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Measurement of the dynamic coupling between spontaneous Blood Oxygenation Level
Dependent (BOLD) and cerebral blood flow (CBF) fluctuations has been recently
proposed as a method to probe resting-state brain physiology. Here we investigated how
the dynamic BOLD-CBF coupling during resting-state is affected by aging. Fifteen young
subjects and 17 healthy elderlies were studied using a dual-echo pCASL sequence.
We found that the dynamic BOLD-CBF coupling was markedly reduced in elderlies,
in particular in the left supramarginal gyrus, an area known to be involved in verbal
working memory and episodic memory. Moreover, correcting for temporal shift between
BOLD and CBF timecourses resulted in an increased correlation of the two signals
for both groups, but with a larger increase for elderlies. However, even after temporal
shift correction, a significantly decreased correlation was still observed for elderlies
in the left supramarginal gyrus, indicating that the age-related dynamic BOLD-CBF
uncoupling in this region is more pronounced and can be only partially explained with a
simple time-shift between the two signals. Interestingly, these results were observed in a
group of elderlies with normal cognitive functions, suggesting that the study of dynamic
BOLD-CBF coupling during resting-state is a promising technique, potentially able to
provide early biomarkers of functional changes in the aging brain.
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INTRODUCTION

Since the first observation that spontaneous Blood Oxygenation Level Dependent (BOLD) signal
fluctuations in the left and right motor cortex are correlated in the absence of a task (Biswal et al.,
1995), resting-state fMRI has witnessed an exponential growth of interest.

Since it does not require any task, resting-state fMRI is particularly attractive for studies
on patients, children and elderlies, reducing problems related to participant’s compliance or
intersubject variability due to task performance. Indeed, there is an increasing number of
investigations using resting-state fMRI as a sensitive biomarker to study normal and pathological
aging (D’Esposito et al., 1999; Fox and Greicius, 2010; Brier et al., 2014; Gardini et al., 2014; Li et al.,
2015; Vecchio et al., 2015; Esposito et al., 2018).
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Most fMRI studies are based on the BOLD technique
(Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 1992)
which offers a large sensitivity and easy of implementation.
However, due to the complex nature of the BOLD effect,
the quantitative interpretation of this fMRI signal can be
problematic. Indeed, the BOLD signal change is modulated by
local variations in deoxyhemoglobin content stemming from
changes in cerebral blood flow (CBF), cerebral blood volume
(CBV) and cerebral metabolic rate of oxygen consumption
(CMRO2) induced by neuronal activation or vascular challenges
(Buxton, 2012). Depending on the complex interplay of these
variables, the magnitude and dynamics of the BOLD signal
change may not always reflect the underlying change in neuronal
activity or the variation of a specific hemodynamic/metabolic
quantity (Ances et al., 2008; Buxton, 2010; Griffeth and Buxton,
2011; Moradi et al., 2012). This limitation is especially important
in studies comparing populations with different neurovascular
properties (Liu, 2013). In particular, this issue has been largely
recognized when comparing elderly vs. young adults since
significant vascular changes are known to occur during adult
life (O’Rourke and Hashimoto, 2007; Samanez-Larkin and
D’Esposito, 2008; Chen et al., 2011; Lu et al., 2011; Gauthier and
Hoge, 2013; De Vis et al., 2015).

To overcome the problem of BOLD signal ambiguity, the
acquisition of concurrent BOLD and CBF data from arterial
spin labeling (ASL) sequences has been proposed in an early
biophysical model that allows the calculation of fractional
changes of the different hemodynamic and metabolic variables
involved in brain activation (Davis et al., 1998). ASL uses
magnetically labeled arterial blood water as an endogenous
tracer (Detre et al., 1992) and can quantify both baseline levels
and activity induced variation of regional CBF. The Davis
model is currently applied with different strategies, usually
requiring additional calibration measurements based on gas
challenges (Davis et al., 1998; Hoge et al., 1999; Chiarelli
et al., 2007) and has been expanded to allow the measurement
of absolute CMRO2 changes or baseline levels of oxygen
consumption (Bulte et al., 2012; Gauthier et al., 2012; Wise
et al., 2013; Germuska and Bulte, 2014; Germuska et al., 2016).
Although gas challenges might be less tolerated by patients
or elderlies, applications of these techniques to aging studies
have been recently reported (Mohtasib et al., 2012; Hutchison
et al., 2013; Liu et al., 2013; De Vis et al., 2015; Garrett
et al., 2017). Alternative calibration techniques without gas
administration have also been proposed based on particular
MRI acquisition sequences or breath-hold tasks (Kastrup et al.,
1999; Fujita et al., 2006; Bulte et al., 2009; Blockley et al., 2012,
2015). Nevertheless, the calibrated BOLD technique has been
mostly applied and validated in studies using block paradigms,
and its extension to more dynamic experimental designs is
not straightforward (Kida et al., 2006; Simon and Buxton,
2015).

In this regard, however, the combined acquisition of BOLD
and CBF data using ASL has recently attracted increasing interest
to study brain function, even without calibration measurements
(Chen et al., 2015; Simon and Buxton, 2015; Storti et al.,
2017).

Indeed, although CBF is still an indirect measurement of
cerebral metabolism and neuronal activity, it constitutes a
well defined and fundamental physiological process that is
altered in different pathologies and with physiological aging.
Furthermore, despite ASL has lower sensitivity compared to
BOLD, it can extend the study of resting-state brain function
beyond that of functional connectivity, allowing quantitative
CBFmeasurements and the investigation of BOLD-CBF coupling
when the two signals are acquired simultaneously. In particular,
the possibility to capture spontaneous fluctuations of cerebral
blood flow with ASL has recently received an increasing attention
(De Luca et al., 2006; Chuang et al., 2008; Fukunaga et al., 2008;
Zou et al., 2009; Viviani et al., 2011; Liang et al., 2014; Tak et al.,
2014; Chen et al., 2015; Fernández-Seara et al., 2015; Jann et al.,
2015).

This is an appealing application of concurrent BOLD and
CBF dynamic data acquisition, potentially able to offer insights
on mechanisms underlying resting-state brain functioning and
physiology. In this regard, recent evidence demonstrated that
the resting-state dynamic relationship between BOLD and CBF
is approximately linear across the brain (Fukunaga et al., 2008;
Wu et al., 2009), with a significantly stronger coupling between
spontaneous BOLD and CBF fluctuations within themajor nodes
of established resting-state networks (Tak et al., 2014; Cohen
et al., 2017). Noteworthy, the study of BOLD-CBF dynamic
coupling during resting-state could offer innovative metrics to
assess brain health (Chen et al., 2015), in addition to the more
commonly used functional connectivity metrics. However, to the
best of our knowledge, no investigation based on this method has
been performed on aging so far.

In the present study we investigated how the dynamic
BOLD-CBF coupling during resting-state is affected by aging.
Specifically, we compared a group of healthy elderlies with a
group of young subjects, addressing between-group differences
in: (i) the linear correlation between the two signals; and (ii) the
effect on the calculated correlation when introducing a relative
temporal shift between BOLD and CBF timecourses.

MATERIALS AND METHODS

Fifteen healthy young adults (Young: mean age = 26.4,
SD = 4.2) and 17 healthy elderlies (Elderly: mean age = 63.4,
SD = 8.1) were included in the study. All individuals were
right-handed, gave their written informed consent according
to the Declaration of Helsinki (World Medical Association
Declaration of Helsinki, 1997) and all procedures were approved
by the Ethics Committee for Biomedical Research of the
provinces of Chieti and Pescara and the ‘‘G. D’Annunzio’’
University of Chieti and Pescara. None of the participants
reported a history of neurological or psychiatric disease, or
used psychopharmacological drugs. Subjects with any drug
or alcohol abuse within the previous 6 months were also
excluded to avoid confounding effects on the fMRI signal. Other
exclusion criteria included implanted metals, pregnancy and
abnormal findings in their structural brain MRI. Mild forms of
hypertension and hyperlipidemia were accepted. Six older adults
used antihypertensive medication.
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Elderlies were screened with Mini Mental State Examination
(MMSE; Folstein et al., 1975) to evaluate the global cognitive
status (reported score range of included subjects: 25.5 ÷ 28.9),
Babcock story test to evaluate prose memory (reported score
range: 5.2 ÷ 8.8 for immediate recall, 2.5 ÷ 8.6 for delayed
recall), and the Frontal Assessment Battery (FAB) to assess
global executive functions (reported score range: 14.7 ÷ 18.3).
Young group was screened using the Trail Making Test to
evaluate sustained visuo-spatial attention (reported score range:
5.5s ÷ 48.8), MMSE (27.7 ÷ 29.3), Babcock story test (7.2
÷ 8.9 for immediate recall, 5.1 ÷ 8.8 for delayed recall) and
FAB (15.1 ÷ 18.9). Statistical between-groups comparisons were
performed with parametric or non-parametric tests, depending
on normality distribution verified using the Shapiro test. A
significant between-group difference was observed for MMSE
(p = 0.03, Wilcoxon test), whereas Babcock and FAB tests did
not reveal significant effects (p = 0.19 and p = 0.43 respectively,
unpaired t-tests).

All participants were required to refrain from caffeine, alcohol
and nicotine for at least 6 h before the MRI session.

MRI was performed with a 3T Philips Achieva scanner
(PhilipsMedical Systems, Best, Netherlands), using a whole-body
radiofrequency coil for signal excitation and an 8-channel
phased-array head coil for signal reception.

Subjects were instructed to keep their eyes closed and not to
engage in structured thoughts during acquisition.

Resting-state CBF and BOLD data were simultaneously
acquired with a dual-echo pseudo-continuous ASL (pCASL)
sequence (Dai et al., 2008) with the following parameters:
TR/TE1/TE2: 3500/10/28 ms, FOV 230 mm × 230 mm, matrix
64 × 64, voxel size 3.6 mm × 3.6 mm × 5 mm, SENSE factor
2.3, 19 slices acquired in ascending order, 90 dynamics. The label
duration was 1650 ms and the postlabel delay was 1000 ms.

Baseline perfusion was measured using a pCASL sequence
optimizing the labeling parameters for a reliable quantification
of CBF for both young and elderly subjects (Alsop et al.,
2015): TR/TE 4269/10 ms, FOV 230 mm × 230 mm, matrix
64 × 64, voxel size 3.6 mm × 3.6 mm × 5 mm, SENSE
factor 2.3, 19 slices acquired in ascending order, 60 dynamics.
The label duration was 1750 ms and the postlabel delay was
1900ms. Background suppression pulses at 2110ms and 3260ms
after start of labeling were used. The labeling plane of the
pCASL sequences was positioned 85 mm below the AC-PC
line, according to recent guidelines (Aslan et al., 2010; Alsop
et al., 2015). An equilibrium magnetization image (M0) was
also acquired with scan parameters identical to the pCASL
sequence (same matrix and readout) but using a long TR
(10,000 ms) and without labeling or background suppression
pulses.

A high resolution structural volume was finally acquired via
a 3D fast field echo T1-weighted sequence with the following
parameters: 1 mm isotropic voxel size, TR/TE = 8.1/3.7 ms, flip
angle = 8◦, 160 sections, SENSE factor = 2.

During fMRI, physiological signals related to respiratory and
cardiac cycles were registered using a pneumatic belt strapped
around the upper abdomen and a pulse oximeter placed on a
finger of the right hand, respectively. Respiratory and cardiac

data were both sampled at 100 Hz and stored in a logfile for each
run.

Resting state pCASL fMRI data were analyzed using AFNI
(Cox et al., 20061) and custom-written software implemented in
Python2. First, the dual-echo pCASL data were split into four
EPI timeseries, corresponding to label and control images for
acquisitions at TE1 and TE2.

Then, initial preprocessing was performed for both echoes on
the label and control ASL images separately (Restom et al., 2006;
Wang et al., 2008) according to the following steps:

(i) RETROICOR was applied to remove signal fluctuations
related to cardiac and respiratory cycles (Glover et al., 2000);

(ii) slice-timing correction using sinc interpolation;
(iii) motion correction was performed using rigid body

registration to realign all time frames to a base image
represented by the first label/control volume (dummy scans
prevented the need to discard the first few volumes). A
summary statistic of motion was defined as the root mean
square (RMS) of the six realignment parameters (three
translations and three rotations), in order to inspect for EPI
timeseries affected by excessive motion. One elderly subject
exceeded an RMS value of 1.5 mm for both label and control
images and was discarded from further analysis. Further
motion assessment was performed considering the RMS
value of the differentiated EPI timeseries (DVARS) within
a whole brain spatial mask (Power et al., 2012, 2014). The
run-averaged DVARS metrics was then compared across
groups using ANOVA in order to characterize potential
motion effects not accounted for by spatial registration and
regression of motion parameters;

(iv) an additional coregistration was performed to minimize
effects of the spatial offset between label and control
timeseries caused by possible head motion between the
reference control image and the reference label image. The
corresponding spatial transformation was determined using
the mutual information-based approach (Studholme et al.,
1998) which is much less sensitive to the labeling related
signal intensity differences that could be interpreted by
the standard rigid body motion correction algorithm as
apparent head motion between label and control images
(Friston et al., 1995; Woods et al., 1998).

After these steps, the coregistration matrix between the
structural data set and the preprocessed timeseries was
determined using an affine transformation.

Then, additional preprocessing was performed using
ANATICOR (Jo et al., 2010). Briefly, we first obtained individual
masks of large ventricles and white matter from the structural
scans segmentation using FreeSurfer3. The white matter mask
was slightly eroded (one functional voxel) to prevent partial
volume effects that might include signal from gray matter voxels
in the mask. This step was not performed for the CSF mask,
since with the functional voxel size used in this study the eroded

1afni.nimh.nih.gov/afni
2http://www.python.org
3http://surfer.nmr.mgh.harvard.edu
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CSF mask would not contain enough voxels in most subjects.
Then, for each run, a global nuisance regressor was obtained
extracting the EPI average time course within the ventricle
mask and local nuisance regressors were obtained calculating
for each gray matter voxel the average signal time course for all
white matter voxels within a 3 cm radius (Jo et al., 2010). These
nuisance regressors and the six regressors derived from motion
parameters were removed from the EPI timeseries using AFNI’s
@ANATICOR.

At this stage, pCASL time series with interleaved control
and label volumes were rebuilt using the preprocessed data.
These preprocessed pCASL data were then temporal filtered to
separate CBF and BOLD signals (Chuang et al., 2008). Briefly,
the ASL time series can be view as the sum of a component
with a rapid modulation reflecting the alternating control and
label images, and a component that is not modulated by
the labeling process, reflecting slower BOLD weighted signal
variations. An high-pass filtering with a cut-off frequency
corresponding to 1/4TR has been demonstrated to be effective
in retaining the modulated component while minimizing the
BOLD contamination (Chuang et al., 2008; Tak et al., 2014).
Note that this high-pass filtering does not restrict the CBF
timeseries to the high frequency band since the CBF signal
is derived afterward from the difference between subsequent
scans (i.e., control—label). Specifically, CBF timeseries were
obtained from TE1 data by high-pass filtering the corresponding
preprocessed pCASL signal (>0.071 Hz, corresponding to
1/4TR), multiplying it by cos[π(n− 1)] (where n is the frame
number), and then summing together every two images. BOLD
timeseries were obtained from TE2 data by low-pass filtering
(<0.071 Hz) the corresponding preprocessed pCASL signal and
then summing together every two images.

After these processing procedures, both BOLD and CBF
data were spatially normalized using Advanced Normalization
Tools (ANTs; Avants et al., 2009). Briefly, the individual
T1-weighted anatomical images of young and elderly subjects
were first bias corrected using the N4ITK algorithm (Tustison
et al., 2010) and then used to create a study specific template
encompassing the age range in our study (Avants et al., 2010).
Non-brain removal was also performed using BET (Smith,
2002) and a nonlinear warping of the resulting template to the
MNI standard space (3 mm isotropic spatial resolution) was
computed using symmetric diffeomorphic image normalization
(Avants et al., 2008). Finally, BOLD and CBF data were
spatial smoothed (6 mm FWHM) and band-pass filtered
(0.01–0.071 Hz).

After these preprocessing procedures, linear correlation
(Pearson r) between BOLD and CBF timeseries was calculated
for each voxel to obtain individual maps representing the
BOLD-CBF coupling during resting-state. In this step no
time-shift was introduced between the two timecourses and the
resulting correlation coefficients were indicated as r0. Random
effects group maps (one sample t-test) were then obtained
after individual r0 to z-Fisher transform for Young and Elderly
separately and then compared between groups (two-sample
unpaired t-test). Group maps were thresholded at p< 0.05, FDR
corrected.

In a second step, the cross-correlation between BOLD and
CBF timecourses was calculated again after introducing a variable
time-shift τ in the BOLD signal (eq.1), following previous work
(Fukunaga et al., 2008; Tak et al., 2014). In this calculation, both
BOLD (t) and CBF (t) were first upsampled to a resolution of
100 ms using sync interpolation as implemented in the AFNI
program 3Dtshift. The maximum correlation value (rmax) was
retained for τ ranging between ±7 s (with a 350 ms step). Then,
after transforming individual rmax to z-Fisher, the random effects
group maps were calculated again for Young and Elderly and
compared between groups.

rmax = maxτ
∑

t
BOLD(t + τ)CBF(t) − 7s < τ < 7s (1)

Note that previous studies mostly considered the rmax
approach, in order to maximize the statistical significance
of correlation by correcting for potential temporal mismatch
between the two hemodynamic signals (Fukunaga et al., 2008;
Tak et al., 2014). Here we investigated both r0 and rmax
and in particular how the two groups compare with respect
to these metrics. Our choice was motivated by the fact that
the temporal mismatch between BOLD and CBF might be
group dependent (due to e.g., age-related vascular effects). A
quantitative estimation of the effect of time-shift correction on
the correlation coefficient was performed in selected regions of
interest (ROIs) as follows.

We focused on ROIs in the default mode network (DMN)
and frontoparietal network (FPN) that are the two most
investigated brain networks. In order to allow the definition
of ROIs independent from the previous analysis, independent
component analysis (ICA) was performed, using a probabilistic
algorithm (Beckmann and Smith, 2004) as implemented in
the MELODIC tool of FSL (FMRIB Software Library). Briefly,
individual functional datasets were first temporally concatenated
across subjects, groups (Young and Elderly) and modalities
(BOLD and CBF) to form a single 4D data set to be used
as input for the probabilistic ICA algorithm. The number of
components was fixed to 20. Dual-regression (Beckmann et al.,
2009) was then used to identify individual spatial maps for
each independent component to be used as input for the
second-level group analysis. In this calculation random-effects
group statistical maps were obtained for each component using
permutation-based non-parametric testing (5000 permutations;
Nichols and Holmes, 2002). Multiple comparisons correction
was addressed applying a cluster-based threshold of Z > 2.3
and a family-wise-error (FWE) corrected cluster significance
of p < 0.01 for the suprathreshold clusters. Using these
group maps, the DMN and FPN were easily identified from
their characteristic spatial pattern, including posterior cingulate
cortex, bilateral angular gyrus and ventromedial prefrontal
cortex for DMN, bilateral inferior parietal lobe and bilateral
middle frontal gyrus for FPN. For our ROIs definition we
pooled BOLD and CBF data because a high degree of spatial
overlap has been shown for the two modalities in both
resting state and task paradigms (Mayhew et al., 2014; Jann
et al., 2015). Furthermore, in order to consider gray matter
voxels only, a binary mask was defined by averaging the
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normalized individual gray matter masks obtained from the
FreeSurfer segmentation and thresholding at 0.3 (Jann et al.,
2015). The final masks representing the investigated ROIs
were defined multiplying this binary mask with the ICA
clusters.

Then, mean r0 and rmax values were extracted from these ROIs
and the rmax − r0 difference was compared between groups (two-
sample unpaired t-test). Correction for multiple comparisons
was performed using FDR. We expect this difference to be larger
for elderlies due to an increased time-shift between BOLD and
CBF timecourses, possibly reflecting age related modifications of
vascular response.

In addition, we computed the resting state fluctuation
amplitude (RSFA; Kannurpatti and Biswal, 2008) for both BOLD
and CBF timeseries in Elderly and Young, using the AFNI
program 3dRSFC. The corresponding values were extracted from
our ROIs and compared between groups (two-sample unpaired
t-tests with correction for multiple comparisons using FDR).
This analysis aimed at evaluating the impact of potential age
dependent differences in the amplitude of resting state BOLD
and CBF fluctuations on the observed linear correlation between
the two signals, since a reduced fluctuation amplitude could lead
to a decreased correlation coefficient in presence of noise (Liu,
2013).

Finally, we also extracted regional perfusion values from
quantitative CBF maps provided by the background suppressed
ASL data and a single compartment model (Buxton et al., 1998;
Alsop et al., 2015):

CBF =
6000λ(SIc − SIL)e

PLD
T1A

2ααinvT1AM0

(
1− e−

τ
T1A
) [ml/100 g/min] (2)

Where λ is the blood-brain partition coefficient (0.9 ml/g),
SIC and SIL are the means over time of the control and label
images respectively, PLD is the slice-dependent post label delay
(1900–2800 ms), T1A is the longitudinal relaxation time of
arterial blood (1650 ms at 3T), α is the labeling efficiency (0.85;
Alsop et al., 2015), αinv is a correction factor for the background
suppression (0.83; van Osch et al., 2009), M0 is the equilibrium
magnetization signal, and τ is the label duration (1750 ms).

RESULTS

Random effects group maps obtained using the z-Fisher
transformed voxelwise correlation (r0, see ‘‘Materials and
Methods’’ section) between BOLD and CBF timeseries during
resting state are shown in Figure 1A for the two groups. In

FIGURE 1 | (A) Random effect group maps showing the dynamic coupling between spontaneous blood oxygenation level dependent (BOLD) and cerebral blood
flow (CBF) fluctuations for Young (Y) and Elderly (E) groups when potential time shifts between the two signals were not compensated for (r0, see “Materials and
Methods” section). (B) Between-group contrast comparing the dynamic coupling between spontaneous BOLD and CBF fluctuations for Y and E, using r0 values. A
significant age related decrease of BOLD-CBF coupling is observed in the left supramarginal gyrus (MNI coordinates: −59, −34, 33). The statistical maps were
thresholded at p < 0.05 (corrected for multiple comparisons using FDR) and superimposed on the partially inflated study specific template.
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young subjects, a significant correlation between spontaneous
fluctuations of BOLD and CBF signals was observed in most
cortical areas, whereas in elderly subjects this correlation was
markedly reduced (mean r0 values in significant areas were
0.24 ± 0.03 for Young and 0.18 ± 0.04 for Elderly). The
BOLD-CBF coupling was stronger in medial, parietal and frontal
regions, which are part of well-established resting state brain
networks. No significant correlation was observed in white
matter or other brain structures. The voxelwise contrast between
groups showed a significantly lower correlation for elderly
subjects in the left supramarginal gyrus (MNI coordinates: −59,
−34, 33; Figure 1B).

Random effects group maps obtained with the z-Fisher
transformed maximum voxelwise correlation between BOLD
and CBF timeseries (rmax, obtained introducing a temporal shift
between the two signals as described in ‘‘Materials and Methods’’
section) are reported in Figure 2A. As expected, the number of
cortical voxels showing a significant coupling increased for both
groups. Interestingly, this increase was more pronounced for
Elderly (mean rmax values in significant areas were 0.32± 0.02 for
Young and 0.30 ± 0.03 for Elderly). However, the voxelwise

contrast between groups still showed a significantly lower
correlation for elderly subjects in the left supramarginal gyrus
(MNI coordinates: −58, −36, 34; Figure 2B), in a cluster of
voxels largely overlapping with that observed in Figure 1B.

DMN and FPN were easily identified in the ICA results,
with one component showing the typical DMN pattern, one
component showing the left FPN and another component the
right FPN (Figure 3). The results of the ROI approach for the
selected regions in DMN and FPN are reported in Figure 4A. The
comparison of the rmax − r0 difference between groups showed
significantly larger values for Elderly in all ROIs, indicating a
more pronounced effect of time-shift corrections on the linear
correlation between BOLD and CBF timecourses in elderly
subjects. An effect size estimate (Cohen’s d) was also computed
for the between-group comparison of the rmax − r0 difference in
these ROIs. The observed values were quite large, ranging from
0.78 to 1.24.

A larger rmax − r0 difference for Elderly with respect to Young
was also observed in the supramarginal gyrus, without reaching
statistical significance (Figure 4B, values extracted from a mask
obtained pooling the clusters in Figures 1B, 2A). The time-shift

FIGURE 2 | (A) Random effect group maps showing the dynamic coupling between spontaneous BOLD and CBF fluctuations for Y and E groups when potential
time shifts between the two signals were compensated for (rmax, see “Materials and Methods” section). (B) Between-group contrast comparing the dynamic coupling
between spontaneous BOLD and CBF fluctuations for Y and E, using rmax values. Note that a significant age related decrease of BOLD-CBF coupling is observed in
the left supramarginal gyrus (MNI coordinates: −58, −36, 34) even after temporal shift correction, in a cluster of voxels largely overlapping with that observed in
Figure 1B. The statistical maps were thresholded at p < 0.05 (corrected for multiple comparisons using FDR) and superimposed on the partially inflated study
specific template.
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FIGURE 3 | Investigated nodes of default mode network (DMN) and frontoparietal network (FPN), defined with independent component analysis (ICA) calculated
pooling the two groups and modalities (FWE corrected cluster significance of p < 0.01). Regions of interest (ROIs) were defined masking these clusters with a gray
matter binary mask (L_AG/R_AG, left/right angular gyrus; PCC, posterior cingulate cortex; Med_FG, medial frontal gyrus; L_IPL/R_IPL, left/right inferior parietal
lobule; L_MidFG/R_MidFG, left/right middle frontal gyrus).

parameters in the different ROIs ranged from−1.12 s to−1.81 s
for Elderly and from −0.4 s to −1.4 s for Young. The between-
group difference was significant in the right angular gyrus (−1.8 s
for Elderly and −0.5 s for Young, p < 0.03, unpaired t-test),
indicating an increased delay of BOLD dynamics (with respect
to CBF) in elderlies.

The baseline CBF values showed the well known age related
decrease for all the investigated regions (Figure 3). However, no
significant correlation of the BOLD-CBF coupling with baseline
CBF values was observed across subjects, for either Elderly or
Young groups.

The control analysis on the amplitude of resting state low
frequency fluctuations revealed that RSFA values in these regions
did not change significantly with age, except for the BOLD-RSFA
in the frontal regions of FPN (Figure 4A). However, no region
showed a significant across-subjects correlation of the values of
BOLD-CBF coupling with BOLD-RSFA or CBF-RSFA values, for
either Elderly or Young groups.

The comparison of the run-averaged DVARS metrics did not
show statistically significant differences across groups for either
control or label images (F(2,120) = 1.29; p = 0.26). Additional
control analysis showed no significant correlation of DVARS
values with the BOLD-CBF coupling for either Elderly or Young
groups.

DISCUSSION

The present results showed that in young subjects spontaneous
BOLD and CBF fluctuations are significantly synchronized in
most cortical areas and especially within the major nodes of

prominent resting-state networks, confirming previous evidence
(Tak et al., 2014, 2015; Chen et al., 2015). As a new finding,
this resting-state BOLD-CBF dynamic coupling was reduced in
elderly individuals, especially in the left supramarginal gyrus.
Moreover, this decrease was not related to a reduced amplitude
of either BOLD or CBF spontaneous fluctuations. Furthermore,
elderlies showed a larger increase in the correlation coefficient
after the introduction of a relative time-shift between BOLD and
CBF timecourses.

Recently, an increasing evidence that intrinsic CBF
fluctuations are a major contributor to the resting state
BOLD signal has been reported. Indeed, different studies showed
a high level of spatial overlap between connectivity maps
obtained from BOLD and CBF timecourses (Viviani et al., 2011;
Jann et al., 2015). Moreover, a set of studies investigated the
dynamic relationship between spontaneous CBF and BOLD
fluctuations (Fukunaga et al., 2008; Wu et al., 2009; Tak et al.,
2014, 2015; Chen et al., 2015; Cohen et al., 2017). Fukunaga
et al. (2008) were the first to investigate the dynamic coupling
between BOLD and perfusion fluctuations during resting
state, showing that the two signals are correlated in most part
of the cortex, with little involvement of white matter and
cerebrospinal fluid. Furthermore, using the BOLD/perfusion
ratio to target resting state oxidative metabolism fluctuations,
they found a similar BOLD/CBF coupling with respect to
a visual task induced brain activity, adding evidence to a
metabolic/neuronal origin of spontaneous BOLD and CBF
fluctuations. In a subsequent work, Wu et al. (2009) obtained
functional connectivity maps using CMRO2 time series derived
from simultaneous BOLD and CBF time series acquired with
ASL. Although the CMRO2 time courses were estimated
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FIGURE 4 | (A) Between-group comparison of rmax − r0 values, resting state
fluctuation amplitudes (RSFAs) and baseline perfusion values extracted in
ROIs of Figure 3 (two-sample unpaired t-test; ∗p < 0.05 FDR corrected,
∗∗p < 0.01 FDR corrected, ∗∗∗p < 0.001 FDR corrected, ∗∗∗∗p < 0.0005 FDR
corrected). (B) The same values extracted from the ROI obtained pooling the
two clusters in Figures 1B, 2B and masking with gray matter. Error bars are
standard errors.

assuming the steady-state biophysical BOLD model, that might
have some limitations in a more dynamical situation (Simon
and Buxton, 2015), the strong similarity observed by Wu
et al. (2009) between functional connectivity maps obtained
from BOLD, CBF and CMRO2 time courses added further
evidence to a significant BOLD-CBF coupling during resting
state. In a recent work the study of dynamic BOLD-CBF
relationship during resting state was addressed with significant
methodological improvements, including physiological noise
correction in the tag and control ASL images and taking
into account the influence of global cardiac fluctuations (Tak
et al., 2014). This work demonstrated that the resting-state
BOLD-CBF coupling strength, although varying across the
brain, was stronger in the gray matter and in particular in the
major nodes of well-established functional networks. Moreover,
the BOLD-CBF coupling observed by Tak and collaborators
was significantly reduced in voxels associated with a high

macrovascular content, suggesting that the component of
spontaneous BOLD signal fluctuations that is more directly
driven by dynamic CBF fluctuations is more likely related to
neuronal activity, which is known to modulate the microvascular
response.

Keeping in line with previous evidence, our results confirm
that in young individuals spontaneous BOLD and CBF
fluctuations are significantly synchronized in most cortical areas
and especially in regions of the major resting state networks. As
a new finding, we observed a general age-related decrease of the
BOLD-CBF dynamic coupling during resting state across cortical
areas. The between-group voxelwise contrast showed that this
decrease was statistically significant in a cluster of voxels in the
left supramarginal gyrus.

Slight discrepancies between BOLD and CBF dynamics have
been previously reported even in young subjects using e.g.,
visual or motor stimuli (Obata et al., 2004; Cavusoglu et al.,
2012). These discrepancies can be expected, due to possible
temporal uncoupling of the involved physiological responses
(i.e., CBF, CBV and CMRO2) that have a competing effect on
the BOLD signal amplitude. Indeed, a temporal uncoupling of
e.g., CBF and venous CBV has been proposed in early models
trying to explain BOLD signal transients like the post-stimulus
undershoot or the initial overshoot during long stimulation
blocks (Buxton et al., 1998, 2004; Buxton, 2012). Although a
neuronal contribution to these transients has been recognized
(Sadaghiani et al., 2009; Mullinger et al., 2014, 2017), there is
increasing evidence that vascular mechanisms related to delayed
compliance of venous vessels play an important role as well
(Chen and Pike, 2009; Havlicek et al., 2017). In particular, a
recent work suggests that the venous CBV response can be an
order of magnitude slower than either CBF or CMRO2 (Simon
and Buxton, 2015).

Despite the specific physiological mechanisms responsible for
the decreased BOLD-CBF dynamic coupling that we observed
in elderly cannot be determined using the present data alone,
it could be argued that increased vessel stiffening due to age
(Podlutsky et al., 2010; Trott et al., 2011; Csiszár et al., 2015;
Tsvetanov et al., 2015; Chiarelli et al., 2017; Tan et al., 2017;
Tarantini et al., 2017; Toth et al., 2017) can lead to increased
delay in venous compliance, thus introducing further temporal
discrepancies between BOLD and CBF timecourses. Animal
studies also showed that modifications of vessel compliance with
age decrease the ratio of CBV to CBF responses (Dubeau et al.,
2011; Desjardins et al., 2014) that in turn would also affect the
BOLD response. Moreover, the ratio of CBV to CBF response
is also reflected in the Grubb’s parameter (Grubb et al., 1974)
that is involved in calibrated BOLD models. Importantly, this
parameter has been shown to vary not only with aging (Dubeau
et al., 2011) but also during different phases of functional
stimulation, leading to transient relationships between CBF, CBV
and BOLD changes (Kida et al., 2006), suggesting a possible effect
on BOLD-CBF coupling. The potential role of delayed vessel
compliance is also supported by our second finding, i.e., that
introducing a time-shift correction between BOLD and CBF
signals has more effect for elderlies than for young subjects in
increasing the calculated correlation coefficient. However, even
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with time-shift correction, the left supramarginal gyrus showed a
significant between-group difference in the voxelwise contrast,
indicating that the dynamic uncoupling of BOLD and CBF
timecourses in this region is more affected by the aging process
and can be only partially explained with a simple time-shift
between the two signals. Interestingly, different neuroimaging
and transcranial magnetic stimulation studies reported that the
left supramarginal gyrus is involved in verbal working memory
and episodic memory (Romero et al., 2006; Koelsch et al.,
2009; Deschamps et al., 2014; Thakral et al., 2017), which are
functions known to be impaired with age. Considering that our
investigated population was selected among healthy elderlies that
did not show a compromised performance in memory tests, our
results acquire an increased interest. Indeed, the observed age
related differences in the dynamic BOLD-CBF coupling could be
considered a potential biomarker that might anticipate changes
in neuronal function. In this regard, this type of index could be
spatially more specific than e.g., age-related decrease of baseline
perfusion that we and others (Parkes et al., 2004; Ambarki et al.,
2015; De Vis et al., 2015) clearly observed in most cortical areas.
However, we are aware that a full validation of this hypothesis
would require additional data, with a larger sample size and
possibly longitudinal studies.

Potential Limitations and Caveats
As in all studies using dynamic ASL to assess brain function, a
major concern is minimizing BOLD contamination of the CBF
signal. We addressed this issue by using the short echo time
data (which have minimal sensitivity to the BOLD effect) and
by high pass filtering the ASL signal followed by demodulation
to derive the CBF timecourse (Chuang et al., 2008). This
approach can be considered a generalization of previously
proposed methods like e.g., sinc interpolation (Liu and Wong,
2005), with similar efficiency in removing BOLD contamination
from the perfusion timeseries. Another important concern in
resting state fMRI studies is the physiological noise due to
cardiac and respiratory activity. While different methods of
noise cleanup have been established for the BOLD signal (for
a review see; Murphy et al., 2013; Liu, 2016), there is scarce
evidence on the application of similar procedures to ASL. We
chose the approach using RETROICOR to correct time-locked
effects of cardiac and respiratory fluctuations on the EPI signal
of label and control separately (Restom et al., 2006). Indeed,
modeling the effect of the cardiac and respiratory cycles on the
derived CBF weighted timeseries had minimal effect on signal
quality (Restom et al., 2006). However, as observed by the same
authors, future approaches using additional information such as
end tidal carbon dioxide measurements could allow improved
modeling of the effect of physiological noise on the perfusion
timecourses, extending previous work on BOLD (Wise et al.,
2004). An additional source of noise in the fMRI signals is
represented by head motion, that has been shown to introduce
spurious correlations in functional networks investigated in
resting state BOLD studies (Power et al., 2012). This issue is
particularly important when comparing different populations
that could differ in the amount of head motion, like e.g healthy
subjects vs. patients or young subjects vs. elderlies and censoring

procedures have been proposed, in addition to regression of
motion parameters, to mitigate these effects in resting state
BOLD timeseries (Power et al., 2014). Again, the extension of
these methods to CBF timeseries is not straightforward because
the perfusion information is carried by the difference image
between label and control that should be censored in pairs, thus
strongly reducing the number of usable timepoints. However,
motion parameters derived during preprocessing of label and
control images did not differ significantly between groups in our
data, suggesting a negligible effect of motion on the observed
results.

In addition to noise concerns, potential between-group
differences in BOLD and/or CBF signal fluctuation amplitude
could also affect the calculated correlations. Indeed, while from
a mathematical point of view the linear correlation of two
timecourses is not affected by the amplitude of the signals, in
presence of noise a reduced fluctuation amplitude could lead to
a decreased correlation coefficient (Liu, 2013). However, the two
groups showed comparable levels of signal fluctuations for both
BOLD and CBF in the majority of investigated ROIs, suggesting
no bias related to this issue. Even in the two regions showing
a significant decrease of BOLD fluctuations in elderlies, any
significant correlation of RSFA with BOLD-CBF correlation was
observed. A reduced fluctuation amplitude in elderlies could have
been expected due to gray matter atrophy. In this regard, the
observation of similar fluctuation amplitudes of the functional
signals in the two groups also helps to mitigate the concern of
potential confounds due to the presence of atrophy in elderlies
that could have biased our results.

Potential biases in the results could also be introduced by the
six older adults using antihypertensive medication that would
possibly alter the hemodynamic response in these subjects. In our
group of subjects a control analysis revealed similar BOLD-CBF
coupling when comparing this hypertensive subgroup with the
other elderlies, with no significant differences. Nevertheless,
future studies should address this issue using larger sample sizes.

A further concern could be raised regarding the postlabel
delay (1000 ms for the first slice) used for the study of dynamic
BOLD-CBF coupling that can be too short to ensure a complete
delivery of the bolus to the tissue at the time of acquisition,
in particular for elderlies. However, while this is an important
issue for absolute CBF quantification, short postlabel delays are
often used or even recommended for functional applications of
ASL because offer a larger sensitivity and temporal resolution
without introducing bright spots in activation maps due to large
vessel contribution or introducing distortions of timecourses
(Gonzalez-At et al., 2000; Zappe et al., 2008). In contrast, for the
quantification of baseline CBF, we used a longer postlabel delay
(1900 ms for the first slice), following current guidelines for both
young and healthy elderlies (Alsop et al., 2015).

Finally, another limitation of the study could arise from
the small sample size, potentially resulting in a low statistical
power. Indeed, despite statistical significance was obtained
for the between-group comparison of our main metrics of
interest, future studies with larger sample size possibly including
elderlies with impaired cognitive functions would allow further
assessment of the significance of our findings.
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CONCLUSION

In this study we observed an age-related decrease of the
temporal correlation between the BOLD and CBF spontaneous
fluctuations in the cortex. Interestingly, when compensating for
potential time-shifts between the two signals, the increase of
the correlation coefficient was larger for elderlies. However a
significant between-group difference was observed in the left
supramargynal gyrus even after time-shift correction, suggesting
a more pronounced age-related BOLD-CBF uncoupling in
this area. These results suggest that the study of dynamic

coupling between spontaneous BOLD-CBF fluctuations using
the simultaneous acquisition of the two signals with ASL is
a promising technique to study-resting state brain function in
aging and disease.
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Buxton, R. B., Uludağ, K., Dubowitz, D. J., and Liu, T. T. (2004). Modeling
the hemodynamic response to brain activation. Neuroimage 23, S220–S233.
doi: 10.1016/j.neuroimage.2004.07.013

Cavusoglu, M., Bartels, A., Yesilyurt, B., and Uludağ, K. (2012). Retinotopic maps
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