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Although immunotherapies against the amyloid-β (Aβ) peptide tried so date failed to
prove sufficient clinical benefit, Aβ still remains the main target in Alzheimer’s disease
(AD). This article aims to show the rationale of a new therapeutic strategy: clearing
Aβ from the CSF continuously (the “CSF-sink” therapeutic strategy). First, we describe
the physiologic mechanisms of Aβ clearance and the resulting AD pathology when
these mechanisms are altered. Then, we review the experiences with peripheral Aβ-
immunotherapy and discuss the related hypothesis of the mechanism of action of
“peripheral sink.” We also present Aβ-immunotherapies acting on the CNS directly.
Finally, we introduce alternative methods of removing Aβ including the “CSF-sink”
therapeutic strategy. As soluble peptides are in constant equilibrium between the ISF
and the CSF, altering the levels of Aβ oligomers in the CSF would also alter the levels
of such proteins in the brain parenchyma. We conclude that interventions based in a
“CSF-sink” of Aβ will probably produce a steady clearance of Aβ in the ISF and therefore
it may represent a new therapeutic strategy in AD.

Keywords: Alzheimer disease, amyloid beta-peptides, cerebrospinal fluid, immunotherapy, “CSF sink hypothesis”

PHYSIOLOGICAL CLEARANCE OF Aβ

Amyloid beta (Aβ) denotes peptides of 36–43 amino acids that are intrinsically unstructured,
meaning that in solution it does not acquire a unique tertiary fold but rather populates a set of
structures. These peptides derive from the amyloid precursor protein (APP), which is cleaved by
beta- (BACE) and gamma-secretases to yield Aβ (Menendez-Gonzalez et al., 2005; O’Nuallain et al.,
2010).

Amyloid beta is cleared from the brain by several independent mechanisms (Malm et al.,
2010; Diem et al., 2017; Zuroff et al., 2017), including drainage to the vascular and glymphatic
systems (DeMattos et al., 2001; Iliff et al., 2012, 2013; Tarasoff-Conway et al., 2015; Bakker
et al., 2016; Zuroff et al., 2017), and in situ degradation by glial cells (Ries and Sastre, 2016;
Zuroff et al., 2017). Astrocytes and microglia can produce Aβ degrading proteases like neprilysin,
as well as chaperones involved in the clearance of Aβ. There is also a receptor mediated
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endocytosis, where receptors located in the surface of glial cells
are involved in the uptake and clearance of Aβ, like lipoprotein
receptor-related protein 1 (LRP), receptor for advanced glycation
end products (RAGE) and others (Ries and Sastre, 2016). In
transcytosis, Aβ is removed from ISF across the blood brain
barrier (BBB) by LRP (Yamada et al., 2009). LRP binds Aβ in
the brain and then transports it across the BBB into the systemic
blood. The LRP extracellular domain is cleaved allowing the
LRP bound to Aβ. RAGE protein brings unbound Aβ back
into the CNS. The whole process is regulated by PICALM
(Zhao et al., 2015). A perivascular pathway facilitates CSF flow
through the brain parenchyma and the clearance of interstitial
solutes, including Aβ (Iliff et al., 2012, 2013). It was thought that
changes in arterial pulsatility may contribute to accumulation
and deposition of toxic solutes, including Aβ, in the aging
brain (Iliff et al., 2012, 2013). However, mathematical simulation
showed that arterial pulsations are not strong enough to produce
drainage velocities comparable to experimental observations and
that a valve mechanism such as directional permeability of the
intramural periarterial drainage pathway is necessary to achieve a
net reverse flow (Diem et al., 2017).

ALTERED CLEARANCE OF Aβ IN
ALZHEIMER’S DISEASE

The pathophysiology of Alzheimer’s disease (AD) is characterized
by the accumulation of Aβ and phospho-tau protein in the
form of neuritic plaques and neurofibrillary tangles, respectively
(Braak and Braak, 1991; Atwood et al., 2002). Aβ molecules
can aggregate to form flexible soluble oligomers, which exist in
several forms and are toxic to neurons (Haass and Selkoe, 2007),
and finally into diffuse and dense plaques. Moreover, variable
amounts of misfolded oligomers (known as “seeds”) are taken
up by neurons then transmitted from neuron to neuron via the
extracellular milieu and can propagate aggregates by a ‘seeding’ or
“prion like” mechanism (Walker et al., 2016; Lei et al., 2017). Tau
also forms such prion-like misfolded oligomers, and there is some
evidence that misfolded Aβ can induce tau misfolding (Pulawski
et al., 2012; Nussbaum et al., 2013).

Amyloid-β accumulation has been hypothesized to result
from an imbalance between Aβ production and clearance. An
overproduction is probably the main cause of the disease in the
familial AD where a mutation in the APP, PSEN1, or PSEN2 genes
is present (presenilins are postulated to regulate APP processing
through their effects on gamma-secretase) while altered clearance
is probably the main cause of the disease in sporadic AD. A good
amount of studies reporting altered clearance of Aβ in AD have
been published in recent years (Atwood et al., 2002; Mawuenyega
et al., 2010; Tarasoff-Conway et al., 2015; Ries and Sastre, 2016;
de Leon et al., 2017; Zuroff et al., 2017), becoming one of the
“hot-topics” in AD research today.

The different clearance systems probably contribute to varying
extents on Aβ homeostasis. Any alteration to their function may
trigger the progressive accumulation of Aβ (Morrone et al., 2015;
Tarasoff-Conway et al., 2015; de Leon et al., 2017), which is
the fundamental step in the hypothesis of the amyloid cascade

(Lambert et al., 1998; Quan and Banks, 2007; Mawuenyega
et al., 2010; Bateman et al., 2012; Fagan et al., 2014; Fleisher
et al., 2015). There is a relationship between the decrease in
the rate of turnover of amyloid peptides and the probability of
aggregation due to incorrect protein misfolding (Patterson et al.,
2015) resulting in its accumulation. As soluble molecules can
move in constant equilibrium between the ISF and the CSF, Aβ

monomers and oligomers can be detected in the CSF. The AP42,
and Aβ oligomer/protofibril levels in cortical biopsy samples are
higher in subjects with insoluble cortical Aβ aggregates than
in subjects without aggregates, and brain tissue levels of AP42
are negatively correlated with CSF AP42 (Patel et al., 2012;
Cesarini and Marklund, 2018). Indeed, measuring the levels
of Aβ in the CSF is one of the main proposed biomarkers
already accepted in the diagnostic criteria of AD (McKhann
et al., 2011). It has been reported that levels of Aβ in the CSF
vary with time. Results from cross-sectional analysis in familial
AD demonstrate higher levels of Aβ in the CSF from mutation
carriers compared to controls very early in the disease process
(∼20–30 years prior to estimated symptom onset), which then
drop with disease progression, becoming significantly lower than
controls ∼10–20 years prior to symptom onset (Morrone et al.,
2015; Tarasoff-Conway et al., 2015). These low levels then begin
to plateau with the development of cognitive symptoms (Iliff
et al., 2013). In sporadic AD at very early preclinical stage
(transitional stage) there might be either elevations or reductions
in CSF AP42 (Clark et al., 2018; de Leon et al., 2018).

THERAPEUTIC CLEARANCE OF Aβ

Different approaches have been investigated with the aim of
removing brain Aβ. Decreasing Aβ production might be the first
approach that one can think of to reduce ISF Aβ. For instance,
the inhibition BACE is one of the first therapeutic strategies
formulated after the amyloid cascade hypothesis, and it is still
being explored today. Alternatively, increasing the elimination
of Aβ by enzymatic degradation or by clearance enhancement
may be able to slow down both the aggregation and the spread
processes of the disease given the relevance of Aβ as a substrate
in AD (Ryan et al., 2010). Among all strategies to enhance the
clearance of Aβ, immunotherapy is the most explored approach
so far.

Aβ Immunotherapy
Peripheral Aβ Immunotherapy and the Mechanism of
Action of “Peripheral-Sink”
The Aβ immunotherapy consist on activating the immune system
against Aβ through the induction (active immunotherapy)
or administration (passive immunotherapy) of Aβ-antibodies
(Menendez-Gonzalez et al., 2011). Passive immunotherapy can
be either monoclonal (mAbs) or polyclonal (immunoglobulins).
Active immunization activates the immune system to produce
specific antigen antibodies. In AD, Aβ or fragments of Aβ can
be used as an antigen, conjugated to a T-cell epitope-bearing
protein, together with a booster of the immune system (adjuvant).
Passive immunization avoids the need to activate and initiate
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an immune response to produce antigen-specific antibodies. In
both active and passive immunization, Aβ-antibodies bind to Aβ,
potentially promoting the clearance of the peptide (Georgievska
et al., 2015).

Some interventions have been shown to produce some positive
changes on brain Aβ, both in animal models and in human
subjects. Unfortunately, these neuropathological benefits were
not accompanied by sufficient clinical benefit; therefore, none of
these therapies have been transferred to the clinic. One of the
reasons may be that effective development of AD therapeutic
strategies targeting Aβ require very early administration (before
amyloid-plaques are in place) and consideration of the age- and
ApoE-specific changes to endogenous Aβ clearance mechanisms
in order to optimize efficacy (Morrone et al., 2015).

Understanding how Aβ-antibodies remove Aβ from the brain
is a key in the design of Aβ immunotherapies for AD. Two
distinct but not mutually exclusive mechanisms have been
proposed: The “microglial phagocytosis” would require the
antibodies to enter the brain, where they mediate the uptake
of Aβ into local microglia. The “peripheral sink” mechanism of
action relies only on peripheral antibodies to sequester Aβ in
the systemic blood, lowering the level of free Aβ and inducing
the brain to release its store of the peptide. This sequestration
of circulating Aβ produces a shift in the concentration gradient
of Aβ between the brain and the blood causing an efflux of Aβ

out of the brain. Thus, it has been hypothesized that reducing
Aβ peptides in the periphery would be a way to diminish Aβ

levels and plaque load in the brain (Xiang et al., 2015). However,
controversy still remains, with evidence both in favor and against
the peripheral sink mechanism (Deane et al., 2009; Yamada
et al., 2009). Studies with transgenic AD mice seem to validate
the hypothesis of the peripheral sink as the main mechanism
of Aβ removal after immunization. Some others showed that
little or no antibody enters the brain (Vasilevko et al., 2007)
and that peripheral anti-Aβ antibody alters CNS and plasma Aβ

clearance decreasing brain Aβ burden (DeMattos et al., 2001).
Additionally, mice with the Dutch and Iowa mutations have an
Aβ peptide that is a poor substrate for the efflux transporter LRP,
and so accumulates to high levels in the brain. Indeed, these mice
have no peripheral sink effect, and despite a massive buildup of
vascular amyloid and parenchymal plaque in brain, Aβ remains
undetectable in their blood (Deane et al., 2004; Davis et al., 2006).
Direct measurements of brain extracts revealed that little or no
antibody was able to enter the brain from the periphery (Ryan
et al., 2010). Sagare et al. (2007) showed that infusing in the
blood a recombinant version of LRP (sLRP) binding Aβ lowers
plaque burden in these mice, producing the peripheral sink effect.
Authors also proved that Aβ shifted out of the CNS into the blood
(Sagare et al., 2007).

On the other hand, sustained peripheral depletion of Aβ

with a new form of neprilysin, which fuses with albumin to
prolong plasma half-life, is designed to confer increased Aβ

degradation activity and does not affect central Aβ levels in
transgenic mice, rats and monkeys (Henderson et al., 2014). In
other report (Deane et al., 2009), authors tested the peripheral
sink hypothesis by investigating how selective inhibition of
Aβ production in the periphery, using a BACE inhibitor or

reducing BACE gene dosage, affects Aβ load in the brain.
Selective inhibition of peripheral BACE activity in wildtype or
transgenic mice reduced Aβ levels in the periphery but not in
the brain, even after chronic treatment over several months.
In contrast, a BACE inhibitor with improved brain disposition
reduced Aβ levels in both brain and periphery already after
acute dosing. BACE heterozygous mice displayed an important
reduction in plasma Aβ, whereas Aβ reduction in the brain
was much lower. These data suggest that reduction of Aβ in
the periphery is not sufficient to reduce brain Aβ levels and
that BACE is not the rate-limiting enzyme for Aβ processing
in the brain (Georgievska et al., 2015). Recent research suggests
that CSF naturally occurring antibodies against Aβ seem to
have a protective effect for AD, while serum naturally occurring
antibodies against Aβ do not seem to have any effect (Kimura
et al., 2017; Menendez Gonzalez, 2017a). In line with this, Piazza
et al. (2013) reported the first evidence about the participation
of natural anti-Aβ autoantibodies in cerebral amyloid-related
angiopathy (CAA) and the possible elimination mechanism
of soluble Aβ in the CSF by antibodies. Today, CSF anti-Aβ

autoantibodies are known to play a key role in the development
of amyloid-related imaging abnormalities (ARIA) (DiFrancesco
et al., 2015; Chen et al., 2016; Piazza and Winblad, 2016), which
are MRI signal changes representing vasogenic edema (VE) and
microhemorrhages (mH). VE and mH share some common
underlying pathophysiological mechanisms, both in the natural
history of AD and in immunotherapies (Sperling et al., 2011).
Furthermore, this ARIA has been associated with a massive
release of soluble Aβ, plaques and vascular deposits during the
acute inflammatory phase (DiFrancesco et al., 2015; Chen et al.,
2016; Piazza and Winblad, 2016).

Administered monoclonal antibodies also showed molecular
effect, but clinical benefit in humans was not significant. For
instance, Solanezumab increases the elimination of soluble Aβ

and decreases the deposition of cerebral amyloid plaque in AD
mice. In clinical trials, the administration of Solanezumab in
patients with mild to moderate AD generated an increase of
unbound Aβ in CSF, suggesting that the antibody has a direct
peripheral effect with central indirect effect. However, clinical
trials showed not improvement of the cognitive and functional
capacities of patients (Doody et al., 2014; Chen et al., 2016;
Siemers et al., 2016). Similarly, Bapineuzumab modifies Aβ

accumulation and CSF biomarkers, but none of the trials showed
a significant clinical benefit (Salloway et al., 2014).

Aβ-Immunotherapy Into the CNS
Many investigators have indicated that peripheral clearance
through the BBB is not recommended in elderly people, in
whom the normal transport of Aβ may present alterations. In
addition, the risk of antibody-mediated hemorrhage in sites
of cerebral amyloid angiopathy decreases the authors’ interest
in peripheral passive as well as in active reduction mediated
by CNS Aβ antibodies. Due to this, it has been considered
that the direct administration of immunotherapy to the CNS
is more efficient than the peripheral one, but the intrinsic
characteristics of the BBB make the pharmacological approach
difficult. This has led to the search for strategies to overcome
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FIGURE 1 | Double dynamic equilibrium of Aβ: there is a bidirectional equilibrium between insoluble and soluble pools of Aβ in the ISF and there is a second
equilibrium, also probably bidirectional, of soluble Aβ between the ISF and the CSF. The “CSF-sink therapeutic strategy” consists on sequestering target proteins
from the CSF with implantable devices, thus inducing changes in the levels of these proteins in the ISF. Current therapeutic strategies rely on the “peripheral sink”
hypothesis mostly. There is some controversy about the existence of a equilibrium of Aβ between plasma and the ISF/CSF.

FIGURE 2 | Diagram representing the therapeutic effect of a “CSF-sink” intervention on the predicted levels of Aβ in the insoluble ISF (isISF), soluble ISF (sISF) and
CSF pools in a patient with AD treated at presymptomatic stage. Legend: +, positive deposits; −, negative deposits; N, normal; H, high; VH, very high; L, low; VL,
very low.

the BBB. These approaches were divided into two categories:
the first comprises techniques that facilitate the passage of
drugs through the BBB (for example, molecular “Trojan
horses,” oligopeptides transporters coupled to protons, exosomes,
liposomes, nanoparticles, chimeric peptides, prodrugs); and the
second consists on techniques that avoid BBB through direct
delivery to the SNC. In this last category, the techniques
have been investigated include the interruption of BBB (for
example, with ultrasound and microbubbles) and intrathecal,
intracerebroventricular and intranasal administration (Wilcock
et al., 2003; Carty et al., 2006). Although much less explored,
passive Aβ-immunotherapy into the CNS has been tested on
animal models. Several groups have reported to have achieved
clearance of brain Aβ after intracerebral or intraventricular

injection of either Aβ antibodies (Wilcock et al., 2003, 2004;
Oddo et al., 2004; Carty et al., 2006; Levites et al., 2006),
antibodies to oligomeric assemblies of Aβ (Chauhan, 2007)
or promoting cellular expression of Aβ-specific antibodies,
delivered using viral vectors (Ryan et al., 2010). In most cases,
the clearance was rapid (within a few days), but the benefits of
the injections were transient because the decrease in amyloid
plaques approached reversion at 30 days (Sevigny et al., 2016).
Authors also observed a decrease in tau hyperphosphorylation,
an increase in the number of microglia counts and an improved
learning behavior (Doody et al., 2014). In different reports, the
level of clearance achieved by this method varies significantly
and ranges from what appears to be elimination throughout the
CNS (Sakai et al., 2016) to the limited elimination of diffuse
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FIGURE 3 | Graph representing the evolution of Aβ in the different pools. On the left, evolution of Aβ levels across the different stages of a AD. On the right, predicted
evolution of Aβ levels in a case of AD treated at presymptomatic stage. islSF, insoluble pool in the ISF; slSF, soluble pool in the ISF.

amyloid around the site of antibody injection (Ostrowitzki et al.,
2012).

Some human monoclonal antibodies have been shown to enter
the brain even when administered peripherally. In a transgenic
mouse model of AD, Aducanumab is shown to enter the brain,
bind parenchymal Aβ, and reduce soluble and insoluble Aβ in
a dose-dependent manner. In patients with prodromal or mild
AD, 1 year of monthly intravenous infusions of Aducanumab
reduces brain Aβ in a dose- and time-dependent manner.
This is accompanied by a slowing of clinical decline. The
main safety issues are amyloid-related imaging abnormalities
(Sevigny et al., 2016). Phase 3 clinical trials are ongoing.
Gantenerumab preferentially interacts with aggregated brain Aβ,
both parenchymal and vascular. This antibody acts centrally to
disassemble and degrade amyloid plaques by recruiting microglia
and activating phagocytosis (Ostrowitzki et al., 2012) but it
does not alter plasma Aβ (Bohrmann et al., 2012). As with
Adenacumab, trials showed positive trends in clinical scales, main
safety worries are amyloid-related imaging abnormalities and
clinical trials in different phases are ongoing.

In conclusion, no Aβ immunotherapy has demonstrated
significant efficacy in humans to date. A meta-analysis of
immunotherapies (Penninkilampi et al., 2017) found no
significant treatment differences for typical primary outcome
measures. Clinical benefits of peripheral immunotherapy in
humans are limited, while the benefits of central immunotherapy
in animal models are transient.

Alternative Therapeutic Strategies
Despite Aβ immunotherapy showed not conclusive results to
date, Aβ remains the main target in AD. A study using an image
biomarker determined that a 15% decrease in Aβ is related to a
cognitive improvement of 15–20% (Liu et al., 2015). For all that,
there is an urgent need to find alternative methods to achieve a
depletion of Aβ in the brain.

A number of studies showed that blood dialysis and
plasmapheresis reduces Aβ levels in plasma and CSF in humans
and attenuates AD symptoms and pathology in AD mouse
models (58,6165), suggesting that removing Aβ from the plasma
seems to be an effective -albeit indirect- way of removing Aβ.
Different methodologies, from peritoneal dialysis (Jin et al., 2017)

to hemodialysis (Kitaguchi et al., 2015; Sakai et al., 2016; Tholen
et al., 2016) and plasma exchange (Boada et al., 2009), reported
some extent of success removing Aβ from the plasma, which in
turn reduces Aβ in the CSF and in the ISF -this last compartment
has been confirmed in animals only-. Again, the “peripheral-sink
hypothesis” adds new sources of support from these alternative
strategies (Figure 1).

However, there might be a much more direct way of removing
Aβ from the ISF than clearing it from the plasma: clearing it from
the CSF. A starting rationale is that there is an equilibrium of Aβ

levels between the ISF and plasma in AD transgenic mice before
developing Aβ deposits (DeMattos et al., 2002; Cirrito et al., 2003;
Hong et al., 2011; Nag et al., 2011). However, this equilibrium
is lost once Aβ deposits are in place while the equilibrium of
Aβ between the ISF and the CSF still persists (DeMattos et al.,
2002). Some studies also found a relationship between the load of
cortical deposits and levels in the CSF in humans who underwent
neurosurgery (ventriculo-peritoneal shunt) (Seppala et al., 2012;
Pyykko et al., 2014; Herukka et al., 2015; Abu Hamdeh et al.,
2018). At equilibrium, Aβ remains predominantly monomeric
up to 3 pM, above which forms large aggregates (Nag et al.,
2011). Once aggregated are in place, amyloid deposits can rapidly
sequester soluble A from the ISF (Cirrito et al., 2003; Hong et al.,
2011). Aβ in the ISF in plaque-rich mice is thought to be derived
not from new A biosynthesis but rather from the large reservoir
of less soluble Aβ in brain parenchyma (Cirrito et al., 2003).
Moreover, a portion of the insoluble Amyloid pool is in dynamic
equilibrium with ISF Amyloid. In vitro studies have shown that
A aggregates contain a readily dissociable pool of Aβ, or “docked
Aβ” as well as a long-lasting or stable “locked” pool of Aβ (Maggio
et al., 1992; Esler et al., 2000). In vitro, as the concentration of
Aβ in solution decreases, this docked pool can quickly dissociate
from fibrils. In vivo, when Aβ production is inhibited and ISF
Aβ levels begin to decrease, it is likely that this associated docked
pool can return to solution over a finite period of time, as occurs
in vitro, causing this pool of Aβ to dissociate from fibrils and
become soluble. This results in a prolonged apparent half-life of
ISF Aβ in animals with Aβ deposition (Cirrito et al., 2003).

We previously posed the hypothesis that soluble proteins
can be cleared from the brain with interventions where soluble
proteins are continuously removed from the CSF (Liu et al., 2015;
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Menendez Gonzalez, 2017c). This is since soluble proteins are in
constant equilibrium between the ISF and the CSF. Therefore,
clearing Aβ from the CSF continuously will probably promote
the efflux of Aβ from the ISF to the CSF (Figure 2).

The “CSF-sink” therapeutic strategy consists on sequestering
Aβ from the CSF (Figure 2). Today, we can conceive several
ways of accessing the CSF with implantable devices (Menendez
Gonzalez, 2017b). These devices can be endowed with different
technologies able to capture target molecules, such as Aβ, from
the CSF. Thus, these interventions would work as a central sink
of Aβ, reducing the levels of CSF Aβ, and by means of the CSF-
ISF equilibrium would promote the efflux of Aβ from the ISF to
the CSF (Figure 2).

A study on the Aβ clearance kinetics suggests that the
speed and efficiency of Aβ clearance pathways may influence
the effect on Aβ deposits (Yuede et al., 2016). A therapeutic
strategy aimed at rapid clearance at only high concentrations
may be different from a strategy that is designed for a
sustained, possibly larger, suppression of Aβ. The “CSF-sink”
therapeutic strategy is expected to provide an intense and
sustained depletion of Aβ in the CSF and, in turn, a steady
decrease Aβ in the ISF, preventing the formation of new
aggregates and deposits in the short term and potentially
reversing the already existing deposits in the medium and long
terms (Figure 3).

Albeit AD is a complex disease, and targeting one
single molecule might not be enough to hinder the whole
neurodegenerative process, we consider this strategy is worth
trying, since it is feasible and potentially efficient.

Finally, we would like to mention this strategy might also
be valid for other neurodegenerative and neuroimmune diseases
where target molecules are well identified and present in the CSF
in equilibrium with the ISF. A series of studies in cellular and
animal models are needed to prove this hypothesis.

CONCLUSION

We introduce the rationale basis for the “CSF-sink” hypothesis
and conclude that continuous depletion of Aβ in the CSF will
probably produce a steady clearance of Aβ in the ISF. Implantable
devices aimed at sequestering Aβ from the CSF may represent a
new therapeutic strategy in AD.
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