt = 0 ifz > l and zlt = −1 otherwise.
The accordance ai, j and discordance di, j values between two
ROIs i, j, with the corresponding normalized time courses zi and
zj are given by

ai, j =
zui ∗ z

u
j + zli ∗ z

l
j

σiσj
(1)

di, j =
zui ∗ z

l
j + zli ∗ z

u
j

σiσj
(2)

where

σi =

√

(zui ∗ z
u
i + zli ∗ z

l
i) (3)

For a given timecourse z, the following is true: a (z, z) =

1, a (z,−z) = 0 and d (z, z) = 0, d (z,−z) = −1. Note that the
discordance score is always negative. The more negative it is, the
more often the BOLD timecourses of two ROIs are decoupled. In
this way, we obtained a 268 × 268 accordance matrix and a 268
× 268 discordance matrix for each participant.

As in Meskaldji et al. (2016), we then tested whether
accordance and discordance predicted ADAS 11 scores using
partial least square regression (PLSR). Partial least square
regression is particularly helpful for predictive models when the
input factors are large in numbers and highly collinear. Briefly,
PLSR assumes that there are some lower-dimensional, latent
structures behind the factors and thus projects the factors (X)
and the response (Y) to a latent space such that the response
variation can be explained as much as possible. We reduced
dimensionality by selecting only the highest loading component.
Increasing the number of PLSR components did not improve
prediction performance (see Supplementary Figure 2).

As described in the CPM section above, LOOCV was
also employed such that the model was built on n − 1
participants and tested on the left-out individual. Spearman’s
rank correlation between observed and predicted ADAS11
scores were used to assess predictive power. The non-
parametric p-values were calculated based on 10,000 permutation
tests.

Education-Control Methods
Because we observed a correlation between years of education
and ADAS11 scores in our sample, we ran additional analyses to
control for the effect of educational level on prediction.

For CPM, we applied the following two methods separately.
First, we included educational level as a control variable during
the edge selection of CPM. In this case, the predicted networks
consisted of only edges that showed significant partial Spearman’s
rank correlation with ADAS11 while controlling for years of
education. Second, we correlated edge strength with years of
education and ADAS 11 using Spearman’s rank correlation,
respectively. We excluded any edges significantly related to
education level (either positively or negatively; p < 0.01) from
our predictive model of ADAS11.

For PLSR, we controlled for the effect of education by a
method similar to the second one mentioned above such that
we excluded any edges that showed significant Spearman’s rank
correlation with years of education in both the accordance
and discordance matrices. The resulting matrices were then
submitted to PLSR.

Functional Anatomy
We then sought to identify and compare the most important
edges selected by CPM and PLSR. We defined final
positive and negative CPM networks using data from
all participants, restricting each to the 10 edges (out of
(268 × 267 ÷ 2 =) 35, 778 total possible edges) most strongly
correlated (Spearman’s rho) with ADAS11 scores in the positive
and negative directions, respectively. For the PLSR model with
accordance and discordance scores, we obtained the 10 most
important edges for accordance and discordance measures
separately. For each measure, we first calculated the mean
PLSR coefficient across the LOOCV procedure for every edge.
We then selected only 10 edges with the most positive mean
PLSR coefficients and 10 edges with the most negative mean
coefficients. In this way, we obtained three pairs of masks (a
positive one and a negative one, with 10 edges each), for the
CPM with Pearson’s r model, the PLSR with accordance model
and the PLSR with discordance model.

To explore the functional anatomy of different networks,
we summarized the distribution of nodes and edges in two
ways. First, we grouped the 268 nodes into anatomically defined
macroscale regions (e.g., prefrontal cortex, motor cortex etc.) and
then calculated the relative numbers of connections identified
by the different predictive models within a region or between
each pair of regions. Second, we grouped nodes into eight
canonical networks identified by Finn et al. (2015) and examined
the relative levels of within- and between-network connections
identified by the different predictive models.

RESULTS

Predicting ADAS11 With CPM Using
Pearson’s r as Connectivity Measure
The CPM based on positive network strength significantly
predicted novel participants’ ADAS11 scores from their resting-
state data (rank correlation between predicted and observed
ADAS11 scores, rho = 0.49, permutation p = 0.009; see
Figure 1). However, the negative network model did not yield
significant prediction (rho = 0.27, permutation p = 0.149; see
Figure 1).
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FIGURE 1 | Different models predict ADAS11 scores. Scatterplots show the correlations between the observed ADAS11 scores and the ADAS11 scores predicted by

different models for each left-out individual (left to right: positive network defined using CPM, negative network defined using CPM, using accordance in PLSR, using

discordance in PLSR). The p-values were calculated based on 10,000 permutations.

Predicting ADAS11 With PLSR Using
Accordance and Discordance as
Connectivity Measures
Models built with PLSR separately based on accordance and
discordance also significantly predicted ADAS11 scores (rank
correlation between predicted and observed ADAS11 scores,
accordance: rho = 0.34, permutation p = 0.009; discordance:
rho= 0.27, permutation p= 0.040; see Figure 1).

Education Control
CPM performance remained similar to the non-education-
controlled results after we controlled for years of education
using the two different methods described above. After including
years of education as a control variable in the edge selection
stage, the resulting positive network still significantly predicted
novel participants’ ADAS11 scores (rho = 0.51, permutation
p = 0.004) while the negative network did not (rho = 0.25,
permutation p = 0.200). In the second method, we excluded
any edges that were correlated with years of education from
our predictive models. Across all iterations of LOOCV, 1 to 3
(Median = 2) edges were excluded from the positive network
and 0 to 2 (Median = 1) edges were excluded from the
negative network. With this approach, the correlation between
observed and predicted ADAS11 scores was also close to what
we obtained above (positive network: rho = 0.47, permutation
p = 0.012; negative network: rho = 0.29, permutation
p= 0.156).

Similarly, after excluding any edges correlated with years of
education from the accordance and discordancematrices, models
built with PLSR yielded prediction performance comparable to
what we observed without controlling for education (accordance:
rho = 0.34, permutation p = 0.010; discordance: rho = 0.28,
permutation p= 0.026).

Functional Anatomy
We also identified the most important edges selected by different
models (see Figures 2A–F, 3A–F). For the specific distribution
of these edges, we focused on the positive network defined by
CPM (associated p-values for all edges < 4.0 × 10−4), which
gave the highest prediction performance. Higher strength in this
network predicted more severe cognitive impairment. Grouping

the 268 nodes into the ten macroscale regions (see Figure 2A)
for interpretability, we observed the importance of bilateral
prefrontal cortex, left temporal lobe and bilateral motor cortex.
Grouping the nodes into the eight canonical networks defined by
Finn et al. (2015) (see Figure 3A), we found that important edges
fall within the frontoparietal and motor networks. In addition,
frontoparietal and visual I networks contained important edges
connecting with other networks.

In comparison, the distribution of important edges from
the PLSR with accordance model and from the PLSR with
discordance model exhibited a different pattern from the CPM
positive network, highlighting the importance of brainstem and
cerebellum (see Figures 2C–F; associated p-values for all edges
based on 10,000 permutation tests < 0.005). Similar results were
found when the nodes were grouped into the eight canonical
networks: the accordance positive network and the discordance
positive network both contain edges in the subcortical network,
which was not present in the CPM positive network (see
Figures 3C,E).

DISCUSSION

We have demonstrated that resting-state functional connectivity
significantly predicts novel individual’s cognitive impairment
in a highly heterogeneous aging population, ranging from
cognitively normal participants to participants with MCI and
AD. These promising results suggest that functional networks
defined in a data-driven manner contain clinically relevant
information about cognitive function and can be developed
into markers to capture cognitive decline associated with aging
and AD.

We tested different predictive models employing three
different measures of functional connectivity (Pearson’s r,
accordance, and discordance) and two different prediction
frameworks (CPM and PLSR). The positive network defined
by CPM using Pearson’s r as connectivity measure showed the
best numerical performance. However, unlike previous work on
fluid intelligence (Finn et al., 2015) and attention (Rosenberg
et al., 2016, 2017), in which the positive and negative networks
showed comparable levels of predictive power, in our study, the
negative network did not predict AD-related cognitive decline.
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FIGURE 2 | The most important edges selected by different models and their distribution in 10 macroscale brain regions in the left and right lobes. (A) Positive edges

selected by CPM; (B) negative edges selected by CPM; (C) accordance edges with positive weights in PLSR; (D) accordance edges with negative weights in PLSR;

(E) discordance edges with positive weights in PLSR; F: discordance edges with negative weights in PLSR. Macroscale regions include prefrontal cortex (PFC), motor

cortex (Mot), insula (Ins), parietal (Par), temporal (Tem), occipital (Occ), limbic (including the cingulate cortex, amygdala, and hippocampus; Lim), cerebellum (Cer),

subcortical (thalamus and striatum; Sub), and brainstem (Bsm). The circle around each region name represents the total number of possible edges between nodes

within the brain region. The line connecting two regions represents the total number of possible edges connecting one node in one region and one in the other. The

darkness of the circle/line represents the proportion of edges selected by each model over the corresponding possible edges. The color bar below each plot provides

a scale for the darkness of color used in the plot. The percentage below the color bar represents the proportion of edges selected by each model over the

corresponding possible edges. Note that discordance scores are negative and a more negative discordance score means the more often the BOLD timeseries of two

ROIs are decoupled.
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FIGURE 3 | The most important edges selected by different models and their distribution in the eight canonical networks defined by Finn et al. (2015). (A) Positive

edges selected by CPM; (B) negative edges selected by CPM; (C) accordance edges with positive weights in PLSR; (D) accordance edges with negative weights in

PLSR; (E) discordance edges with positive weights in PLSR; (F) discordance edges with negative weights in PLSR. The canonical networks include the

subcortical-cerebellum (SubC), motor (MT), medial frontal (MF), visual I (VI), visual II (VII), visual association (VA), default mode (DM), and frontoparietal (FP). The circle

around each network name represents the total number of possible edges between nodes within the network. The line connecting two networks represents the total

number of possible edges connecting one node in one network and one in the other. The darkness of the circle/line represents the proportion of edges selected by

each model over the corresponding possible edges. The color bar below each plot provides a scale for the darkness of color used in the plot. The percentage below

the color bar represents the proportion of edges selected by each model over the corresponding possible edges.
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In addition, models built from accordance/discordance measures
and PLSR also showed statistically significant prediction
performance. Critically, unlike most of previous studies that
focus on a priori defined brain regions/networks and compare
between groups (Greicius et al., 2004; Sorg et al., 2007; Wang
et al., 2007; Bai et al., 2009; Qi et al., 2010; Agosta et al., 2012;
Damoiseaux et al., 2012; Vemuri et al., 2012), our analyses were
performed in a whole-brain, bottom-up manner. Therefore, our
method may particularly useful in identifying features important
for predicting cognitive performance on an individual subject
level.

In discussing functional anatomy of the edges most relevant
to individual differences in cognitive function, we focus on
the CPM positive network. A higher strength in this network
predicts a higher ADAS11 score and thus more severe cognitive
impairment. Consistent with prior work (Wang et al., 2007;
Supekar et al., 2008) where rsFC in frontal regions is increased
in AD patients relative to controls, we also found that increased
FC in prefrontal cortex with other regions is associated with
cognitive impairment. We also found that increased rsFC
within the frontoparietal network, as well as between the
frontoparietal network and default mode network, is associated
with worse cognitive performance. This suggests that more
impaired subjects may have difficulty alternating between the
task-positive and task-negative systems at rest, in line with the
recent finding that as AD progresses, there is a reduced anti-
correlation between the attentional network and default mode
network.

Interestingly, the distribution of important edges identified
by the PLSR with accordance model and the PLSR with
discordance model is distinct from the CPM positive network
and highlights the contribution of subcortical regions to
the prediction of ADAS 11 scores. This suggests that
the two frameworks may be capturing different aspects
of the relationship between rsFC and cognitive decline
in aging population. Future work could explore how to
combine these two frameworks to build better predictive
models.

New work is beginning to show that models based on
FC can predict psychiatric diseases before onset. Specifically,
FC at 6-months of age predicts the conversion to autism
at 24 months of age (Emerson et al., 2017). However, the
neuropsychological scale used in the current study, ADAS11, is
less sensitive to changes over time and does not show systematic
increases related to disease progression (Skinner et al., 2012).
If neuropsychological scales more sensitive to temporal changes
become available, future work may build models to predict
decline in clinically relevant cognitive performance or conversion
to AD.

Our study provides promising evidence that functional
connectivity from a resting-state scan can reveal AD-related
cognitive impairment in an aging population with health,
MCI and AD participants, which is potentially advantageous
over administering standardized cognitive battery tests that
can be challenging and time-consuming. In addition, recent
work with other imaging modalities has found promising
markers of conversion from MCI to AD (FDG-PET: Pagani

et al., 2016; White matter signal abnormality: e.g., Lindemer
et al., 2015). Since the ADNI dataset includes multi-modality
measurements, future work could explore how to incorporate
data from different modalities, such as structural and functional
MRI and PET, to establish a comprehensive predictive
framework for the cognitive decline in healthy and clinical
aging population.
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