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Working memory deficits are common among individuals with Alzheimer’s dementia
(AD) or mild cognitive impairment (MCI). Yet, little is known about the mechanisms
underlying these deficits. Theta-gamma coupling—the modulation of high-frequency
gamma oscillations by low-frequency theta oscillations—is a neurophysiologic process
underlying working memory. We assessed the relationship between theta-gamma
coupling and working memory deficits in AD and MCI. We hypothesized that:
(1) individuals with AD would display the most significant working memory impairments
followed by MCI and finally healthy control (HC) participants; and (2) there would
be a significant association between working memory performance and theta-gamma
coupling across all participants. Ninety-eight participants completed the N-back
working memory task during an electroencephalography (EEG) recording: 33 with AD
(mean ± SD age: 76.5 ± 6.2), 34 with MCI (mean ± SD age: 74.8 ± 5.9) and 31 HCs
(mean ± SD age: 73.5 ± 5.2). AD participants performed significantly worse than
control and MCI participants on the 1- and 2-back conditions. Regarding theta-gamma
coupling, AD participants demonstrated the lowest level of coupling followed by the MCI
and finally control participants on the 2-back condition. Finally, a linear regression analysis
demonstrated that theta-gamma coupling (β = 0.69, p < 0.001) was the most significant
predictor of 2-back performance. Our results provide evidence for a relationship between
altered theta-gamma coupling and working memory deficits in individuals with AD and
MCI. They also provide insight into a potential mechanism underlying working memory
impairments in these individuals.
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INTRODUCTION

Alzheimer’s dementia (AD) is the clinical manifestation of
a neurodegenerative disorder characterized by pervasive and
progressive cognitive and functional impairments. Recent
research towards early detection and possible prevention of AD
has focused on a prodromal phase of the disease known as
mild cognitive impairment (MCI; Nestor et al., 2004; Galluzzi
et al., 2013). Individuals with MCI display cognitive deficits
greater than what is expected for their age, however, these
deficits do not yet interfere with activities of daily living
(Petersen et al., 2001). The incidence of AD in the general
population over 65 years old is 1%–2% per year, but is as high
as 15% in individuals with MCI (Petersen et al., 1999). While
converging epidemiologic (Mitchell and Shiri-Feshki, 2009),
neuropsychological (Petersen et al., 1999) and neurophysiologic
(Jack et al., 1999; Sabbagh et al., 2010) research has established
a link between MCI and AD, the underlying mechanisms
associated with the progression from MCI to AD are poorly
understood.

A potential mechanism associated with this progression
implicates prefrontal cortical activity. Aberrant prefrontal
activity is common in individuals with AD (Perry and Hodges,
1999). These deficits involve disruptions in synaptic plasticity
(vanVeluw et al., 2012), neuronal loss (Reed et al., 1989; DeKosky
and Scheff, 1990) and aberrant corticocortical connections
(Haxby et al., 1990; Leuchter et al., 1992), which underlie
impaired prefrontal function including executive functioning
and working memory (Haxby et al., 1990). Individuals with MCI
do not display significant deficits in prefrontal activity; however,
deficits in activity within this region have been shown to predict
progression to AD (Gomar et al., 2011). In spite of these insights,
the neurophysiologic underpinnings of prefrontal function and
the association between prefrontal activation and function in
individuals with MCI and AD are not clear.

Thus, the overall goal of this study is to identify a novel
neurophysiologic index of prefrontal cortical activity underlying
prefrontal function in AD or MCI. The prefrontal cortex
is implicated in several executive processes associated with
various stages of memory formation and retrieval, particularly
working memory. Working memory is defined by the ability
to select, maintain and manipulate information online over
short time intervals (Curtis and D’Esposito, 2003). Working
memory functioning is supported by local neuronal circuits
within the prefrontal cortex and re-entrant circuits connecting
the prefrontal cortex to more posterior cortices (Fuster, 1997).
These circuits result in neuronal oscillations which are driven
by repetitive and synchronized firing of groups of neurons.
These oscillations display distinctive changes in response to
cognitive, motor and sensory inputs (Engel et al., 2001; Buzsáki
and Draguhn, 2004). A fundamental feature of oscillatory
activity is neuronal coherence. This process is observed not only
across neuronal networks and brain regions but also between
frequency bands (known as cross-frequency coupling; Varela
et al., 2001) and is a critical component of healthy cognitive
functioning (Engel et al., 2001; Uhlhaas and Singer, 2006).
Studies suggest that cross-frequency coupling between the phase

of theta (4–8 Hz) and amplitude of gamma (30–80 Hz; theta-
gamma coupling, TGC) underlies working memory processes
(Engel et al., 2001; Canolty and Knight, 2010). In particular, TGC
codes for the ordering of items of information during working
memory time intervals, i.e., the manipulation component of
working memory (Lisman and Jensen, 2013; Rajji et al., 2017). In
contrast, gamma oscillations represent these individual items of
information, while theta oscillations represent the time interval
during which the items are held in memory (Lisman and Jensen,
2013).

At a neurophysiological level, TGC is thought to represent a
code for ordering, given that different neuronal assemblies fire at
consecutive time points (Lisman and Idiart, 1995; Lisman and
Buzsaki, 2008). More specifically, distinct neuronal assemblies
represent individual items of information through their spatial
pattern of activation. Each neuronal assembly fires during a
specific gamma cycle; items that follow in the sequence are
represented by consecutive gamma cycles. Given that the cycle of
theta is slower than that of gamma, the assemblies that fire within
each gamma cycle are associated with different phases of the theta
cycle (Lisman and Buzsaki, 2008). Furthermore, the activation
of distinctive neuronal assemblies leads to greater differences
in amplitude between subsequent gamma oscillations along a
theta cycle. This ultimately results in a stronger modulation
(i.e., coupling) of the amplitude of gamma by the phase of theta
(Tort et al., 2010).

The current study assessed TGC and working memory
in individuals with MCI and AD using the N-back task,
a verbal working memory task. We assessed performance
on the 1 and 2-back conditions with our primary analyses
focused on the more challenging 2-back condition. The
aims of this analysis were: (1) to evaluate working memory
performance and frontal TGC during the N-back working
memory task in AD, MCI and healthy controls (HCs); and
(2) to characterize the relationship between working memory
performance and frontal TGC in these groups. We hypothesized
that individuals with AD would display the most significant
impairments both on working memory performance and TGC
followed by the MCI and finally HC groups. Additionally,
we hypothesized that there would be a significant association
between N-back performance and TGC across the three
groups.

MATERIALS AND METHODS

Participants
Participants were recruited through clinical referrals of
individuals with MCI and AD and advertisements posted in local
newspaper, magazines and hospitals. All participants provided
written informed consent, as approved by the the Research
Ethics Board at the Centre for Addiction and Mental Health.
This article combines baseline data from two intervention studies
(clinicaltrials.gov identifiers: NCT01847586 and NCT02386670).
Both studies were conducted using the same equipment and
N-back and electroencephalography (EEG) protocols.

Eligibility was evaluated through an initial telephone
screening, followed by an in-person comprehensive clinical
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assessment. Eligibility criteria for AD participants included:
(1) National Institute of Neurological and Communicative
Disorders and Stroke and the Alzheimer’s Disease and Related
Disorders Association (NINCDS-ADRDA; McKhann et al.,
1984) core criteria for probable AD; (2) Structured Clinical
Interview for DSM-IV–TR (American Psychiatric Association,
2000) criteria for dementia due to probable Alzheimer’s disease;
(3) age of 65 years or older; (4) either not taking an
acetylcholinesterase inhibitor or taking a stable dose for at least
3 months; (5) no Axis I diagnosis other than Dementia of the
Alzheimer type within the past 12 months; and (6) Mini Mental
State Examination (MMSE; Folstein et al., 1975) score of 17 or
greater.

Eligibility criteria for MCI participants included: (1) DSM-5
(American Psychiatric Association, 2013) criteria for Mild
Neurocognitive Disorder of any subtype as determined by a
clinical assessment; (2) age of 60 years or older; (3) Montgomery-
Asberg Depression Rating Scale (MADRS; Montgomery and
Asberg, 1979) score of 10 or below; (4) has not met
DSM-5 criteria for a Major Depressive Episode in the past
10 years or life time diagnosis of schizophrenia, bipolar disorder,
obsessive compulsive disorder; (5) no diagnosis of alcohol or
other substance use disorder within the past 12 months; (6) no
significant neurological condition that would interfere with
participation in the study; and (7) no use of a cognitive enhancer
medication (acetylcholinesterase inhibitor or memantine) within
the past 6 weeks. In addition to our eligibility criteria, participants
with Mild Neurocognitive Disorder (or MCI) had to meet the
clinical operational criteria of having a Montreal Cognitive
Assessment (MoCA; Nasreddine et al., 2005) score ≤ 26 and a
MMSE (Folstein et al., 1975) score ≥ 24.

Finally, eligibility criteria for HC participants included: (1) no
lifetime diagnosis of a DSM-5 disorder except for simple/specific
phobias; (2) age of 60 years or older; (3) MADRS score of
10 or below; (4) no significant neurological condition or unstable
medical illness; and (5) no neuropsychological testing within the
past 12 months.

Procedure
Working Memory Task
The N-back task is a verbal working memory task that requires
participants to determine whether the stimulus presented on a
computer monitor is the same as, or different from the stimulus
presented N trials back. During the task, black capital letters
were presented on a computer monitor one at a time in a
continuous sequence. Each letter was present on the screen for
250 ms, followed by a 3000 ms time frame to respond. Stimuli
that were the same as the letter N trials back were labeled as
Targets whereas stimuli that were different were labeled as Non-
Targets. The 1- and 2-back conditions consisted of 15 min of
continuously presented letters; the proportions of Target trials
were 0.23 and 0.16, respectively (Rajji et al., 2017). N-back
accuracy was assessed using d ′, a sensitivity index based on the
z scores of the hit rate and false alarm rate using the following
formula:

d′ = z(H)− z(F)

Given that the z transform reaches infinity when percentages
equal 0 or 100, we used a common adjustment whereby scores of
0% were assigned values of 1% and scores of 100% were assigned
values of 99% (MacMillan and Creelman, 1991).

EEG Data Recording and Processing
EEG was recorded during the N-back task, using a 64-channel
Synamps 2 EEG system with a 10-20 montage placement.
Electrodes were referenced to an electrode posterior to Cz
electrode. EEG signals were recorded using DC and a low pass
filter of 100 Hz at 20-kHz sampling rate. The EEG data was
processed offline using MATLAB (The MathWorks Inc., Natick,
MA, USA) and EEGLAB toolbox. The data were processed in
accordance with previously publishedmethods (Rajji et al., 2017).
In short, the data were down sampled to 1 kHz, filtered and
segmented from −1400 ms to +3100 ms relative to the stimulus
onset. Following this, an electrode-by-trials matrix composed of
ones and zeros was created; a value of zero was assigned to an
epoch that met any of the following criteria: (1) an amplitude
larger than ± 150 µV; (2) a power spectrum that violated 1/f
power law; (3) a standard deviation greater than three times the
average of all trials; (4) corresponding column had more than
20% of rows (i.e., channels) coded as zeros. Additionally, an
electrode was rejected if its corresponding row had more than
60% of columns (i.e., trials) coded as zeros. Epochs were then
manually inspected to remove any trials containing irregularities
and independent component analysis (ICA; EEGLAB toolbox;
Infomax algorithm) was completed to identify and remove noise
from the data including eye-blink traces and muscle artifacts.
Finally, data were re-referenced to the average mastoid electrode.

Analysis
Theta–Gamma Coupling (TGC)
Following published methods (Axmacher et al., 2010; Rajji et al.,
2017), we first filtered the raw EEG signal for theta (4–7 Hz)
and gamma (30–50 Hz) frequency ranges with second-order
zero-phase shift. We then calculated the time series for gamma
amplitude and theta phase using the Hilbert transform. Next, we
created a concatenated signal of 5000 ± 150 ms using epochs
for all trial types at each electrode. All epochs included the
time from the stimulus onset to the time of response. This
interval was selected for our analysis because prior studies
suggest that it is the critical time during which the ordering
of information is represented (Rajji et al., 2017). We created
a 5000 ms concatenated signal because the modulation index
(MI)—the measure of TGC—is dependent on the length of the
signal. Thus, we chose a 5000-ms concatenated signal to ensure
stability of MI.

To calculate MI, each phase of theta was binned into 18
20◦ intervals. The average amplitude of gamma at each theta
bin was calculated and normalized, resulting in phase-amplitude
distribution function. We then calculated the MI of gamma
amplitude by theta phase by measuring the divergence of the
observed amplitude distribution from a uniform distribution
(Tort et al., 2010; Rajji et al., 2017):

MI =
[(
log(N)−H(P)

)]
/log(N)
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where N is the number of phase bins, log(N) represents the
entropy of a uniform distribution, P is the relative amplitude
distribution sorted according to phase bins, and H(P) is the
entropy of the P distribution, which is calculated as follows:

H(P) = −
N∑

j = 1

P(j)log
[
P(j)

]
Based on this equation, higher coupling is associated with

lower entropyH(P), which therefore results in a higher MI value.
MI for each electrode and an average of MI across the right

and left frontal electrode (AF3/4, F7/8, F3/4, F1/2 and Fz), were
calculated and used in the statistical analysis. Additionally, TGC
was analyzed for all Target trials (i.e., correct and incorrect) as a
weighted average based on the number of correct and incorrect
responses. For additional analyses, TGC was also analyzed for
all Non-Target trials (i.e., correct and incorrect) as a weighted
average. These calculations were repeated for each condition.

Theta and Gamma Power
We also analyzed theta and gamma powers to assess TGC
independently from these powers given that they represent
different components of working memory. Once the signal was
filtered into the appropriate bands as described earlier, theta
and gamma power were calculated from the squared amplitude
of the Hilbert transformed signal. A group average of induced
spectral power for all frontal electrodes, weighted by response
type (i.e., correct and incorrect) across Target trials was then
calculated.

Statistical Analysis
All data were analyzed using the Statistical Program for Social
Sciences (SPSS) version 23.0 (SPSS Inc., Chicago, IL, USA).
One-way analysis of variance (ANOVA) and χ2 tests were used
to evaluate differences between the three groups on demographic
variables (i.e., age, sex, years of education, MMSE). The level
of significance was set at α = 0.05. For all planned post
hoc comparisons, the statistical threshold for significance was
based on p-values using Bonferroni correction for multiple
comparison.

All measures including TGC and accuracy were analyzed
from processed EEG data. Furthermore, data were natural log
(LN) transformed to approximate the normal distributional
assumptions required by parametric statistical methods. The
variables that were transformed included weighted MI for

both Target and Non-Target trials, performance (d ′) for both
1 and 2-back conditions, and gamma and theta power for
2-back target responses. We performed three separate one-way
ANCOVAs, one with accuracy (LN d ′), one with coupling
(LN MI) for Target trials and the other with coupling for
Non-Target trials as the dependent variables, and diagnostic
group as a between-subject factor. Given that there were group
differences in years of education, this variable was included
as a covariate in our analyses. Additionally, paired-samples
t-tests were conducted to compare TGC from Target trials
with Non-Target trials for each diagnosis separately. To assess
the relationship between N-back accuracy and TGC and its
independence from the relationships between accuracy and
theta or gamma power, a simultaneous linear regression was
performed. Accuracy (LN d ′) was the dependent variable and
natural log transformed TGC, theta and gamma powers were the
independent variables; this linear regression was performed with
all participants.

RESULTS

Demographic information is presented in Table 1. The
groups did not differ in age or sex and race distribution.
There were significant differences in years of education, with
fewer years of education in the AD group compared to
both the MCI and HC groups. There were also significant
differences in the MMSE scores, with significantly lower scores
in the AD group followed by the MCI and finally HC
groups.

Primary Analyses (2-Back Condition)
A one-way ANCOVA with diagnostic group (i.e., HC, MCI,
AD) as the fixed factor, 2-back accuracy (i.e., LN d ′) as
the dependent variable, and years of education as a covariate
showed a significant group effect on accuracy (F(2,76) = 34.7,
p < 0.001; Figure 1). In post hoc comparisons, the AD group
performed significantly worse than both the HC (p < 0.001,
Cohen’s d = 2.36) and MCI (p < 0.001, Cohen’s d = 1.74)
groups following Bonferroni correction, while HC and MCI
groups did not significantly differ (p = 0.057, Cohen’s d = 0.67;
Figure 1A).

Similarly, a one-way ANCOVA with diagnostic group as the
fixed factor, 2-back TGC for Target trials (i.e., LN MI) as the
dependent variable, and years of education as a covariate revealed

TABLE 1 | Demographics.

HC (N = 31) MCI (N = 34) AD (N = 33) F or χ2 df p-value

Age (years) 73.5 ± 5.2 74.8 ± 5.9 76.5 ± 6.2 2.07 95 0.132
Sex (M:F) 14:17 16:18 13:20 0.43 2 0.807
Years of education 15.6 ± 2.4 15.2 ± 2.3 13.5 ± 3.7 5.32 95 0.005
Race: 4.32 2 0.115
Caucasian 18 (58%) 23 (68%) 27 (82%)
Non-caucasian 13 (42%) 11 (32%) 6 (18%)
MMSE 29.1 ± 1.6 27.6 ± 3.1 22.6 ± 3.2 80.34 95 <0.001

Bold numbers indicate significance at α ≤ 0.05. Except for race, values are listed as mean ± SD. HC, Healthy controls; MCI, Mild Cognitive Impairment; AD, Alzheimer’s
disease; MMSE, Mini Mental State Examination; df, degrees of freedom; F, One-way ANOVA; χ2, Chi Square test.
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FIGURE 1 | Primary analyses (2-back condition). (A) 2-back accuracy (d ′) in healthy control (HC), mild cognitive impairment (MCI) and Alzheimer’s Dementia (AD)
participants. Bars represent ± 1 standard error. The lines indicate statistically significant differences after Bonferroni adjustments. (B) Theta–gamma coupling (TGC)
measured by Modulation Index (MI) in HC, MCI and AD participants for the 2-back condition. Coupling was measured from the frontal brain region (AF3, AF4, F5, F3,
F1, FZ, F2, F4, F6) weighted for all Target and Non-Target trials. Black lines indicate statistically significant differences after Bonferroni adjustments for ANCOVAs for
Target and Non-Target Trials, gray lines indicate significant differences for paired t-tests within diagnosis. Data for both Panels (A,B) were generated from the original
data, while statistics were generated using log transformed data. (C) Topoplots illustrate 2-back TGC calculated as a weighted average from all Target trials (D) The
relationship between TGC (MI) during all Target trials and 2-back accuracy across AD, MCI and HC participants (R2 linear = 0.286, p < 0.001). (E) The relationship
between TGC (MI) during all Target trials and 2-back accuracy across only MCI and HC participants (R2 linear = 0.224, p < 0.001).

a significant group effect on TGC (F(2,83) = 26.4, p < 0.001;
Figure 1B). In post hoc tests, both the AD (p < 0.001, Cohen’s
d = 1.92) and MCI (p = 0.003, Cohen’s d = 0.96) groups

demonstrated significantly lower TGC compared to the HCs, as
well as significantly lower coupling in AD compared to MCI
(p < 0.001, Cohen’s d = 1.21). In contrast, the groups did not
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differ in 2-back gamma (F(2,80) = 1.56, p = 0.22) or theta power
(F(2,83) = 0.78, p = 0.46).

In contrast to coupling from Target trials, the one-way
ANCOVA with diagnostic group as the fixed factor, 2-back TGC
for Non-Target trials (i.e., LN MI) as the dependent variable,
and years of education as a covariate did not reveal a significant
group effect (F(2,87) = 3.012, p = 0.054). Additionally, paired-
samples t-tests were conducted to compare the level of coupling
from Target trials compared to Non-Target trials within each
diagnosis. For the HC group, coupling was higher for Target trial
compared to Non-Target trials, t(28) = 4.72, p < 0.001. Similarly
for theMCI group, coupling was higher for Target trial compared
to Non-Target trials, t(31) = 2.84, p = 0.008. In contrast, there
was no difference in Target and Non-Target coupling for the AD
group, t(24) −1.37, p = 0.183 (Figure 1B).

Finally, a simultaneous linear regression was performed to
determine whether TGC was associated with 2-back accuracy
(LN d ′) independent of gamma and theta power. A significant

regression equation was found (F(3,65) = 13.4, p < 0.001;
R2 = 0.382). TGC was the most significant predictor of the
model with a standardized beta = 0.693, p < 0.001, followed by
gamma power with a standardized beta = 0.253, p = 0.038. In
contrast, theta power was not a significant predictor of the model
with standardized beta = −0.019, p = 0.858 (Figure 1D). Given
that the AD participants performed significantly worse than all
other groups, we performed another linear regression with only
MCI and HC participants. The regression equation remained
significant (F(3,53) = 5.87, p = 0.002; R2 = 0.250). TGC was
the only significant predictor of the model with a standardized
beta = 0.450, p = 0.003 (Figure 1E).

Secondary Analyses (1-Back Condition)
A one-way ANCOVA with diagnostic group as the fixed factor,
1-back accuracy (i.e., LN d ′) as the dependent variable, and years
of education as a covariate showed a significant group effect on
accuracy (F(2,89) = 15.4, p < 0.001). In post hoc comparisons,

FIGURE 2 | Secondary analyses (1-back condition). (A) 1-back accuracy (d ′) in HC, MCI and AD participants. Bars represent ± 1 standard deviation. The lines
indicate statistically significant differences after Bonferroni adjustments. (B) Theta–gamma coupling (TGC) measured by MI in HC, MCI and AD participants for the
1-back condition. Coupling was measured from the frontal brain region (AF3, AF4, F5, F3, F1, FZ, F2, F4, F6) weighted for all Target trials. Black lines indicate
statistically significant differences after Bonferroni adjustments for ANCOVAs for Target and Non-Target Trials, gray lines indicate significant differences for paired
t-tests within diagnosis. (C) The relationship between TGC (MI) during all Target trials and 1-back accuracy across AD, MCI and HC participants (R2 linear = 0.148,
p < 0.001). (D) The relationship between TGC (MI) during all Target trials and 1-back accuracy across only MCI and HC participants (R2 linear = 0.006, p = 0.601).
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the AD group performed significantly worse than both the HC
(p < 0.001, Cohen’s d = 1.11) and MCI (p < 0.001, Cohen’s
d = 1.04) groups, while HC and MCI groups did not differ
(Cohen’s d = 0.27; Figure 2A).

Similarly, a one-way ANCOVA with diagnostic group as the
fixed factor, 1-back TGC (i.e., MI) as the dependent variable
and years of education as a covariate showed a significant group
effect on coupling (F(2,93) = 6.07, p = 0.003). In post hoc tests,
the AD group had significantly lower TGC compared to the HC
(p = 0.005, Cohen’s d = 0.72) and MCI (p = 0.008, Cohen’s
d = 0.72) groups (Figure 2B).

The one-way ANCOVA with diagnostic group as the fixed
factor, 1-back TGC for Non-Target trials as the dependent
variable, and years of education as a covariate revealed a
significant group effect (F(2,93) = 10.5, p < 0.001; Figure 2B).
In post hoc tests, the AD group had significantly lower TGC for
Non-Target trials compared to the HC group (p< 0.001, Cohen’s
d = 1.16), while there were no significant differences between
AD and MCI (p = 0.065, Cohen’s d = 0.52) or MCI and HCs
(p = 0.062, Cohen’s d = 0.68). Next, paired-samples t-tests were
conducted to compare the level of coupling from 1-back Target
trials compared to Non-Target trials within each diagnosis. For
the HC group, coupling was higher for Target trials compared
to Non-Target trials, t(30) = 7.22, p < 0.001. Similarly for the
MCI group, coupling was higher for Target trial compared to
Non-Target trials, t(33) = 10.24, p < 0.001. Coupling was also
higher for Target trials compared to Non-Target trials for the AD
group, t(29) = 6.69, p< 0.001 (Figure 2B).

Finally, a simultaneous linear regression was performed
to determine whether TGC was also associated with 1-back
accuracy (LN d ′) independent of gamma and theta power.
A significant regression equation was found (F(3,82) = 6.08,
p = 0.001; R2 = 0.182). TGC was the only significant predictor
of the model with a standardized beta = 0.375, p = 0.002. In
contrast, gamma and theta power were not significant predictors
of the model with standardized beta = −0.522, p = 0.603 and
−0.404 p = 0.687, respectively (Figure 2C). The model no longer
remained significant when only MCI and HC participants were
included (Figure 2D).

DISCUSSION

In this study, we assessed TGC and its relationship to working
memory performance in individuals with AD and MCI. We
found that TGC was impaired in the AD and MCI groups
compared to HCs and was the strongest predictor of working
memory performance in these groups. More specifically, AD
participants demonstrated the lowest level of TGC followed by
MCI and then HC participants on the 2-back working memory
task. In contrast, performance on the 2-back was only impaired in
AD and not MCI participants compared to HCs. Taken together,
these findings suggest that TGC is a specific measure of working
memory function and that it is more sensitive to prefrontal
cortical dysfunction than the behavioral assessment of working
memory in individuals with MCI.

Few studies have evaluated EEG activity in AD and MCI
using cross-frequency coupling. One recent study investigated

a novel biomarker associated with phase-amplitude coupling
estimates evoked during an auditory oddball task, as a means
to differentiate amnestic MCI from HCs (Dimitriadis et al.,
2015). The authors extracted coupling values across a number of
frequency pairs, including TGC, and found significantly higher
coupling values across multiple frequency pairs in 25 amnestic
MCI participants compared to 15 HCs. In addition, using
the various time-varying phase-amplitude coupling features
and standard machine learning algorithms, a high degree of
discrimination was found between MCI and HCs. The authors
suggest that the increase in coupling represents a higher demand
in the MCI group to synchronize attention and memory states.
This contradictory finding to that of the current study may be
due to a variety of differences between the two studies, including
coupling analyses, participant inclusion criteria and the type of
task administered during the EEG recording. A second study
examined amplitude-amplitude coupling modulations during a
resting state in HCs, patients with mild AD and a group with
moderate AD (Fraga et al., 2013). The authors found changes in
the modulation of several frequency bands including delta-theta
and delta-beta with disease severity; however the relationship
between theta and gamma was not assessed.

More commonly, researchers have approached the study
of EEG activity in MCI and AD examining spectral and
connectivity features of oscillations in relation to attention
and memory functioning. One study examined the behavior of
synchronization likelihood both at rest and during a memory
task in AD and MCI. The authors reported no difference in
theta or gamma synchronization likelihood during the memory
task in AD or MCI when compared to older individuals with
subjective memory complaints, although differences were found
in other frequencies bands. Further, there was no association
between synchronization likelihood and working memory scores
during the task condition (Pijnenburg et al., 2004). A second
study reported reduced theta coherence during the visual oddball
paradigm in individuals with AD compared to HCs but did
not report on any association between theta coherence and
behavioral performance associated with the mental count of the
target stimuli (Güntekin et al., 2008). A third study examined
theta activity using a detection and N-back task in individuals
who progressed from MCI to dementia compared to those
with stable MCI and HCs. While the authors reported no
difference in global theta power among the three groups,
induced theta activity in the frontal region was reduced in
the MCI group that progressed to dementia compared to the
two other groups, regardless of task. This progressive MCI
group also demonstrated lower accuracy compared to HCs
(Deiber et al., 2009). Still, this study also did not assess for
any relationship between behavioral performance and theta
activity. Finally, one last study examined a ratio of theta/gamma
relative power at peak frequency during rest EEG in individuals
with MCI and found that theta/gamma ratio was negatively
correlated with performance on a story recall test yet not on
any other cognitive test (Moretti et al., 2009). The fact that
EEG data was collected using an eyes closed rest paradigm
and not during cognitive testing limits the ability to draw
mechanistic conclusions regarding the role of theta and gamma
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oscillations in supporting cognitive function. Thus, our study
advances the field by demonstrating an association between
TGC and cognition in vivo and during working memory
performance.

Additionally, our behavioral findings are consistent with
previous findings in AD and MCI. Several studies have observed
intact working memory performance on both 1- and 2-back
accuracy in MCI (Döhnel et al., 2008; Guild et al., 2014; Migo
et al., 2015). While these individuals often display deficits on
tests of learning and episodic memory, they are generally able to
maintain a limited memory set in mind for short time periods
(Elias et al., 2000; Bäckman et al., 2001). By contrast, deficits
in working memory performance are consistently observed in
individuals with AD (Redondo et al., 2016).

The relatively intact working memory performance in MCI
despite significantly impaired TGC suggests that there is a
threshold for TGC above which accurate working memory
performance can be maintained. Thus, while individuals with
MCI experience less TGC than HCs, the amount of TGC
they experience may be sufficient for accurate performance
at this level of working memory load. As a corollary,
the additional amount of TGC in HCs could represent a
neurophysiologic reserve. Other neuroimaging (Clément and
Belleville, 2010; Faraco et al., 2013; Migo et al., 2015) and
electrophysiological (Pijnenburg et al., 2004; Dimitriadis et al.,
2015) studies have also shown aberrant neural activity in the
absence of observable cognitive deficits in individuals with
MCI. These studies have typically found an over-activation
of neural activity in response to cognitive tasks, interpreted
as a compensatory mechanism. While our findings do not
provide support for this theory, the results suggest that TGC
may be a more sensitive measure than behavioral performance
in detecting prefrontal cortical dysfunction in individuals
with MCI.

These results should be interpreted in light of some
limitations. First, the task we used to assess working
memory—the N-back—does not allow for the evaluation of
specific memory sub-processes, e.g., encoding vs. retrieval.
Previous studies have demonstrated that individuals with MCI
or AD show deficits within specific memory subprocesses
(Belleville et al., 2007; van Geldorp et al., 2015). Furthermore,
given the possibility that more than one cognitive domain is
likely affected in these populations, the overall performance
on the N-back may not represent a pure working memory
function. However, previous studies in healthy and clinical
populations have demonstrated that the N-back is a well suited
assessment for the manipulation of information associated
with working memory and its related TGC (Sun et al., 2015;
Rajji et al., 2017). Future studies should validate these findings
employing additional working memory tasks as well as in

a more homogenous sample of single domain, amnestic
MCI participants. Another limitation is our cross-sectional
design: to confirm whether TGC can be enhanced to delay
progression to AD, longitudinal studies are needed. Finally,
we focused only on gamma and theta bands given the
potential role of TGC in working memory. Future studies
could investigate other forms of cross–frequency coupling
including alpha-gamma coupling given previously identified
alterations in several frequencies in AD, including alpha-band
synchronization.

In conclusion, our results provide direct evidence of a
relationship between working memory deficits and altered
TGC in individuals with AD and MCI. This work advances
our understanding of the mechanisms underlying cognitive
deficits in these populations, with the ultimate goal of
guiding the development of future therapeutic and preventative
interventions for AD.
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