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Background: Mild Cognitive Impairment (MCI) and dementia differ in important ways

yet share a future of increased prevalence. Separating these conditions from each other,

and from Subjective Cognitive Impairment (SCI), is important for clinical prognoses

and treatment, socio-legal interventions, and family adjustments. With costly clinical

investigations and an aging population comes a need for more cost-efficient differential

diagnostics.

Methods: Using supervised machine learning, we investigated nine variables extracted

from simple reaction time (SRT) data with respect to their single and conjoined

ability to discriminate both MCI/dementia, and SCI/MCI/dementia, compared to—and

together with—established psychometric tests. One-hundred-twenty elderly patients

(age range = 65–95 years) were recruited when referred to full neuropsychological

assessment at a specialized memory clinic in urban Sweden. A freely available

SRT task served as index test and was administered and scored objectively by a

computer before diagnosis of SCI (n = 17), MCI (n = 53), or dementia (n = 50). As

reference standard, diagnosis was decided through the multidisciplinary memory clinic

investigation. Bonferroni-Holm corrected P-values for constructed models against the

null model are provided.

Results: Algorithmic feature selection for the two final multivariable models was

performed through recursive feature elimination with 3 × 10-fold cross-validation

resampling. For both models, this procedure selected seven predictors of which five

were SRT variables. When used as input for a soft-margin, radial-basis support vector

machine model tuned via Bayesian optimization, the leave-one-out cross-validated

accuracy of the final model for MCI/dementia classification was good (Accuracy= 0.806

[0.716, INS [0].877], P < 0.001) and the final model for SCI/MCI/dementia classification
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held some merit (Accuracy = 0.650 [0.558, 0.735], P < 0.001). These two models are

implemented in a freely available application for research and educatory use.

Conclusions: Simple reaction time variables hold some potential in conjunction with

established psychometric tests for differentiating MCI/dementia, and SCI/MCI/dementia

in these difficult-to-differentiate memory clinic patients. While external validation is

needed, their implementation within diagnostic support systems is promising.

Keywords: cognitive impairment, dementia, elderly patients, simple reaction time variables, supervised machine

learning

INTRODUCTION

Whether abnormal cognitive decline in an elderly individual is
diagnosed as mild cognitive impairment (MCI) or dementia,
has profound impact on the clinical prognosis, socio-legal
interventions, patient self-image, and family adjustments (Ernst
andHay, 1994; Boustani et al., 2003; Ferri et al., 2005;Wimo et al.,
2013). The proportion of the population that have dementia is
predicted to increase, which apart from the individual suffering
also increases the burden on society (Ferri et al., 2005; Wimo
et al., 2013). Dementia is characterized by major cognitive
decline and problems with activities of daily living (ICD-10)1

In contrast, MCI entails minor cognitive decline (Petersen
et al., 2001), preserved autonomy in daily functioning (Gauthier
et al., 2006), and considerable heterogeneity with diverse clinical
manifestations and diverging trajectories regarding somatic and
cognitive profiles (Ritchie et al., 2001; Winblad et al., 2004).
Although associated with increased risk for developing dementia
(Winblad et al., 2004), many diagnosed with MCI remain stable
over several years and some even recover (Gauthier et al.,
2006). Given the expected growth of these diagnostic groups
and the costly diagnostic procedure, more efficient tools for
differentiating between MCI and dementia are needed (Boustani
et al., 2003).

Diagnostic differentiation of individuals with normal
aging, MCI, and dementia is an essential decision made
by a primary care physician or, in the more difficult cases,
by a multidisciplinary team at a secondary care center
(memory clinic). At the memory clinic, a geriatrician
usually decides what additional examinations are needed
in addition to those already performed in primary care.
The most difficult-to-differentiate cases are remitted to
a neuropsychologist (Lezak et al., 2012) who regularly
performs full neuropsychological assessment (Woodward
and Woodward, 2009). A number of these patients show
subjective signs of memory impairment but do not fulfill the
diagnostic criteria for MCI or dementia. These patients are
accordingly labeled with Subjective Cognitive Impairment
(SCI). Patients with SCI perform normally in the memory
clinical investigation and on psychometric tests, yet they have
a heightened risk for developing dementia (Jessen et al., 2014).

1ICD-10 Classifications of Mental and Behavioral Disorders. Clinical Descriptions
and Diagnostic Guidelines. Available online at: http://apps.who.int/classifications/
icd10/browse/2010/en

Full neuropsychological assessment comes with major costs,
and there is a need for cost-efficient diagnostic instruments that
differentiate in the cognitive borderland between SCI, MCI, and
dementia.

The speed and consistency by which we humans process
information seem to hold underused diagnostic potential
for these patients. The simplest and most widely studied
quantification of these cognitive functions is reaction time
(Donders, 1969). Reaction time performance reflects basic,
bottom-up information processing efficiency, is associated with
higher-order cognitive functions (Jensen, 1998; Woodley et al.,
2013), and constitutes a proxy for general mental ability
(psychometric intelligence) (Jensen, 2006). Simple reaction
time (SRT) is the most basic reaction time task, as it only
involves one type of response to one type of stimulus. SRT
has been described as a relatively pure measure of attention
and psychomotor speed, compared to more complex reaction
time tasks which in addition also tap inhibitory control and
other executive functions (Jensen, 1998). Reaction time variables
of central tendency (such as mean, median) have been found
to either significantly differ, or to successfully differentiate,
between patients with MCI and healthy controls (Dixon et al.,
2007; Gorus et al., 2008; Cherbuin et al., 2010; Fernaeus
et al., 2013), Alzheimer’s disease (AD) and controls (Baddeley
et al., 2001; Gorus et al., 2008; Frittelli et al., 2009; Bailon
et al., 2010), AD and MCI (Gorus et al., 2008; Frittelli et al.,
2009; van Deursen et al., 2009), and non-AD dementia vs.
controls (Bailon et al., 2010). More severe neuropathology is
consistently indicated by slower and more variable reaction
time performance. Compared to reaction time central tendency,
reaction time dispersion (variability) has been put forth as
particularly sensitive for neural integrity (Hultsch et al., 2002;
MacDonald et al., 2008), found to have a dose-response
relationship with central nervous system functioning (Burton
et al., 2006), and for differentiating amnesic-MCI and AD from
healthy controls (Burton et al., 2006; Gorus et al., 2008). Reaction
time variability also seems particularly sensitive to cognitive
decline (Dixon et al., 2007; Gorus et al., 2008), and for separating
MCI from dementia (Tales et al., 2012). Given this previous
research, decline in themore basic bottom-up cognitive processes
tapped by SRT may provide predictive power for diagnostic
accuracy regarding these patients in addition to established
psychometric tests which are predominantly designed to tap
higher-order cognitive processes such as memory (Lezak et al.,
2012).
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Aside from the more established measures of reaction time
central tendency and dispersion, additional variables extracted
from reaction time data (in italics below) might prove useful
for differentiating SCI, MCI, and dementia. Sustained attention
through deliberately long administrations with >100 individual
reaction time items has been found to differentiate healthy
controls from AD (Hellström et al., 1989), and slower reaction
time during prolonged administration differentiated MCI from
healthy controls (Fernaeus et al., 2013). On the other hand,
shorter administrations may also be able to separate patient
subgroups, for example with only 10 items (Frittelli et al., 2009).
Other variables involving specific parts of the marginal density
distribution of reaction time responses can be extracted through
fitting the Ex-Gaussian function to the marginal reaction time
frequency distribution for each individual and calculating the
Ex-Gaussian parameters mu, tau, and sigma. Reaction time
data is typically positively skewed (Der and Deary, 2003; van
Ravenzwaaij et al., 2011). The majority of fast responses to the
left of the reaction time distribution thus fit the Gaussian part
(extractedmu and sigma), and the few slow responses to the right
of the reaction time distribution fit the exponential part (tau) of
the hybrid Ex-Gaussian function (Whelan, 2008) where the latter
seem to have specific relevance for attentional lapses (Unsworth
et al., 2010). Theworst performances and best performancesmight
also convey relevant information about cognition, seemingly
capturing lapses of attention and peak performance, respectively.
The Worst Performance Rule hypothesis suggests that worst
performances on multi-trial tasks are superiorly indicative
of general cognitive ability (Coyle, 2003), and hereby also
contradicts classical test theory which instead posits that best
performances better capture general cognitive ability (Crocker
and Algina, 1986).

The present study sought to evaluate the range of extractable
reaction time variables for diagnostic differentiation of SCI, MCI,
and dementia. This rendered some specific study design choices
worth mentioning in advance. Slower and more variable reaction
times are associated with normal aging (Anstey, 1999; Hultsch
et al., 2002; Luchies et al., 2002; Deary et al., 2011), lower
intelligence (Jensen and Munro, 1979; Deary et al., 2001; Der
and Deary, 2003; Woodley et al., 2013), and female sex (Der
and Deary, 2006). For diagnostic instruments to be applicable
in clinical practice they should be robust against—or control
for—such potential confounds. Previous data shows that complex
reaction time is more influenced by normal aging (Baddeley
et al., 2001; Luchies et al., 2002; Anstey et al., 2005; Der and
Deary, 2006; Deary et al., 2011), intelligence (Vernon and Jensen,
1984; Deary et al., 2001), and sex (Der and Deary, 2006), than
SRT. Therefore, by parsimony, SRT was favored for the present
study. We also employed the Deary-Liewald Reaction Time
Task (D-LRTT), a freely available computer program that was
validated in 2011 by its constructors (Deary et al., 2011) and
has since been used with similarly aged samples (Prado Vega
et al., 2013; Vaughan et al., 2014). The D-LRTT constructors
claim that it is capable of measuring reaction time accurately with
general purpose computers (Deary et al., 2011). The D-LRTT
therefore seems ideal for cost-efficient diagnostics and broad
clinical applicability. To the extent of our knowledge, this is also

the first use of the D-LRTT for differentiating SCI, MCI, and
dementia. See the Methods section for further details on the
D-LRTT.

Based on the above summary of previous research on reaction
time and age-related cognitive decline (Crocker and Algina, 1986;
Hellström et al., 1989; Jensen, 1998, 2006; Baddeley et al., 2001;
Hultsch et al., 2002; Coyle, 2003; Der and Deary, 2003; Burton
et al., 2006; Dixon et al., 2007; Gorus et al., 2008; MacDonald
et al., 2008; Whelan, 2008; Frittelli et al., 2009; van Deursen et al.,
2009; Bailon et al., 2010; Cherbuin et al., 2010; Unsworth et al.,
2010; van Ravenzwaaij et al., 2011; Tales et al., 2012; Fernaeus
et al., 2013; Woodley et al., 2013), we hypothesized that (1)
SRT variables would display the overall pattern of dementia >

MCI > SCI, (2) that SRT variables would differentiate diagnostic
groups comparably to clinical variables when used as predictors
by themselves and conjointly with established psychometric
tests commonly used in neuropsychological assessment, and (3)
compared to single-predictor modeling, multivariate modeling
would result in improved differential diagnostic accuracy.

METHODS

Prospective Design
The present study design conforms to the The Standards
for Reporting of Diagnostic Accuracy when evaluating novel
diagnostic instruments (Bossuyt et al., 2003). SRT data was
anonymized before being gathered, through the patient receiving
a code directly in the D-LRTT software from the clinician that
started the test. The D-LRTT result was thereafter automatically
registered by the computer. Other neuropsychological tests
were then administered, and diagnosis was thereafter decided.
The assessing neuropsychologist administered and scored the
established neuropsychological tests as part of the reference
standard (Memory clinic investigation), except for the Mini
Mental State Examination (MMSE) (Folstein et al., 1975;
Palmqvist, 2011).

Patients and Clinical Setting
Data was collected from 23rd October 2015 to 7th of October
2016 at the Bromma geriatric hospital’s memory clinic in
the western part of Stockholm, Sweden. Consecutive patients
remitted to neuropsychological assessment with “subjective
cognitive disorder” (International Statistical Classification of
Diseases and Related Health Problems-Tenth Revision [ICD-10:
R41.8A])1 were eligible for inclusion. One patient aborted the
reaction time task, seven had incomplete reaction time data, one
had inconclusive diagnosis, and were excluded. The final sample
consisted of 120 patients (17 SCI, 53 MCI, and 50 dementia).

Index Test (D-LRTT)
The D-LRTT presents each SRT item as a black “X” visible inside
a white box in the center of an otherwise darkblue computer
screen. The screen was displayed at armslength from the sitting
patient. Patients responded to items by quickly pressing the
keyboard Space bar with the index finger of their preferred
hand and releasing it swiftly. The D-LRTT registered 107 correct
item responses corresponding to approximately 5min of testing
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(estimated before study start). Item error presets were ≥150ms
for the lower and ≤1,500ms for the upper bound. Answers
within these bounds were considered correct. Inter-item delay
was randomized within 1,000–3,000ms. Instructions focused on
vigilance and speed. The single fastest and slowest responses
were deleted to limit outlier influence (e.g., Coyle, 2003). This
rendered a 105 item run (5-minute condition) from which we
also extracted an abbreviated run including the first 21 items
(1-minute condition) for each patient. The three Ex-Gaussian
variables mu (µ), sigma (σ), and tau (τ ) were extracted from the
distribution of the 105 responses. Respectively, µ and σ signifies
the mean and standard deviation of the Gaussian component
(the peak and spread of the “hill” to the left in a reaction time
distribution), while τ is the mean of the exponential component
(the “long tail” to the right of the same distribution) of the Ex-
Gaussian function. The Worst Performance rule variables were
constructed through ordering the 105 responses from worst to
best, creating quintile bins with 21 items per bin, and calculating
the median of the worst (WP1) and best (WP5) performance
bins. Together with the arithmetic mean and dispersion variables
extracted from both the first minute of testing (SRTS) and the
full 5min testing (SRT), this rendered a total of nine different
SRT variables evaluated for diagnostic accuracy. See Table 1 for
details.

Reference Standard (Memory Clinic
Investigation)
All patients were referred from a primary care facility after
their basal dementia examination, which included anamnesis,
evaluation of physical and psychological status, blood sampling,
a Computer Tomography (CT) scan, a clock test, and the MMSE.
The memory clinic investigation that followed is an accepted
reference standard for clinical classification of SCI, MCI, and
dementia (Appels and Scherder, 2010). In Sweden, it consists
of standardized examinations over several days performed
by a multiprofessional team of clinicians. The investigation
began with the geriatric examination including anamnesis and
neurological/affective/cognitive screening. Thereafter, additional
interventions were decided by the geriatrician (Activities of
Daily Living evaluation, Neuropsychological assessment, lumbar

TABLE 1 | Description of the nine Simple Reaction Time (SRT) predictor variables

gathered from each patient and used for diagnostic differentiation.

Variable abbreviation Description

SRTS-mean Mean of the first 21 item responses

SRTS-sd Standard deviation of the first 21 item responses

SRT-mean Mean of the 105 item responses

SRT-sd Standard deviation of the 105 item responses

SRT-µ Mean of the Ex-Gaussian fast responses

SRT-σ Standard deviation of the Ex-Gaussian fast responses

SRT-τ Mean of the Ex-Gaussian slow responses

SRT-WP1 Median of the 21 fastest item responses

SRT-WP5 Median of the 21 slowest item responses

Mean is the arithmetic mean. Error responses defined as either ≤150 or ≥1,500ms were

automatically excluded by the D-LRTT software.

puncture (LP), structural (CT or MRI), or functional (EEG)
neuroimaging. A MMSE score of ≥24 was normally required for
neuropsychologist referral. All included patients performed the
neuropsychological assessment. This involved an approximately
120min long, tailored battery of validated neuropsychological
tests for assessing cognitive dysfunction typically associated
with elderly cognitive decline. There was a brief, scheduled
pause halfway through the assessment. The reference standard
test battery included five subtests from the 4th version of
the Wechsler Adult Intelligence Scale (WAIS-IV): Arithmetic
(AR), Digit Span (DS), Information (IN), Block Design (BD),
Similarities (SI), two subtests from the Delis-Kaplan Executive
Function System (D-K EFS): Trail Making Test (TMT), Verbal
Fluency (VF). The battery also included Logical Memory (LM)
from the 3rd version of the Wechsler Memory Scale (WMS-
III), Rey Auditory Verbal Learning Test (RAVLT), Rey-Osterrieth
Complex Figure Test (RCFT), Boston Naming Test-60 item
version (BNT-60), Luria Clocks, and Figure Copying. At the
subsequent diagnostic conference, the clinical team decided
formal diagnosis according to the ICD-10. The Petersen’s
diagnostic criteria (Petersen, 2004) were used in conjunction with
ICD-10: F06.7 for MCI, and corresponding ICD-10 subtypes for
dementia1.

Select Parts of the Reference Standard
Since cost-efficiency is a crucial goal of the present study,
only two variables from the neuropsychological assessment
standard were selected for predictive evaluation (DS total
score and RAVLT total learning). These two established test
variables influenced the final diagnosis yet were selected so
that this influence was only minor (>100 variables from >20
psychometric tests are used for final diagnosis). With that said,
DS and RAVLT had a slight advantage to the index SRT test
result since the latter was neither allowed diagnostic influence
nor available for clinicians to survey before formal diagnosis.
Unadjusted raw scores were used for all psychometric tests,
except for the premorbid full-scale intelligence estimate (IN
FSIQ). IN FSIQ is commonly used as a proxy for premorbid IQ
because the cognitive functions it measures (semantic, aquired
knowledge, and verbal reasoning) are considered robust to early
cognitive impairment (Lezak et al., 2012). Accordingly, the raw
score on IN was not used. The IN raw scores were instead
translated to the age-adjusted WAIS-IV norm and are reported
herein as T-scores with mean= 50 and sd= 10.

The Predictor Set
The full 11 predictor set included the 9 SRT variables, DS, and
RAVLT.

Basic Statistics
We report descriptive data by diagnostic group and total
sample in mean (sd) or count (%). Since the purpose of the
paper was pure prediction, we kept data as raw as possible,
rather than applying transformations seeking to normalize
that which is inherently non-normal. Consequently, we also
used mostly non-parametric inferential tests. We applied
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the Kruskal-Wallis rank sum test, and the Pearson Chi-
square test (or Fisher’s exact test with its Fortran extension
as appropriate) for continuous and categorical variables,
respectively. If significant, these were respectively followed
up with either post-hoc Dunn tests, or Chi-square/Fisher
tests for each pair of diagnostic groups. P-values from post-
hoc testing are Bonferroni-Holm corrected due to multiple
comparisons (Holm, 1979). We set statistical significance
to 5%, and report 95% confidence intervals with point
estimates.

Predictive Modeling
Diagnostic accuracy of the 11 variables (now treated as
predictors) was investigated with a supervised machine learning
approach (Jordan and Mitchell, 2015). Pseudorandomization
with a constant starting seed was used throughout to ensure
reproducibility. Because there were relatively few cases compared
to variables, Support Vector Machines (SVM) were chosen
(Boser et al., 1992; Cortes and Vapnik, 1995). SVMs are
a flexible group of models that typically perform well on
classification problems with relatively few samples (patients)
compared to the number of dimensions (variables). Specifically,
we employed a soft margin SVM with a non-linear (radial basis)
kernel (Boser et al., 1992; Cortes and Vapnik, 1995). A soft
margin SVM allows for spatial overlap between classes across
the separator hyperplane when fitted to data using the few
closest datapoints with opposite class labels (support vectors)
so that the margin between them is maximized. For tuning the
hyperparameters of the SVM, we first initiated 10 instances of
random hyperparameter settings as initial training. For each of
these training iterations, the Cost-function (degree of spatial
overlap between classes) was allowed to vary between log −5
and log 15, and Sigma (the radial basis kernel hyperparameter)
to vary between log −10 and log 5. Thereafter, we fed these
hyperparameter settings with their corresponding performance
to the Bayesian optimization procedure, and tuning of the
hyperparameters was continued (Bilj et al., 2016; Shahriari et al.,
2016). Bayesian optimization ran for 40 additional training
iterations with the upper bound of the Gaussian process as
acquisition function. As Gaussian process kernel we used the
squared exponential (Yan, 2016).

During feature selection and model estimation we applied
cross-validation (CV), albeit two variants of it separately. To
ensure that we did not overfit during feature selection prior to
building the final multivariable models, we applied resampled
recursive feature elimination optimized on classification
accuracy. Recursive feature elimination is an iterative greedy
algorithmwhich prunes away the lowest ranking features one at a
time until the optimal set of features are found (Kohavi and John,
1997; Guyon et al., 2002). This recursive feature elimination
was resampled with three stochastic repeats of 10-fold CV (3 ×

10-fold CV). The basis of repeated n × 10 CV is the same as one
pass of regular 10-fold CV but then repeated n additional times
on the same data with all observations randomly assigned to the
10-folds per each pass. The result is then averaged just as for one
pass of regular CV.

For hyperparameter tuning and parameter estimation of
the two final multivariable models, we again optimized
on classification accuracy but instead applied leave-one-
out CV. The best performing tuning setting was then
used for the final model which was fitted to the whole
dataset and model performance was calculated. Although
we would have preferred to use 10-fold CV throughout
with additional model validation with unseen (hold-out) data
(Wallert et al., 2017b), the moderate sample size suggested
leave-one-out CV as a useable option (Hastie et al., 2009;
Månsson et al., 2015). The bias-variance tradeoff also suggested
leave-one-out CV over 10-fold CV insofar that the former
has lower bias than the latter. For the hyperparameter
tuning part, there remained a chance for overfitting (see the
section Discussion regarding the need for external model
validation).

For both classification problems (MCI/dementia;
SCI/MCI/dementia), we estimated (a) crude models for
each of the 11 predictors separately, and (b) the final two
multivariable models which only included the predictors selected
by recursive feature elimination. Accuracy with 95% CIs was
used as the main performance metric throughout. For each of
the two final models, we also report the sensitivity, specificity,
positive/negative predictive value, and the confusion matrices
result. We examine the pretest probabilities and posttest
probabilities for these two final models and exemplify the clinical
use of the three-class model with a hypothetical new patient.
Finally, we implement the final models in an online decision
support system (see the Results section for details).

Software
Data was prepared in Excel 2010 (Microsoft Corp, Washington),
and analyzed in R version 3.3.2 (R Development Core Team,
Vienna) (R Development Core Team, 2015) using packages base,
dunn.test, fifer, plyr, pROC, psych, retimes, and stats. Training and
testing of the machine learning models specifically employed the
packages caret (Kuhn, 2008), kernlab (Karatzoglou et al., 2004),
and rBayesianOptimization (Yan, 2016).

RESULTS

Dementia subdiagnoses in order of frequency were: AD (17/50
cases, 34%), mixed AD and vascular (15/50, 30%), vascular (7/50,
14%), other specified (Lewy Body, Parkinson’s) (6/50, 12%), and
unspecified (5/50, 10%). The patient age range was 65–95 years.

Demographic and clinical data are presented in Table 2. For
group comparisons, age did not differ significantly between
diagnostic groups (rank sum χ

2 = 1.568, P = 0.457) but
education did (χ2 = 11.781, P = 0.003), with SCI patients
being more educated than MCI (Dunn test = 2.830,
P = 0.005), and dementia (3.408, P = 0.001) patients. Sex
proportional differences were significant (Pearson χ

2 = 7.727,
P = 0.021) showing more males in the MCI group. Group
proportions of possible depression (extended Fisher’s exact
test P = 1) and patient follow-up (P = 0.720) did not
differ significantly. Sex proportions were balanced in the total
sample.
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TABLE 2 | Demographics, clinical characteristics, and interventions by diagnostic

group and total sample.

SCI

(N = 17)

MCI

(N = 53)

Dementia

(N = 50)

Total

(N = 120)

DEMOGRAPHICS

Age (years) 74.8 (5.0) 77.2 (7.9) 77.3 (6.8) 76.9 (7.1)

Education (years) 15.6 (3.9) 12.4 (4.1) 11.6 (3.6) 12.5 (4.1)

Men 12 (71) 30 (57) 18 (36) 60 (50)

Women 5 (29) 23 (43) 32 (64) 60 (50)

COMORBID CONDITIONS

Possible depression 1 (6) 6 (11) 5 (10) 12 (10)

CLINICAL EXAMINATION

MRI 8 (47) 21 (40) 22 (44) 51 (43)

EEG 0 (0) 3 (7) 8 (16) 11 (9)

LP 8 (47) 29 (55) 33 (66) 70 (58)

Geriatrician 17 (100) 53 (100) 50 (100) 120 (100)

Anamnesis 17 (100) 53 (100) 50 (100) 120 (100)

Work therapist 2 (12) 12 (23) 26 (52) 40 (33)

Neuropsychologist 17 (100) 53 (100) 50 (100) 120 (100)

Follow-up 2 (12) 11 (21) 8 (16) 21 (18)

Data are decimal mean (sd) or integer count (%). Possible depression was assessed

by the clinical psychologist. MCI, Mild Cognitive Impairment; SCI, Subjective Cognitive

Impairment; MRI, Magnetic Resonance Imaging; EEG, Electroencephalography; LP,

Lumbar Puncture.

Groups were then compared on each psychometric test.
As evident in Table 3, psychometric performance scores were
consistently best for SCI, worst for dementia, and intermediate
for MCI. Group differences were generally larger between SCI
and MCI, than between MCI and dementia. Because inferential
group comparisons on these variables were ancillary in this
differential diagnostic paper, these results are reported in the
Appendix.

We then plotted the 105 SRT responses by group in (i)
chronological, (ii) central tendency vs. dispersion, and (iii)
density form. Visual inspection of the chronological plot in
Figure 1 reveal a consistent pattern over time where the
SCI group was faster and particularly less variable than the
MCI group, which in turn was faster and less variable than
the dementia group. In Figure 2, the upper three facets
shows each patient’s SRT-sd vs. SRT-mean over 105 items by
group with fitted non-parametric functions, while the lower
three facets again shows each patient’s SRT means by group
but now as histograms with overlaying density functions.
Notice in Figure 2 the increasingly elongated shape of SRT
distributions across patient groups from SCI to MCI to
dementia.

Next, the different SRT variables and additional variables
were evaluated with respect to their differential diagnostic
accuracy (details in the Methods section, heading “Predictive
modeling”). The single-predictor accuracy of each of the 11
psychometric predictors and three demographic predictors are
available in Table 4. For classifying MCI/dementia correctly,
the best performing reaction time variables were SRTS-mean,

SRT-µ, and SRT-sd in decreasing order of accuracy. SRT-
mean and SRT-µ were also comparable to the top-scoring,
established neuropsychological tests RAVLT and DS. For the
SCI/MCI/dementia classification, SRT-τ , SRT-µ, and SRT-WP1
performed best in the given order. SRT-τ and SRT-µ also
showed similar accuracy as DS and RAVLT. For both two-class
and three-class classification, SRT worst performances (WP1)
performed slightly better on this sample, compared to SRT best
performances (WP5). Age and education were not useful as
single classifiers. By itself, sex held some classifier merit for
the two-class and three-class problem. As single predictors, the
DS and RAVLT performed slightly better than the best SRT
variables on both classification problems with the exception of
SRT-τ having higher accuracy than RAVLT on the three-class
problem.

We then ran the resampled recursive feature elimination
procedure to extract the optimal feature subset for each of the
two final multivariable models. Recursive feature elimination
selected seven predictors as optimal for both classification
problems. Each subset included the two established tests DS
and RAVLT along with five additional SRT variables. We
thereafter fitted the two final models with these subsets,
first tuning the model hyperparameters with outer CV and
then refitting the model with the best tuning setting on the
respective whole dataset. The resulting two models constitute
the main study result. For differentiating MCI/dementia, the
final model solved this two-class problem with good accuracy
(Accuracy = 0.806 [0.716, 0.877], P < 0.001). For differentiating
SCI/MCI/dementia, the final model was somewhat accurate
on this three-class problem (Accuracy = 0.650 [0.558, 0.735],
P < 0.001). We thereafter ran recursive feature elimination
with only the SRT variables. Naturally, these models were
weaker yet still showed some classification accuracy for
differentiating MCI/dementia (Accuracy = 0.680 [0.580, 0.768],
P < 0.001), and SCI/MCI/dementia (Accuracy = 0.492
[0.399, 0.585], P = 0.156). See Table 5 for further details
on the two final models, including the actual classification
results in confusion matrices with additional performance
metrics.

Here, is an exemplification of running the three-class
SCI/MCI/dementia model from Table 5 on a new patient at
the memory clinic actualized for neuropsychological assessment.
Before assessment, there is an average 14.2, 44.2, and 41.7%
base rate probability that the patient will later receive a SCI,
MCI, and dementia diagnosis, respectively (pre-test probability).
Now imagine that the patient performs the selected psychometric
tests and the result is fed into the model. The model will
then output a prediction, and if the model suggests that
the patient has SCI, there is now a 62.5% chance that the
patient will later receive a SCI diagnosis after completing the
full memory clinic examination (positive predictive value). If
the model instead suggests either MCI or dementia for the
patient, there is only a 10.7% chance that the patient will later
receive a SCI diagnosis after completed examination. If the
model instead predicts MCI, the patient has a 58.8% chance
to later receive MCI diagnosis. If the model does not predict
MCI, the chance for later MCI diagnosis drops to 15.0%.
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TABLE 3 | Psychometric performance by diagnostic group and total sample.

SCI (N = 17) MCI (N = 53) dementia (N = 50) Total (N = 120)

SRTS-mean 330.9 (30.9) 386.0 (105.1) 414.8 (120.9) 390.2 (108.3)

SRTS-sd 47.1 (12.0) 100.9 (76.4) 101.2 (54.9) 93.4 (64.5)

SRTS-median 323.4 (36.1) 359.6 (102.0) 390.4 (114.2) 367.3 (103.0)

SRT-mean 337.0 (33.9) 381.3 (80.1) 427.1 (123.1) 394.1 (101.0)

SRT-sd 54.1 (14.5) 101.6 (54.7) 114.9 (58.8) 100.4 (56.2)

SRT-median 325.8 (34.6) 356.9 (78.7) 403.6 (118.4) 372.0 (97.3)

SRT-µ 288.9 (35.2) 280.8 (78.3) 324.0 (113.3) 300.0 (92.5)

SRT-σ 29.7 (14.7) 51.4 (39.7) 58.5 (45.3) 51.3 (40.6)

SRT-τ 48.1 (20.6) 100.5 (59.4) 103.1 (55.0) 94.2 (56.6)

SRT-WP1 400.6 (43.1) 494.7 (141.6) 566.8 (193.9) 511.4 (166.3)

SRT-WP5 284.8 (24.3) 292.1 (39.9) 317.7 (73.1) 301.7 (56.3)

IN FSIQ (N = 119) 60.1 (7.3) 51.9 (8.5) 45.0 (9.7) 50.3 (10.2)

MMSE-SR (N = 117) 28.5 (1.1) 27.1 (2.1) 25.3 (2.4) 26.5 (2.4)

BD (N = 119) 36.2 (9.0) 26.9 (7.3) 22.8 (7.2) 26.6 (8.7)

DS 24.9 (5.0) 22.1 (3.8) 19.1 (4.2) 21.2 (4.6)

BNT-60 (N = 113) 55.1 (3.5) 49.8 (9.5) 46.8 (9.5) 49.3 (9.3)

RAVLT 45.6 (9.0) 33.2 (9.8) 27.9 (8.5) 32.8 (10.8)

LM (N = 108) 12.7 (4.6) 7.4 (4.6) 4.3 (3.7) 6.9 (5.1)

RCFT (N = 97) 17.5 (5.4) 9.7 (5.8) 4.7 (4.7) 9.4 (6.8)

TMT4 (N = 110) 107.0 (35.6) 162 (54.7) 220.0 (40.9) 176.7 (61.2)

VFT-shifting (N = 119) 12.4 (2.2) 9.9 (2.7) 7.2 (3.2) 9.2 (3.4)

Clock test (N = 118) 4.2 (1.1) 3.0 (1.2) 1.6 (1.2) 2.6 (1.5)

Draw Cube (N = 118) 0.9 (0.2) 0.7 (0.4) 0.3 (0.4) 0.6 (0.4)

Draw Cross (N = 118) 0.8 (0.4) 0.6 (0.4) 0.3 (0.4) 0.5 (0.5)

Values are mean (sd). Reaction time variables are in milliseconds. Raw scores are presented except for the premorbid intelligence estimate (IN) which is age adjusted and rescaled to

the WAIS-IV norm T-scores with mean = 50 and sd = 10. MCI, Mild Cognitive Impairment; SCI, Subjective Cognitive Impairment; BD, Block Design; BNT-60, Boston Naming Test−60

item version; DS, Digit Span—Total score; IN, WAIS-IV Information; LM, Wechsler Memory Scale III/Logical Memory—Total Delayed Recall; MMSE-SR, Mini Mental State Examination—

Swedish Revision; RAVLT, Rey Auditory Verbal Learning Test—Total Learning; RCFT, Rey-Osterrieth Complex Figure Test—Delayed Recall; SRT, 5-min Simple Reaction Time (105 item

responses); SRTS, 1-min Simple Reaction Time (21 item responses); TMT4, D-K EFS Trail-Making Test—Shifting; VFT, D-K EFS Verbal Fluency Test; WP1, Worst performances; WP5,

Best performances; µ, mean of the Gaussian part of the Ex-Gaussian distribution; σ, sd of the Gaussian part of the Ex-Gaussian distribution; τ , mean of the exponential part of the

Ex-Gaussian distribution.

Finally, if the model predicts dementia, the patient has a 72.7%
chance of later dementia diagnosis, yet if the model does not
suggest dementia, the risk for final dementia diagnosis drops to
27.3%.

Implementation
For research and exploratory purposes, we also implement the
two final models (Table 5) in a decision support application,
made available for free with the present publication at http://
wallert.se/mcdpi2. The Memory Clinic Diagnostic Prediction
Instrument (MC-DPI) supports both mobile and stationary
platforms. After calculating the predictor values for a new patient,
one simply inputs these values in their designated fields and clicks
the “Calculate” button. This returns the predicted diagnosis for
the patient. The application is built with R and Ruby on Rails
and hosted on a cloud-based server (Ubuntu 14.04). The input
values are fed to an R backend which runs the values through
the chosen prediction model and returns the predicted diagnosis.

2The Memory Clinic Diagnostic Prediction Instrument (MC-DPI). Available online
at: http://wallert.se/mcdpi.

Although the present models are cross-validated, they are in need
of external validation with a larger sample of unseen data. We
take no responsibility for the use or misuse of these models.

DISCUSSION

In a difficult-to-differentiate memory clinic sample referred
to full neuropsychological assessment we showed that SRT
variables hold potential for differentiating MCI/dementia, and
SCI/MCI/dementia. SRT variables displayed the overall pattern
of dementia > MCI > SCI (hypothesis 1). SRT variables
held some classifier merit by themselves but the multivariable
machine learning procedure showed that the best solution to both
diagnostic problems included SRT variables in conjunction with
established psychometric tests (hypotheses 2 and 3).

Interestingly, the mean of the slow reaction time responses
(Ex-Gaussian τ ) performed reasonably on the more difficult
task of differentiating SCI/MCI/dementia. This might relate
to other findings suggesting that τ captures attentional lapses
(e.g., Unsworth et al., 2010). The slowest responses on SRT
tasks are also the “worst” responses and are directly related to
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FIGURE 1 | Item-by-item SRT performance in chronological order by diagnostic group. Interconnected dot-shapes represent each group mean for each item

response of the 105 items over the 5-min SRT administration from start to finish. Shaded areas represent the corresponding ± one standard deviation from the mean

for each item response with the SCI group in green overlaying the MCI group in blue overlaying the dementia group in red. MCI, Mild Cognitive Impairment. SCI,

Subjective Cognitive Impairment.

FIGURE 2 | SRT-sd as a function of SRT-mean for each patient by diagnostic group and SRT-mean density by diagnostic group. Points in the upper three facets

represent each individual patient’s standard deviation as a function of their arithmetic mean on the 105 item SRT testing. The lines and shaded error bars represent

fitted loess functions with 95% CIs. Histograms in the lower three facets represent the counts per diagnostic group of patients’ mean SRT that fall within 10ms bins

where bar heights indicate relative counts. Overlaid on the histograms are the corresponding density distributions. MCI, Mild Cognitive Impairment; SCI, Subjective

Cognitive Impairment.

the Worst Performance Rule paradigm which suggests worst
performances as a better measure of general cognitive ability
than best performances (Coyle, 2003). The present study found a
higher accuracy for worst performances than best performances,
although the difference was small and might be stochastic. The
Worst Performance Rule variables have not been previously
applied to differential diagnostics of these clinical groups and
they might constitute a new psychometric route to improved
understanding and prediction of these patients’ deteriorating
cognition. To some extent, the present results also add to the bulk

of existing evidence suggesting that variability-of-processing is
more sensitive to neurodegenerative cognitive decline in elderly
than speed-of-processing (e.g., Gorus et al., 2008; Tales et al.,
2012; Wallert et al., 2017a).

We investigated SRT relative to other established cognitive
tests which items have been developed over decades, and
are known to tap much more complex cognitive abilities
such as memory. It is intuitively quite surprising that such
a simple task as SRT can perform reasonably well-compared
to other established psychometric tests in terms of both
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TABLE 4 | Diagnostic accuracy of single predictors for differentiating MCI/dementia, and SCI/MCI/dementia.

MCI/Dementia SCI/MCI/Dementia

(N = 103) (N = 120)

Predictors Acca CI (95 %) P Acca CI (95%) P

SRTS-mean 0.864 0.783, 0.924 <0.001 0.533 0.440, 0.625 0.135

SRTS-sd 0.670 0.570, 0.759 0.004 0.492 0.399, 0.585 0.624

SRT-mean 0.757 0.663, 0.836 <0.001 0.617 0.524, 0.703 <0.001

SRT-sd 0.796 0.705, 0.869 <0.001 0.425 0.335, 0.519 1

SRT-µ 0.845 0.760, 0.909 <0.001 0.692 0.601, 0.773 <0.001

SRT-σ 0.544 0.443, 0.642 0.623 0.450 0.359, 0.544 1

SRT-τ 0.680 0.580, 0.768 0.002 0.733 0.645, 0.810 <0.001

SRT-WP1 0.767 0.673, 0.845 <0.001 0.650 0.558, 0.735 <0.001

SRT-WP5 0.728 0.632, 0.811 <0.001 0.625 0.532, 0.712 <0.001

Age 0.563 0.462, 0.661 0.563 0.642 0.549, 0.727 <0.001

Education 0.534 0.433, 0.633 0.623 0.458 0.367, 0.552 1

Sex 0.816 0.727, 0.885 <0.001 0.708 0.618, 0.788 <0.001

DS 0.893 0.817, 0.946 <0.001 0.758 0.672, 0.832 <0.001

RAVLT 0.884 0.805, 0.938 <0.001 0.692 0.601, 0.773 <0.001

a Leave-one-out cross-validation accuracy. Each predictor performance obtained with a soft-margin radial basis function support vector machine tuned over 10 random and 40

Bayesian optimization hyper-parameter settings. P-values are Bonferroni-Holm corrected for each classification problem (column), and signifies one-sided tests of accuracy (single-

predictor model > No Information Rate). CI, Confidence Interval; MCI, Mild Cognitive Impairment; SCI, Subjective Cognitive Impairment; DS, WAIS-IV Digit Span—Total Score; RAVLT,

Rey Auditory Verbal Learning Test—Total learning; SRT, 5-min Simple Reaction Time (105 item responses); SRTS, 1-min Simple Reaction Time (21 item responses); WP1, Worst

performances; WP5, Best Performances; µ, mean of the Gaussian part of the Ex-Gaussian distribution; σ, sd of the Gaussian part of the Ex-Gaussian distribution; τ , mean of the

exponential part of the Ex-Gaussian distribution.

binary and trinary classification of complex cognitive decline
and pathology. Importantly, this result was obtained with
the most difficult to diagnose patients in the borderland
of SCI/MCI/dementia, for whom diagnostics demanded full
neuropsychological assessment. The bottom-up strength of SRT
herein underscores how more complex cognitive operations are
dependent on such basic mental operations as those captured
by SRT (Baddeley et al., 2001; Hultsch et al., 2002; Burton
et al., 2006; Jensen, 2006; Dixon et al., 2007; Gorus et al.,
2008; MacDonald et al., 2008; Frittelli et al., 2009; Bailon et al.,
2010; Cherbuin et al., 2010; van Ravenzwaaij et al., 2011; Tales
et al., 2012). The combination of bottom-up SRT variables
and established top-down psychometric tests seems particularly
potent as they together yielded the best diagnostic performance
for both classification problems in the present study.

Practically, SRT holds many clinical benefits compared to
the established, more complex tests. Many established tests
are verbal and hence biased if the patient does not speak the
native language, have low education or difficulties with verbal
communication (Jensen, 2006). In this regard, SRT tasks are
highly culture-fair and skill-fair. Another benefit is the level of
data obtained. Reaction time tasks gather data at a high level of
scale. Most psychological tests do not gather data at this level;
a few promise interval data yet most deliver ordinal data. The
unbiased and precise computer scoring of reaction time is also
a substantial benefit compared to most other neuropsychological
tests which are inherently biased to some extent by the human
administering them. In this often neglected regard, reaction time
tests possess superior reliability and validity compared to most
other psychometric tests. Reaction time items are also answered

quickly, compared to items from more complex tests. Reaction
time tasks therefore generate superior reliability per time unit
compared to other tests which items take longer time to answer.

There are important limitations to the present study.
A larger sample would have allowed for external model
validation, including investigation of age, gender, intelligence,
and diagnostic subtypes, and statistical inference regarding
the differences in diagnostic accuracy between SRT variables
and established tests found in the present study. These areas
constitute important areas for future differential diagnostic
research, which in turn depends on the search for new cost-
effective diagnostic predictors, and the collection of more high-
quality data. There is also the need for adapting diagnostic
models to the clinical situation which depends on more than
just the model accuracy. During feature selection, we consider
overfitting as unlikely since we applied an algorithmic selection
procedure that was robustly resampled with 3× 10-fold CV. For
both classification problems, this recursive feature elimination
procedure selected highly similar features as the single-predictor
accuracy ranking of predictors did. For the tuning of model
hyperparameters, we applied Bayesian optimization within leave-
one-out CV resampling. Hence, we prioritized low bias at the
cost of potentially higher variance by fitting as much of the
data as possible yet still cross-validating the results. This might
have induced some overfitting at this step, i.e., the risk of
these models not generalizing to new cases and future external
validation is again suggested. Unfortunately, having enough
data to allow for the optimally robust control for overfitting is
rarely the case—especially so in research using representative,
high-quality clinical data from specialized healthcare with gold
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TABLE 5 | Performance of the two final multivariable models for diagnosing MCI/dementia and SCI/MCI/dementia, respectively.

MCI/Dementia* SCI/MCI/Dementia**

Observed Observed

(N = 103) (N = 120)

MCI Dementia SCI MCI Dementia

Predicted SCI – – 5 3 0

MCI 53 20 9 47 24

Dementia 0 30 3 3 26

Accuracya (95% CI) 0.806 (0.716, 0.877) 0.650 (0.558, 0.735)

No information rate 0.515 0.442

P-value <0.001 <0.001

Kappa 0.607 0.402

Sensitivity 1 0.294 0.887 0.520

Specificity 0.600 0.971 0.508 0.914

Pos predictive value 0.726 0.625 0.588 0.813

Neg predictive value 1 0.893 0.850 0.727

Prevalence 0.515 0.142 0.442 0.417

aLeave-one-out cross-validation accuracy.

*Includes DS, RAVLT, SRT-WP1, SRT-sd, SRT-µ, SRT-mean, and SRTS-sd.

**Includes DS, RAVLT, SRT-WP1, SRT-sd, SRTS-sd, SRT-τ , and SRT-mean.

Correct predictions in each confusion matrix are diagonal from upper left to lower right. Input predictors are selected through 3 × 10-fold cross-validated recursive feature elimination.

Performance metrics are calculated once with MCI as target class for the two-class model. This calculation is repeated for each diagnosis versus remaining diagnoses (one versus all)

for the three-class model. Bonferroni-Holm corrected P-values are from a one-sided binomial test of accuracy for each single-predictor model > the corresponding No Information Rate

(largest percentage class). DS, Digit Span—Total score; RAVLT, Rey Auditory Verbal Learning Test—Total learning; MCI, Mild Cognitive Impairment; SCI, Subjective Cognitive Impairment.

standard diagnostics. Although most confounding variables
were documented, the modest sample size did neither allow
for statistical control for confounding nor causal inference.
This was of course a deliberate limitation because our main
aim was an ecologically and clinically valid study focused on
the predictive diagnostic needs of the specific clinical context.
As external validity is a prerequisite for clinical applicability
(Rothwell, 2005), specifically due to both frequent comorbidity
(Fried et al., 2004) and the etiological heterogeneity underlying
dysfunctional cognition in elderly patients (Woodward and
Woodward, 2009; Ramakers and Verhey, 2011), new instruments
should be evaluated with ecologically valid samples (Greenhalgh,
1997). Regarding causality, we refer to the impressive amount
of previous reaction time research (e.g., Jensen, 2006). Another
limitation was that the established psychometric tests, but
not SRT, were to a limited degree allowed to influence final
diagnosis. SRT variables were therefore somewhat handicapped
in comparison. By using raw scores and by choosing variables
that have moderate diagnostic influence, e.g., choosing total
learning over delayed recall from RAVLT, and only two variables
out of >100 used in the memory clinic examination, we could
remove most but not all of this handicap. Furthermore, many
elderly have impaired vision and this may bias any visual task. In
the present study, identifying a clearly visible “X” at arms lengths
distance should not be seriously distorted by even moderate sight
impairment. Another possible limitation is that the age-adjusted
IN scores indicated group differences with respect to premorbid
FSIQ. The relatively high and similar MMSE-SR scores, however,
support that the sample consisted of the very intermediate cases

of SCI, MCI, and mild-to-moderate dementia. A more practical
limitation is that the methods to gather these variables are
not fully automated. More work is needed regarding prediction
automation, maybe similar to how we provide the actual models
as an online decision support system with the present paper.

Improved medical care and general living conditions renders
an aging population. An increasing number of individuals
live long enough to develop MCI and dementia. As these
numbers increase, so does the burden on individuals, families,
organizations, and societies. Importantly, we found that different
variables extracted from a 5min SRT task could differentiate both
MCI/dementia and SCI/MCI/dementia together with established
tests. This is the primary clinical purpose of the established
tests, as they are presently applied worldwide in costly and
time-consuming neuropsychological assessments. Although in
need of more research, the present findings suggest that SRT
variables can contribute to diagnostic screening of these patients
in conjunction with a few other established tests. The result
from such screenings could then guide the tailoring of the main
neuropsychological batteries for these patients. Insofar as several
of the established tests demand the clinician’s full attention
during 5–15min of testing, while SRT administration and scoring
can be almost fully automated, SRT is particularly cost-effective.

CONCLUSIONS

Cost-effective SRT variables, in conjunction with other
established psychometric variables, hold potential for
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differentiating MCI/dementia, and SCI/MCI/dementia
in the difficult-to-differentiate patients referred for full
neuropsychological assessment as part of the memory clinic
examination. Implementation in diagnostic support systems
based on machine learning holds promise. External validation is
needed.
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