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There is no disease-modifying treatment currently available for AD, one of the
more impacting neurodegenerative diseases affecting more than 47.5 million people
worldwide. The definition of new approaches for the design of proper clinical
trials is highly demanded in order to achieve non-confounding results and assess
more effective treatment. In this study, a cohort of 200 subjects was obtained
from the Alzheimer’s Disease Neuroimaging Initiative. Subjects were followed-up for
24 months, and classified as AD (50), progressive-MCI to AD (50), stable-MCI
(50), and cognitively normal (50). Structural T1-weighted MRI brain studies and
neuropsychological measures of these subjects were used to train and optimize
an artificial-intelligence classifier to distinguish mild-AD patients who need treatment
(AD + pMCI) from subjects who do not need treatment (sMCI + CN). The classifier was
able to distinguish between the two groups 24 months before AD definite diagnosis
using a combination of MRI brain studies and specific neuropsychological measures,
with 85% accuracy, 83% sensitivity, and 87% specificity. The combined-approach model
outperformed the classification using MRI data alone (72% classification accuracy, 69%
sensitivity, and 75% specificity). The patterns of morphological abnormalities localized
in the temporal pole and medial-temporal cortex might be considered as biomarkers of
clinical progression and evolution. These regions can be already observed 24 months
before AD definite diagnosis. The best neuropsychological predictors mainly included
measures of functional abilities, memory and learning, working memory, language,
visuoconstructional reasoning, and complex attention, with a particular focus on some
of the sub-scores of the FAQ and AVLT tests.

Keywords: artificial intelligence, Alzheimer’s disease, clinical trials, magnetic resonance imaging,
neuropsychological tests, biomarkers, predictors

INTRODUCTION

According to the World Health Organization, there were 47.5 million people worldwide with
dementia in 2015, with 7.7 million new cases each year. The total number of people with dementia
is projected to reach 75.6 millions in 2030 and almost triple by 2050 to 135.5 millions (Dementia
Statistics, 2015; World Alzheimer Report, 2015; Khan et al., 2017). The most frequent dementia
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form is Alzheimer’s Disease (AD) (approximately 70%), whose
impact on the society in terms of costs as well as quality of life of
patients and families is impressive (Khan et al., 2017). There is no
AD-modifying treatment available to date, and one third of the
population will die with dementia if something does not change
in the approach of screening, diagnosis, prognosis and treatment,
including more proper design of clinical trials.

Currently, there are indeed more than 500 open clinical
studies on AD, according to ClinicalTrials.gov. Many other
clinical trials have been closed in the past years, few achieved
phase III and no one demonstrated a proper success rate. Most
of the past clinical trials enrolled people with advanced AD, and
clinicians recommended to treat patients at an earlier stage for
more effective results. Thus, current clinical trials try to enroll
subjects at an early phase of the disease: inclusion criteria are now
based on the selection of this specific patient group.

The patient’s self-reported experiences and the observed
cognitive, functional and behavioral symptomatology due to AD
over the longitudinal course of the illness are the current basis
for the clinical diagnosis of AD. However, they are insufficient
for detecting early AD subjects, considering also that only 33%
of subjects with mild cognitive impairment (MCI) progress to
AD (Mitchell and Shiri-Feshki, 2009). Furthermore, no standards
have been defined on the best neuropsychological outcomes to be
measured for this purpose.

For these reasons, clinical trials based only on
neuropsychological assessment risk (1) including subjects
with early dementia forms that are not caused by AD and (2)
lasting several years prior to be completed, when most of the
enrolled subjects have clearly progressed to AD. This leads to
confounding clinical-trial designs, and cause treatments to be
administered on patients who are not really affected by AD.

In 2011, after many scientific evidences, medical-imaging
studies were included in the revised diagnostic criteria for AD
in order to detect objective signs of disease in the subjects’
brain. Being positive to Positron Emission Tomography (PET)
with Aβ- or tau-specific radiotracers is used as an inclusion
criterion in most recent clinical trials, with the aim of measuring
the presence of brain β-amyloid plaques or tau deposition,
the recognized cause of AD pathogenesis. However, these PET
studies are expensive, invasive and difficult to be implemented
for technical and authorization problems, in particular in
non-western countries. Moreover, lack of success in clinical
trials of candidate drugs targeting amyloid or tau proteins
has led to target alternative mechanisms (e.g., Khan et al.,
2017).

Magnetic Resonance Imaging (MRI) is a less expensive
technique than PET, non-invasive and more common in both
western and non-western regions, and already recommended to
detect AD neuronal degeneration and to monitor AD progression
in clinical trials (Sperling et al., 2011). However, radiologists are
not always able to detect -by visual inspection- the presence of
subtle cerebral signs of neurodegeneration in MCI subjects, and
even when this is possible, they are not able to predict if a subject
will progress or not to AD.

Artificial-intelligence (AI) technology is emerging as an
effective tool for automatic, objective and more sensitive

assessment of imaging studies. Specifically, machine-learning
(ML) and pattern-recognition techniques have captured the
attention of the neuroimaging community as they have been
proven able to discover previously unknown patterns in imaging
data (Bishop, 2006; Wernick et al., 2010). In other words, these
algorithms are able to (1) extract information from imaging
data without a priori knowledge of where it may be encoded
in the images, and (2) combine the information encoded in
multiple inter- and intra-domain variables. This information
can then be used to design multivariate mathematical models
able to automatically predict the diagnostic class of a subject.
This characteristic may be of particular usefulness in the context
of early diagnosis, when pathological signs are not yet evident
by visual inspection (Salvatore et al., 2015a). In the last years,
different ML approaches have been applied to the automatic
diagnosis and prognosis of AD by means of cerebral MRI studies,
showing good performance even at an early stage of the disease
(e.g., Cuingnet et al., 2011; Moradi et al., 2015; Salvatore et al.,
2015b; Nanni et al., 2016). Furthermore, good results have been
obtained to translate the hidden image features used by ML
in performing subject classification, which are often typically
complex features, counter-intuitive and not meaningful per se to
clinicians (Haufe et al., 2014; Salvatore et al., 2015b; Huys et al.,
2016). Thus, results of ML classification by means of MRI brain
images can be more easily interpreted by clinicians and associated
to AD pathogenesis.

The aim of this study is to refine the application of ML systems
for the characterization of the progressive course of AD and to
predict the conversion of MCI to AD, trying to establish how long
before it would be possible to predict the diagnosis of probable
AD. Application of this approach to longitudinal datasets would
enable us to focus on the prognosis rather than the diagnosis and
to identify cost-effective biomarkers, which may be targeted for
prevention/intervention programs.

MATERIALS AND METHODS

Participants
Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database1.
The ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), and the Food and Drug Administration
(FDA), as a 5-year public private partnership, led by the principal
investigator, Michael W. Weiner, MD. The primary goal of ADNI
was to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessments subjected to
participants could be combined to measure the progression of
MCI and early Alzheimer’s disease (AD) – see www.adni-info.
org.

As specified in the ADNI protocol2, each participant was
willing, spoke either English or Spanish, was able to perform all

1adni.loni.usc.edu
2http://www.adni-info.org/Scientists/ADNIStudyProcedures.html

Frontiers in Aging Neuroscience | www.frontiersin.org 2 May 2018 | Volume 10 | Article 135

http://ClinicalTrials.gov
www.adni-info.org
www.adni-info.org
http://adni.loni.usc.edu
http://www.adni-info.org/Scientists/ADNIStudyProcedures.html
https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-10-00135 May 22, 2018 Time: 14:49 # 3

Salvatore et al. MRI Predicts Conversion to AD

test procedures described in the protocol and had a study partner
able to provide an independent evaluation of functioning.

Inclusion criteria for cognitively normal (CN) subjects were:
Mini Mental State Examination (MMSE) (Folstein et al., 1975)
scores between 24 and 30, Clinical Dementia Rating (CDR)
of zero (Morris, 1993), and absence of depression, MCI and
dementia. Inclusion criteria for MCI were: MMSE scores between
24 and 30, CDR of 0.5, objective memory loss measured by
education-adjusted scores on the Logical Memory II subtest
of the Wechsler Memory Scale (Wechsler, 1987), absence of
significant levels of impairment in other cognitive domains, and
absence of dementia. Inclusion criteria for AD were: MMSE
scores between 20 and 26, CDR of 0.5 or 1.0, and criteria for
probable AD as defined by the National Institute of Neurological
and Communicative Disorders and Stroke (NINCDS) e by
the Alzheimer’s Disease and Related Disorders Association
(ADRDA) (McKhann et al., 1984; Dubois et al., 2007).

Serial MRI studies were performed to participants from
baseline, covering a follow-up period of several years. Each
participant was diagnosed at each time point of serial MRI
studies.

In the present work, a total of 200 subjects were retrieved
from the ADNI database, consisting into 50 subjects with a stable
diagnosis of CN state over the 24 months of follow up, 50 subjects
with a stable diagnosis of MCI (sMCI), 50 subjects with a stable
diagnosis of AD, and 50 subjects with an initial diagnosis of MCI
who showed a progression to AD (pMCI).

Two age- and sex-matched groups of subjects were created by
grouping, separately, AD with pMCI (100 subjects) and CN with
sMCI (100 subjects).

These subjects had all three serial MRI studies at three time
points after the baseline: 6, 12, and 24 months.

The 24-months point was chosen as the time-zero point for
a stable diagnosis. As a consequence, the three previous time
points were reconsidered (and renamed) as 24 months before
stable diagnosis, 18 months before stable diagnosis, and 12 months
before stable diagnosis.

Demographic and clinical characteristics of the groups
of ADNI subjects considered in this study are shown in
Table 1. ADNI Subject IDs as well as Image Data IDs can be
found at the following online repository: https://github.com/
christiansalvatore/Salvatore-200Longitudinal.

MRI and Neuropsychological Data
For each subject of Table 1, and for each time point (24 months
before stable diagnosis, 18 months before stable diagnosis,
12 months before stable diagnosis, and time-zero point of stable
diagnosis), structural MR images were downloaded from the
ADNI data repository. According to the ADNI acquisition
protocol (Jack et al., 2008), examinations were performed at 1.5
T using a T1-weighted sequence. We considered MR images
that had undergone the following preprocessing steps: (1) 3D
gradwarp correction for geometry correction caused by gradient
non-linearity (Jovicich et al., 2006), and (2) B1 non-uniformity
correction for intensity correction caused by non-uniformity
(Narayana et al., 1988). These preprocessing steps help improving
the standardization among MR images from different MR

sites and different platforms. MR images were downloaded in
3D NIfTI format. A further processing procedure was then
performed on the downloaded images, this procedure consisting
in: (1) image re-orientation; (2) cropping; (3) skull-stripping;
(4) image normalization to the MNI standard space by means
of co-registration to the MNI template (MNI152 T1 1 mm
brain) (Grabner et al., 2006; O’Hanlon et al., 2013). MR images
were then segmented into Gray Matter (GM) and White Matter
(WM) tissue probability maps, and smoothed using an isotropic
Gaussian kernel with Full Width at Half Maximum (FWHM)
ranging from 2 to 12 mm3, with a step of 2 mm3. After this phase,
all MR images (whole-brain, GM and WM) resulted to be of size
121× 145× 121 voxels. The whole process was performed using
the VMB8 software package installed on the Matlab platform
(Matlab R2016b, The MathWorks). MRI volumes were visually
inspected for checking homogeneity and absence of artifacts both
before and after the pre-processing step.

Neuropsychological data were also obtained for each subject
and for each time point from the ADNI data repository.
Neuropsychological data included both scores and subscores
of seven neuropsychological tests, namely the Functional
Assessment Questionnaire (FAQ), the Clock Test, the Rey
Auditory Verbal Learning Test (AVLT), the Digit Span (DS),
the Category Fluency Tests (Animals and Vegetables), the Trail
Making Test A-B (TMT A-B), and the Boston Naming Test
(BNT). The full list of neuropsychological scores and subscores
used in this study is reported in the Supplementary Table S1. All
scores and subscores underwent a z-score normalization before
being fed into the classification algorithm.

The Classification
For each subject of Table 1, and for each time point, T1-weighted
structural MR images and neuropsychological scores (and sub-
scores) were used as input data of an automatic binary classifier
to discriminate the two groups of subjects: (CN + sMCI) vs.
(pMCI + AD).

For this purpose we used an AI system based on a supervised
ML algorithm, tailored to learn from MRI images the prediction
model to classify different diagnostic AD groups (Salvatore et al.,
2015b).

The whole procedure is detailed in the following Sub-sections
and consists into: extraction of features from the three different
segmented MR images (whole-brain, GM or WM); ranking
of features extracted from MR images; ranking of normalized
neuropsychological scores and sub-scores; classification of
subjects using the extracted and ranked features, further selected
according to their ranking through a wrapper procedure. This
procedure is repeated for different combinations of selected

TABLE 1 | Demographic and clinical characteristics of the subjects considered in
this study.

Group type
(stable diagnosis)

# Subjects Age mean ± std.
[range]

Gender #M/#F
(%)

CN or sMCI 100 74.8 ± 6.4 [58.0–87.7] 55%

pMCI or AD 100 74.7 ± 7.1 [55.3–88.4] 54%
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features, and the classifier is optimized on that combination
showing the best classification performance (wrapper feature
selection and optimization of classification).

Feature Extraction and Ranking
Feature extraction and feature ranking were performed to reduce
the number of features to be handled by the classification
algorithm, to remove the noisy features while keeping the ones
relevant for group discrimination, and to reduce redundancy
in the dataset. Thus, this step allowed an enhancement of the
performance of the ML classifier while reducing computational
costs.

A Principal Component Analysis (PCA) was implemented
to perform feature extraction from the MRI volumes (López
et al., 2011; Salvatore et al., 2015a). In particular, this method
consists in applying and orthogonal transformation to the
original set of variables in order to obtain a new (smaller)
set of orthogonal variables called principal components. These
new variables define a subspace, called the PCA subspace.
The original dataset is then projected onto the PCA subspace,
this operation resulting in a smaller set of features which are
referred to as PCA coefficients and which can be used to
replace the original dataset. This new dataset of PCA coefficients
maximizes the variance of the dataset, under the constraint
of orthogonality among the extracted variables. The number
of extracted features cannot be higher than the value of the
smaller dimension of the original dataset – 1. In our case,
being the dimension of the dataset equal to S × N, where
S is the number of samples (200) and N the number of
features (MRI voxels + neuropsychological features, > 106),
then the number of extracted PCA coefficients will be at
most 199.

Feature ranking was applied to PCA coefficients extracted
from MR images, as well as to neuropsychological scores and sub-
scores. FDR was implemented to perform feature ranking, which
aims at sorting features according to their class-discriminatory
power. This index was computed for each variable as follows:

FDR =
(µA − µB)2

σ2
A + σ2

B
(1)

where the numerator expresses the squared difference between
the mean of that variable in class A and class B, while the
denominator expresses the sum of the squared variances of that
variable in class A and in class B.

A second independent feature-extraction technique based
on Partial Least Squares (PLS) (Wold et al., 1984; Ramírez
et al., 2010; Khedher et al., 2015) was implemented. The
approach used in PLS is similar to the one used in PCA.
However, differently from PCA, this technique involves the
concurrent use of information from both the set X of observed
variables (the original dataset itself) and the corresponding set
T of diagnostic labels. Specifically, PLS consists in computing
orthogonal vectors (also in this case called components) by
maximizing the covariance between the two sets of variables
X and T. The original variables are then projected onto the
new space spanned by the computed orthogonal vectors. These

projections are then used as input features for the classification
system.

The feature-extraction-and-ranking technique based on
PCA+FDR and the feature-extraction technique based on
PLS were implemented independently from each other. The
performances of the classifier implemented using these two
techniques were then compared.

The Classifier
A Support Vector Machine (SVM) was used as a binary classifier
(Cortes and Vapnik, 1995). The SVM algorithm was able to
construct a predictive model based on a set of features from
subjects with known stable diagnosis, called training dataset. This
predictive model was then used to automatically classify new
subjects (with unknown diagnosis) as belonging to one of the two
diagnostic classes.

The predictive model computed by SVM was the one that
maximized the margin between the two diagnostic classes,
represented by a hyper-plane whose analytical form is given by:

y (x) =
N∑

n=1

wn • tn • k (x, xn)+ b (2)

Here N is the number of subjects in the training set, wn is the
weight assigned by SVM to each subject n in the training set
during the training phase, tn represents the diagnosis of the
subject n of the training set, k(x,xn) is the kernel function, and
b is a threshold parameter.

In our analyses, we implemented a linear kernel SVM on
the Matlab platform (R2016b, The MathWorks), also including
algorithms from the biolearning toolbox of Matlab.

Wrapper Feature Selection, Optimization of
Classification, Performance Evaluation
In order to find the best configuration of parameters for the
classification, a wrapper feature selection and optimization of
classification was performed. Specifically, the features to be
selected were the MRI features extracted and ranked using
PCA and FDR, and the neuropsychological scores and sub-
scores normalized and ranked using FDR. The parameters to be
optimized were only related to the MR image preprocessing, and
they included the tissue probability map (whole-brain, GM or
WM), and the FWHM of the smoothing kernel (FWHM = 2, 4,
6, 8, 10, and 12 mm3 or no smoothing).

Wrapper feature selection and optimization were performed
using a fivefold Nested-Cross-Validation (Nested CV) approach
(Varma and Simon, 2006). In this approach, the original dataset
(100 subjects with CN or sMCI and 100 subjects with AD
or pMCI) was split into 5 subsets of equal size: 4/5 subsets
were used in an inner training-and-validation loop to perform
feature selection and parameter optimization; the remaining 1/5
subset was then used in an outer test loop for the performance
evaluation of the classifier. This procedure was repeated five
times, until all subsets were used once for testing in the outer
loop.

For each round, the set of selected features and optimal
parameters was estimated in the inner loop as the one that
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maximized the accuracy of classification. For each round, the
performance was estimated in the outer loop in terms of accuracy,
sensitivity, and specificity of classification. Mean accuracy,
sensitivity and specificity was calculated averaging across all 5
rounds.

Given that the number of subjects in the whole dataset was
200 (i.e., 100 CN + sMCI and 100 pMCI + AD), for each round
of nested CV the number of subjects used to train the classifier
was 128, the number of subjects used to optimize the classifier
was 32 (inner loop), and the number of subjects used to evaluate
the performance of the classifier was 40 (outer loop).

The whole process was performed for each time point
(24 months before stable diagnosis, 18 months before stable
diagnosis, and 12 months before stable diagnosis).

In order to assess the statistical significance of each
performance metric (accuracy, sensitivity, and specificity of
classification), we performed a permutation test. Specifically,
the classifier was run as described above, but the labels were
computed as a random permutation of the original label set. This
procedure was repeated for a total of 1000 iterations. A p-value
indicating the statistical significance of each performance metric
was then calculated as the fraction of the total number of
iterations for which the performance (accuracy, sensitivity, or
specificity, respectively) resulted to be greater than or equal to
the performance observed using the original labels.

MRI and Neuropsychological Predictors
A three-dimensional map of voxel-based intensity distribution of
MRI differences between (CN + sMCI) and (pMCI + AD) was
generated for each round of the inner training-and-validation
loop. The map was created for the set of selected features
and optimal parameters obtained using the PCA+FDR feature-
extraction-and-ranking technique. The maps generated during
the 5 rounds of nested CV were then averaged in a single
final map.

The importance of each voxel was computed as in our
previous papers (Cerasa et al., 2015; Salvatore et al., 2015b)
based on the predictive model generated by SVM. Specifically,
during the training phase, SVM assigns a weight to each sample
in the training set corresponding to the importance of that
sample in defining the predictive model. By multiplying each
sample of the training set by the corresponding weight, and
by adding resulting weighted samples on a voxel-basis, it is
possible to generate a three-dimensional map of the weights
of each voxel. Furthermore, the method proposed by Haufe
et al. (2014) to compute activation patterns in backward models
was applied in order to ensure the correct interpretation of the
weights.

Voxel-based maps were then normalized in intensity (to
a range between 0 and 1) and superimposed on a standard
stereotactic brain using a proper color scale. This procedure was
performed for each time point (24 months before stable diagnosis,
18 months before stable diagnosis, and 12 months before stable
diagnosis) (Cerasa et al., 2015; Salvatore et al., 2015b).

The most frequent neuropsychological scores and subscores
among those selected in all rounds were also identified. Also
in this case, these results were obtained for the classifier

implemented using the PCA+FDR feature-extraction-and-
ranking technique. These features were sorted in descending
order according to their frequency. The features occurring with
a higher frequency than 5% were shown as best predictors.

RESULTS

The Classification
Classification results when using PCA+FDR as feature-
extraction-and-ranking technique are shown in Table 2 for
the classification of (CN + sMCI) vs. (pMCI + AD). Using
only MRI data, accuracy, sensitivity, and specificity of the
classification were 0.72 ± 0.08, 0.69 ± 0.12, and 0.75 ± 0.08,
respectively, at the time point 24 months before stable diagnosis;
0.77 ± 0.05, 0.78 ± 0.07, and 0.76 ± 0.10 at the time point
18 months before stable diagnosis; 0.75 ± 0.08, 0.79 ± 0.14, and
0.71 ± 0.11 at the time point 12 months before stable diagnosis.
As a benchmark, we also measured the performance of the
classifier in discriminating (CN + sMCI) vs. (pMCI + AD) at
the time-zero point of stable diagnosis (that is, when all pMCI
had manifested their progression to AD). In this case, accuracy,
sensitivity and specificity resulted to be 0.79 ± 0.08, 0.83 ± 0.14,
and 0.75 ± 0.10, respectively. The performances of the proposed
method result to be statistically significant as assessed by means
of permutation tests (p < 0.001). On the other side, no statistical
difference was found among the performance obtained at the
four different time points (p = 0.51, one-way ANOVA). The
p-values (multiple comparisons for one-way ANOVA) for all the
possible binary combinations of time points are reported in the
Supplementary Table S2.

When using MRI and neuropsychological data in
combination, accuracy, sensitivity, and specificity were
0.85 ± 0.05, 0.83 ± 0.09, and 0.87 ± 0.06, respectively, at
the time point 24 months before stable diagnosis; 0.85 ± 0.09,
0.86 ± 0.11, and 0.83 ± 0.17 at the time point 18 months before
stable diagnosis; 0.87 ± 0.06, 0.86 ± 0.11, and 0.87 ± 0.03 at the
time point 12 months before stable diagnosis. Accuracy, sensitivity
and specificity at the time-zero point of stable diagnosis were
0.92 ± 0.01, 0.91 ± 0.04, and 0.93 ± 0.03, respectively. The
performances of the proposed method result to be statistically
significant as assessed by means of permutation tests (p < 0.001).
On the other side, no statistical difference was found among the
performance obtained at the four different time points (p= 0.20,
one-way ANOVA). The p-values (multiple comparisons for
one-way ANOVA) for all the possible binary combinations of
time points are reported in the Supplementary Table S3.

Furthermore, when comparing –at different time points–
the accuracy of classification obtained using MRI and
neuropsychological data in combination with respect to the
one obtained using MRI alone, the combined approach resulted
to perform statistically better -at the 5% significance level- than
the single-modality approach at the time points of 24 months
before stable diagnosis (p = 0.01), 12 months before stable
diagnosis (p = 0.03), and at the stable-diagnosis time point
(p = 0.01). No statistical difference was found at the time point
of 18 months before stable diagnosis (p= 0.15).
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TABLE 2 | Classification performance in terms of accuracy, sensitivity, and specificity for (CN + sMCI) vs. (pMCI + AD) at the considered time points, using MR images
alone or coupled with neuropsychological measures, with PCA+FDR as feature-extraction-and-ranking technique.

24 m before stable diagnosis 18 m before stable diagnosis 12 m before stable diagnosis Stable-diagnosis time point

MRI

Accuracy 0.72 ± 0.08 0.77 ± 0.05 0.75 ± 0.08 0.79 ± 0.08

Sensitivity 0.69 ± 0.12 0.78 ± 0.07 0.79 ± 0.14 0.83 ± 0.14

Specificity 0.75 ± 0.08 0.76 ± 0.10 0.71 ± 0.11 0.75 ± 0.10

MRI + Neuropsychological data

Accuracy 0.85 ± 0.05 0.85 ± 0.09 0.87 ± 0.06 0.92 ± 0.01

Sensitivity 0.83 ± 0.09 0.86 ± 0.11 0.86 ± 0.11 0.91 ± 0.04

Specificity 0.87 ± 0.06 0.83 ± 0.17 0.87 ± 0.03 0.93 ± 0.03

The performance of the classifier at the time point of the stable diagnosis is also shown.

TABLE 3 | Classification performance in terms of accuracy, sensitivity, and specificity for (CN + sMCI) vs. (pMCI + AD) at the considered time points, using MR images
alone or coupled with neuropsychological measures, with PLS as feature-extraction technique.

24 m before stable diagnosis 18 m before stable diagnosis 12 m before stable diagnosis Stable-diagnosis time point

MRI

Accuracy 0.79 ± 0.07 0.81 ± 0.04 0.81 ± 0.05 0.82 ± 0.04

Sensitivity 0.79 ± 0.07 0.81 ± 0.07 0.83 ± 0.08 0.82 ± 0.07

Specificity 0.78 ± 0.08 0.81 ± 0.07 0.79 ± 0.05 0.81 ± 0.04

MRI + Neuropsychological data

Accuracy 0.81 ± 0.07 0.83 ± 0.12 0.84 ± 0.06 0.85 ± 0.05

Sensitivity 0.82 ± 0.08 0.83 ± 0.10 0.86 ± 0.07 0.87 ± 0.09

Specificity 0.80 ± 0.11 0.83 ± 0.18 0.82 ± 0.10 0.83 ± 0.04

The performance of the classifier at the time point of the stable diagnosis is also shown.

Classification results obtained when using PLS as feature
extraction technique are shown in Table 3. Using only MRI
data, accuracy, sensitivity and specificity of the classification
were 0.79 ± 0.07, 0.79 ± 0.07, and 0.78 ± 0.08, respectively, at
the time point 24 months before stable diagnosis; 0.81 ± 0.04,
0.81 ± 0.07, and 0.81 ± 0.07 at the time point 18 months before
stable diagnosis; 0.81 ± 0.05, 0.83 ± 0.08, and 0.79 ± 0.05 at
the time point 12 months before stable diagnosis. The benchmark
performance of the classifier at the time-zero point of stable
diagnosis was 0.82 ± 0.04 accuracy, 0.82 ± 0.07 sensitivity and
0.81± 0.04 specificity. The performances of the proposed method
resulted to be statistically significant as assessed by means of
permutation tests (p < 0.001). No statistical difference was found
among the performance obtained at the four different time points
(p= 0.76 for accuracy, one-way ANOVA). The p-values (multiple
comparisons for one-way ANOVA) for all the possible binary
combinations of time points are reported in the Supplementary
Table S4.

When using a combination of MRI and neuropsychological
data, accuracy, sensitivity and specificity were 0.81 ± 0.07,
0.82 ± 0.08, and 0.80 ± 0.11, respectively, at the time point
24 months before stable diagnosis; 0.83 ± 0.12, 0.83 ± 0.10, and
0.83 ± 0.18 at the time point 18 months before stable diagnosis;
0.84 ± 0.06, 0.86 ± 0.07, and 0.82 ± 0.10 at the time point
12 months before stable diagnosis. The benchmark performance of
the classifier in terms of accuracy, sensitivity and specificity at the
time-zero point of stable diagnosis was 0.85 ± 0.05, 0.87 ± 0.09,
and 0.83 ± 0.04, respectively. The performances of the proposed

method result to be statistically significant as assessed by means of
permutation tests (p < 0.001). No statistical difference was found
among the performance obtained at the four different time points
(p= 0.88 for accuracy, one-way ANOVA). The p-values (multiple
comparisons for one-way ANOVA) for all the possible binary
combinations of time points are reported in the Supplementary
Table S5.

Furthermore, when comparing –at different time points–
the accuracy of classification obtained using MRI and
neuropsychological data in combination with respect to the
one obtained using MRI alone, no statistical difference was
observed (p = 0.23 at the time point of 24 months before
stable diagnosis; p = 0.65 at the time point of 18 months before
stable diagnosis; p = 0.11 at the time point of 12 months before
stable diagnosis; p= 0.08 at the stable-diagnosis time point).

Making a pairwise comparison (paired-sample t-test) between
the performance obtained using PCA+FDR vs. PLS (for each
time point and for each domain), results show that -at the
5% significance level- the classifier implemented using PLS
performed statistically better (in terms of accuracy) than the
one implemented using PCA+FDR at the time points of 24
and 18 months before stable diagnosis when using MRI alone
(p = 0.03 in both cases). A comprehensive table showing all
pairwise p-values can be found in Supplementary Table S6.

MRI and Neuropsychological Predictors
The voxel-based pattern distribution of MRI differences
found as results of classification between CN + sMCI
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and pMCI + AD are shown in Figures 1–3, for the three
considered time points, respectively (i.e., 24 months before
stable diagnosis, 18 months before stable diagnosis, and
12 months before stable diagnosis). The voxel-based pattern
distribution of MRI differences at the time-zero point of stable
diagnosis is also shown in Figure 4. All patterns were shown
according to the color scale with a threshold of 35%, and
superimposed on a standard stereotactic brain in order to
allow a better localization of the brain regions identified by the
classifier.

FIGURE 1 | Voxel-based pattern distribution of MRI differences between
CN + sMCI and pMCI + AD at the time point 24 months before stable
diagnosis. The pattern is shown according to the color scale with a threshold
of 35%, and superimposed on a standard stereotactic brain.

FIGURE 2 | Voxel-based pattern distribution of MRI differences between
CN + sMCI and pMCI + AD at the time point 18 months before stable
diagnosis. The pattern is shown according to the color scale with a threshold
of 35%, and superimposed on a standard stereotactic brain.

Similarly, the best neuropsychological predictors and
corresponding status/domain/subdomain found for the
classification of (CN + sMCI) vs. (pMCI + AD) for the
considered time-points are reported in Table 4. Findings are
sorted in descending order according to their frequency. The
complete list of best neuropsychological predictors with the
corresponding names as reported in the ADNI data repository
can be found in Supplementary Table S7.

DISCUSSION

The main finding of our work was that, using structural T1-
weighted MRI brain studies and specific neuropsychological
measures, our classifier was able to identify mild-AD patients who
need treatments 24 months before AD definite diagnosis with an
85% accuracy, 83% sensitivity, and 87% specificity (see Table 2,
when considering the method implemented using PCA+FDR).
More interestingly, the performance obtained by our multi-
modal classifier in distinguishing normal subjects (or stable MCI)
from patients who will evolve to AD 24 months before stable
diagnosis is comparable (p > 0.2) to the ones obtained at 18,
12 months before stable diagnosis and, even more important, to
the one obtained at the time of definite diagnosis. Furthermore,
the combined classification approach model outperformed the
other classification considered in this study using single MRI data
(72% classification accuracy, 69% sensitivity, and 75% specificity)
(Table 2, p < 0.05, when considering the method implemented
using PCA+FDR).

Although the discrimination of (CN + sMCI) vs.
(pMCI + AD) is not common in the literature, our results
can be compared with the classification performance of
studies focused on predicting the conversion to Alzheimer’s
dementia. These studies usually limit their attention to the binary
classification of pMCI vs. sMCI. In a recent review considering 30
studies applying ML for the diagnosis of AD using only structural
MRI (Salvatore et al., 2015a), the mean classification accuracy
in discriminating pMCI vs. sMCI was found to be 0.66 ± 0.11.
Another study tried to distinguish AD patients from stable MCI
patients using only structural MRI features (Diciotti et al., 2012).
A classification accuracy of 0.74 was reported (0.72 sensitivity,
0.77 specificity), although they used a private cohort of 21 mild
AD and 30 MCI patients, and the gold-standard diagnosis was
not based on follow-up examinations. Some other studies tried
to automatically classify pMCI vs. sMCI using only MRI features
(e.g., Cui et al., 2011; Koikkalainen et al., 2012; Ye et al., 2012;
Casanova et al., 2013; Peters et al., 2014; Runtti et al., 2014;
Dukart et al., 2015; Eskildsen et al., 2015; Moradi et al., 2015;
Ritter et al., 2015; Salvatore et al., 2015b; Nanni et al., 2016), with
a classification accuracy ranging from 0.51 to 0.75.

To the best of our knowledge, this is one of the few works able
to answer the question whether a multidisciplinary classification
model coupling cognitive, functional and behavioral measures
with structural MRI brain studies is better than a model based
only on structural MRI. Four studies attempted the task of
classifying pMCI vs. sMCI using both structural-MRI features
alone and in combination with neuropsychological measures
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(Cui et al., 2011; Runtti et al., 2014; Dukart et al., 2015;
Moradi et al., 2015). The classification accuracy of these studies
ranges from 0.62 to 0.75 when using structural MRIs alone,
and from 0.62 to 0.82 when using both structural MRIs and
neuropsychological measures, showing a slight improvement (the
mean intra-study improvement was 0.06± 0.04).

Another challenging finding of our study was that patterns of
morphological abnormalities localized in the temporal pole and
medial-temporal cortex might be considered as biomarkers of
clinical progression and evolution (Figures 1–4). These regions

FIGURE 3 | Voxel-based pattern distribution of MRI differences between
CN + sMCI and pMCI + AD at the time point 12 months before stable
diagnosis. The pattern is shown according to the color scale with a threshold
of 35%, and superimposed on a standard stereotactic brain.

FIGURE 4 | Voxel-based pattern distribution of MRI differences between
CN + sMCI and pMCI + AD at the time-zero point of stable diagnosis. The
pattern is shown according to the color scale with a threshold of 35%, and
superimposed on a standard stereotactic brain.

can be already observed at the time point of 24 months before
stable diagnosis (Figure 1). When considering the subsequent
time points (Figures 2–4), the voxel-based pattern distribution
of MRI-related neurodegeneration is similar to that one at
24 months before stable diagnosis, but progressively more
extended, which could be a consequence of a more advanced
process of structural neurodegeneration. There is an increasing
interest proven by literature in understanding progression-
related brain changes using structural MRI, describing an
association between progression and atrophy, especially of the
parietal and posterior cingulate regions, extending into the
precuneus and medial temporal regions including hippocampus,
amygdala, and entorhinal cortex. This pattern of progression-
atrophy association is even evident at mild stages of cognitive
impairment. The purpose of our work is out from explaining
mechanisms behind the structural pattern distribution related to
MRI images of different stages of disease progression. However,
the progressive pattern seems to be consistent with Braak
pathological studies (Braak and Braak, 1991), showing that
during the development of AD pathology, tau tangles increase,
associated with synapse loss and neurodegeneration.

Finally, we demonstrated that some cognitive, functional,
and behavioral measures emerged as best predictors for
AD progression. These include measures of functional
abilities, memory and learning, working memory, language,
visuoconstructional reasoning, and complex attention (see
Table 4). More specifically, the best neuropsychological
predictors for the classification of (CN + sMCI) vs. (pMCI +AD)
at the time point of 24 months before stable diagnosis include
measures of functional abilities, memory and learning, working
memory, and language. When considering the subsequent time
points, involved domains are similar to the ones at 24 months
before stable diagnosis. Interestingly, some of the sub-scores
obtained through the administration of the FAQ (domain:
functional abilities) and AVLT (domain: memory and learning)
are always selected as best neuropsychological predictors at all
the considered time points. Moreover, it must be noted that the
best neuropsychological predictors at the time point of stable
diagnosis include only measures from these two tests, which
could be a consequence of a more advanced impairment in
these two domains. Neuropsychological assessment can be time
intensive, and the experience of practitioners can impact on the
reliability and efficiency of the assessment. Our results can help
the work of clinicians in optimizing the choice of cognitive tests
to be administered at no costs for effectiveness. In a previous
study of our group, Battista et al. (2017) demonstrated that it is
possible to use a selected subset of neuropsychological measures
to automatically diagnose AD patients with an accuracy of 90%.

It should be underlined that -in the present study- most of the
best neuropsychological predictors at the time point of 24 months
before stable diagnosis are components of the AVLT or partial
scores of FAQ related to learning and verbal episodic memory
or prospective memory. These findings may confirm that the best
neuropsychological predictors of conversion from amnestic MCI
to AD are tests of episodic memory, as recently pointed out by
Gainotti et al. (2014). Furthermore, also in the above-cited paper
by Battista et al. (2017) the subset of selected neuropsychological
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TABLE 4 | Best Neuropsychological predictors and corresponding status/domain/subdomain found for the classification of (CN + sMCI) vs. (pMCI + AD).

Time point Neuropsychological predictor Status/domain/subdomain
of predictor

24 months before
stable diagnosis

Ability in remembering appointments, family occasions, holidays, medications in FAQ
Ability in writing checks, paying bills, or balancing checkbook in FAQ
Ability in assembling tax records, business affairs in FAQ
Total score of trial 5 in AVLT
Ability in keeping track of current events in FAQ
Total intrusions of trial 1 in AVLT
Correct answers in the Backwards task in Digit-Span Test
Correct answers in Vegetables task in Category Fluency Test
Correct answers after a 30-min delay in AVLT

Functional abilities
Functional abilities
Functional abilities
Memory and learning
Functional abilities
Memory and learning
Working memory
Language
Memory and learning

18 months before
stable diagnosis

Ability in writing checks, paying bills, or balancing checkbook in FAQ
Ability in remembering appointments, family occasions, holidays, medications in FAQ
Total score of trial 3 in AVLT
Total score of trial 5 in AVLT
Total score of trial 6 in AVLT
Ability in assembling tax records, business affairs in FAQ
Ability in traveling, driving, or arranging to take public transportation in FAQ
Presence of the two hands in CLOCK test
Ability in shopping alone for necessities in FAQ
Ability in keeping track of current events in FAQ
Total score of FAQ
Total of trial 4 in AVLT
Spontaneously given correct responses in BNT
Corrected responses following phonemic cues in BNT
Symmetry of number placement in CLOCK test
Presence of the two hands, set to ten after eleven in CLOCK test
Time to complete Part A of the test in TMT
Time to complete Part B of the test in TMT
Correct answers after a 30-min delay in AVLT
Recognition errors in AVLT

Functional abilities
Functional abilities
Memory and learning
Memory and learning
Memory and learning
Functional abilities
Functional abilities
Visuoconstructional reasoning
Functional abilities
Functional abilities
Functional abilities
Memory and learning
Language
Language
Visuoconstructional reasoning
Visuoconstructional reasoning
Complex attention
Complex attention
Memory and learning
Memory and learning

12 months before
stable diagnosis

Ability in writing checks, paying bills, or balancing checkbook in FAQ
Ability in remembering appointments, family occasions, holidays, medications in FAQ
Total of trial 3 in AVLT
Number of correct responses following a phonemic cue in BNT
Ability in assembling tax records, business affairs in FAQ
Ability in shopping alone for necessities in FAQ
Ability in traveling, driving, or arranging to take public transportation in FAQ
Total score of FAQ
Total of trial 4 in AVLT
Total of trial 5 in AVLT
Total correct answers after a 30-min delay in AVLT
Total of trial 6 in AVLT
Ability in keeping track of current events in FAQ
Ability in paying attention to and understanding a TV program, book, or magazine in FAQ
Total score of the CLOCK test

Functional abilities
Functional abilities
Memory and learning
Language
Functional abilities
Functional abilities
Functional abilities
Functional abilities
Memory and learning
Memory and learning
Memory and learning
Memory and learning
Functional abilities
Functional abilities
Visuoconstructional reasoning

Time-zero point of
stable diagnosis

Ability in writing checks, paying bills, or balancing checkbook in FAQ
Total score of FAQ.
Total of trial 4 in AVLT
Ability in remembering appointments, family occasions, holidays, medications in FAQ
Ability in paying attention to and understanding a TV program, book, or magazine in FAQ
Ability in traveling out of the neighborhood, driving, arranging to take public transportation in FAQ
Ability in assembling tax records, business affairs, or other papers in FAQ
Ability of the subject in preparing a balanced meal in FAQ
Total of trial 6 in AVLT
Ability in playing a game of skill such as bridge or chess, working on a hobby in FAQ
Correct answers after a 30-min delay in AVLT

Functional abilities
Functional abilities
Memory and learning
Functional abilities
Functional abilities
Functional abilities
Functional abilities
Functional abilities
Memory and learning
Functional abilities
Memory and learning

Results are reported for the three considered time points (i.e., 24 months before stable diagnosis, 18 months before stable diagnosis, and 12 months before stable
diagnosis) and for the time-zero point of stable diagnosis. Best neuropsychological predictors are sorted in descending order according to their frequency (the frequency
of that measure in all loops). The status/domain/subdomain corresponding to the neuropsychological predictor is also reported.

measures able to automatically diagnose AD patients was mainly
composed of measures related to episodic memory (namely,
scores and subscores of AVLT, Logical Memory Test and

Alzheimer’s Disease Assessment Scale-Cognitive Behavior) and
measures addressing functional abilities in daily life (namely,
total score and subscores of FAQ).
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With respect to the numerous other ML methods proposed
for the automatic classification of AD patients by means of brain
MRI images (Cuingnet et al., 2011; Salvatore et al., 2015a), our
approach has several points of strength.

Firstly, we validated our data on a large, multi-center
independent cohort study, namely the ADNI public database.
The use of large, public cohorts for training machine-learning
classifiers allows a higher generalization ability than using
private cohorts, which are often obtained from single-center
studies. Moreover, the use of public databases is crucial for the
comparison of the classification performance of different studies
(Cuingnet et al., 2011), which is not recommended for studies
using different private inhomogeneous cohorts. Mainly because
of these reasons, in the last few years, the use of large, public data
repositories is becoming more frequent in the field of ML applied
to neuroimaging data, as reported in a recent review (Salvatore
et al., 2015a). However, to date this is not a standard practice, and
several studies still make use of private cohorts.

A second point of strength is that our algorithm requires a
limited number of imaging studies to be trained, nearly a hundred
studies per diagnostic class. This point is particularly important
if considered with respect to the new classification approaches
that are recently emerging as state-of-the-art techniques in
the computer-vision community, namely deep-learning. These
techniques have proven to be high performing in most automatic-
classification tasks (Sharif Razavian et al., 2014), but their
application in medicine, in particular in the neuroimaging field,
is still limited. This is due to the requirement of at least a
thousand of imaging studies per diagnostic class in order to
reduce overfitting problems.

The third point of strength is the ability of our classification
algorithm to return the best MRI and neuropsychological
predictors, that is, the most important structural-brain patterns
and neuropsychological scores for distinguishing the two
diagnostic classes. Specifically, these predictors can be interpreted
as early signs of the disease, and thus be used as surrogate
biomarkers of AD. In the case of structural-MRI predictors,
this may be particularly useful in monitoring the course of the
neurodegeneration or the efficacy of a treatment.

Another advantage of our classification algorithm is that data
used as input can be collected in a single examination session
following routinely clinical protocols (T1-weighted MRI on 1.5T
systems) and non-invasive and inexpensive measures obtained
through the administration of standard neuropsychological tests.

Lastly, with respect to the use of structural MRI volumes, it
must be noted that our classification algorithm does not require
any interaction or pre-processing by the neuroradiologists on the
original acquired images. This helps avoiding any issue arising
from inter- and intra-operator inhomogeneities.

From a methodological point of view, we must underline two
further points of strength. The first is the number of features used
for training the classification algorithm, which was lower than
the number of subjects in the two classes. This practice is useful
as it prevents any curse-of-dimensionality issue. The second is
the independence between neuropsychological measures used as
features and measures used as gold standard to perform the
original classification in the four diagnostic groups (AD, pMCI,

sMCI, and CN). This practice warrants the avoidance of double-
dipping in the classification process (Kriegeskorte et al., 2009).

However, we should also recognize some limitations of our
work:

Limited Generalization Ability and Reliability. Further
investigations are needed in order to assess the generalization
ability and reliability of our multimodal MRI/cognitive-based
classifier, and its applicability at an individual subject level.
Our results are based on subjects in the United States and
Canada, thus validation studies including subjects from other
regions worldwide are lacking. Moreover, our predictive results
have been obtained by a cross-validation approach using these
subjects, and this may not accurately generalize our findings to a
general population. We have used an SVM classifier since it offers
different advantages, for example, is particularly appropriate for
non-linear and big data such as whole-brain MRI images, also
in combination with data from other modalities (e.g., biological
and neuropsychological data). However, in order to confirm our
results, we should have used more classifiers among the variety
of ML methods already validated for automatic classification
of medical images, e.g., Artificial Neural Networks, Linear
Discriminant Analysis, regression models, Bayesian approaches,
Decision Trees, and Random Forests.

Limited Clinical Questions. In this work we developed a
predictive model able to address CN and sMCI subjects to
a different therapeutic option with respect to pMCI and AD
subjects. Our approach cannot be used for screening patients for
specific AB or tau target drug clinical trials.

Approximately 27% of subjects meeting clinical inclusion
criteria for mild-AD were found Ab-negative, thus, our
multimodal classifier does not allow to avoid variance into
analyses due to these patients. Aβ-negative mild-AD subjects are
not expected to progress clinically on the expected trajectory,
adding variance into analyses where a slowing of progression is
being measured. Clinical trials of putative therapeutics for AD
should use a baseline measure of brain Aβ or tau as an inclusion
criterion, such as PET amyloid studies, even if a recent work
demonstrated that measuring Aβ status from MRI scans in mild-
AD subjects is possible and may be a useful screening tool in
clinical trials (Tosun et al., 2016).

Limited Neuropsychological Predictors. Our work considered
neuropsychological scores and sub-scores obtained from seven
neuropsychological tests as candidate predictors. Whilst this
offered a certain amount and details of information on different
cognitive domains (a total of 64 scores were used as input data) as
well as on behavioral and functional status, many other measures
coming from other tests were excluded from our analysis only
because not available for all the considered subjects. This limits
our findings. A best accuracy in the prediction model could be
achieved by using more neuropsychological measures (selected
on the basis of their classification performance).

Limited Dynamic View of the Disease Progression. This study
lacks of a dynamic view of the disease progression in terms
of linking the imaging data between different time points.
Although the different patterns of cerebral changes in AD/MCI
over several time points have been compared in this paper,
the proposed analysis was cross-sectional in nature at each
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time point, thus not investigating cross-time-point relationships
with the predictive models. This would be a fundamental step
for advancing our knowledge about neuropathological staging
of Alzheimer-related changes. However, it should be kept in
mind that in the last 10 years a plethora of longitudinal
studies have provided consistent evidence on the evolution
of neurodegenerative changes in AD brain. Recent advances
in molecular neuroimaging have greatly facilitated our ability
to detect neurodegenerative pathology in vivo, particularly in
the very early stages of AD. As recently reviewed by Sperling
et al. (2014), the inexorable progression of neurodegeneration
characterizing patients with AD begins well more than a decade
prior to the stage of clinically detectable symptoms. Amyloid-β
(Aβ) accumulation may be evident 20 years before the stage of
dementia, whilst substantial neuronal loss became evident by the
stage of MCI. The challenge in this new era of neuroimaging
application on AD is to demonstrate the real role played
by the first hallmark of AD: Aβ accumulation. The general
opinion is that Aβ is necessary, but not sufficient in isolation,
to predict imminent decline along the AD trajectory. For this
reason, structural neuroimaging can be useful for increasing
the accuracy of automated diagnostic methods. Overall Aβ

accumulation begins in the temporal cortex in very early AD
phases, promoting dysmetabolism and neural losses. In the next
phases, pathological changes move toward associative neocortex,
mainly including orbitofrontal cortex, precuneus and prefrontal
cortex, finally reaching the primary motor system along the AD
trajectory. Our findings are thus in agreement with the well-
known neurodegenerative staging of AD brain.

Limited Prediction Over the Course of Disease. In this study
we were not able to establish if predicting progression to AD
of MCI patients could be possible even at an earlier time than
the 24 months prior to the definite diagnosis, since the number
of subjects provided by ADNI with an entire multimodal set of
measures and with a longer follow up that 24 months is not
sufficient for training-and-classification purposes.

Our classifier has been trained on measures of cognitive
impairment obtained through clinically administered
neuropsychological-test predictors. Thus, with this
configuration, it cannot be used for screening presymptomatic
subjects. However, in principle, our classifiers could be trained
even over a different set of cognitive/behavioral and functional
data, measured during daily life of CN subjects in order to
capture domains that are affected first by the disease, eventually
combined with their MRI brain studies in order to detect
very subtle brain changes and on biological CSF with proper
established cut points.

As pointed out in a recent review by ADNI (Weiner et al.,
2017), longitudinal studies aimed at the early diagnosis and
prognosis of AD are able to increase the power of clinical trials, as
they can help in the selection of trial participants likely to decline.
In these studies, the use of ML algorithms has been proved
effective to measure surrogate diagnostic biomarkers, especially
in challenges involving MCI subjects, but have been poorly
validated for detecting the power of measures of longitudinal
changes over time as surrogate predictive biomarkers of the
disease.

In our study we demonstrated that it is possible to predict
the conversion of MCI to probable AD up to 24 months
before the definite diagnosis. Although better suited to trials
of treatments aiming to repair brain tissue rather than clear
Aβ, our approach may improve the feasibility of clinical trials
by reducing costs and increasing the power to detect disease
progression.

In conclusions, to our knowledge, this is one of the few
works able to answer the question whether a multidisciplinary
classification model coupling cognitive, functional and behavioral
measures with structural MRI brain studies is better than a
model based on structural MRIs alone. Since T1-weighted MRI
scans are acquired routinely in clinical trials for other purposes
and neuropsychological assessment can be easily performed
to complement routine clinical trials, our multimodal pMCI
classifier might be useful as a screening tool that could be applied
to reduce the number of non-progressive subjects not to be
treated.
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