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There is a high misdiagnosis rate between Parkinson’s disease (PD) and atypical
parkinsonian disorders (APD), such as progressive supranuclear palsy (PSP), the
second most common parkinsonian syndrome. In our earlier studies, we identified and
replicated RNA blood biomarkers in several independent cohorts, however, replication
in a cohort that includes PSP patients has not yet been performed. To this end, we
evaluated the diagnostic potential of nine previously identified RNA biomarkers using
quantitative PCR assays in 138 blood samples at baseline from PD, PSP and healthy
controls (HCs) nested in the PD Biomarkers Program. Linear discriminant analysis
showed that COPZ1 and PTPN1 distinguished PD from PSP patients with 62.5%
accuracy. Five biomarkers, PTPN1, COPZ1, FAXDC2, SLC14A1s and NAMPT were
useful for distinguishing PSP from controls with 69% accuracy. Several biomarkers
correlated with clinical features in PD patients. SLC14A1-s correlated with Unified
Parkinson’s Disease Rating Scale total and part III scores. In addition, COPZ1, PTPN1
and MLST8, correlated with Montreal Cognitive Assessment (MoCA). Interestingly,
COPZ1, EFTUD2 and PTPN1 were downregulated in cognitively impaired (CI) compared
to normal subjects. Linear discriminant analysis showed that age, PTPN1, COPZ1,
FAXDC2, EFTUD2 and MLST8 distinguished CI from normal subjects with 65.9%
accuracy. These results suggest that COPZ1 and PTPN1 are useful for distinguishing
PD from PSP patients. In addition, the combination of PTPN1, COPZ1, FAXDC2,
EFTUD2 and MLST8 is a useful signature for cognitive impairment. Evaluation of these
biomarkers in a larger study will be a key to advancing these biomarkers into the clinic.
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INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disease characterized by the selective loss of
dopamine neurons in the substantia nigra pars compacta. Deterioration of the dopaminergic
system leads to severe motor symptoms including resting tremor, rigidity, bradykinesia
and postural instability. Current treatments for PD afford symptomatic relief, but a disease
modifying or neuroprotective agent capable of halting the progression of the disease is
not yet available. The lack of a robust biomarker with high sensitivity and specificity has
limited the progress towards the development of effective therapeutics for PD. In this context,
biomarkers would offer great advantages in clinical trials testing drugs and neuroprotective agents.
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For example, biomarkers could facilitate the selection and
stratification of study participants, monitor disease progression
and inform about target selection (Santiago and Potashkin,
2014a; Gwinn et al., 2017).

Distinguishing PD from atypical parkinsonian disorders
(APD) is an unmet goal for currently proposed biomarker
studies. The overlap in symptoms and pathological features
between PD and APD makes these diseases very difficult
to distinguish early in the disease process where therapeutic
intervention may be more beneficial (Rajput and Rajput,
2014; Santiago and Potashkin, 2014c). Progressive supranuclear
palsy (PSP), for example, is frequently misdiagnosed as PD.
Deposition of fibrillar aggregates of four-repeat Tau protein in
the brainstem and cerebral cortex is a pathological hallmark
of PSP (Dickson et al., 2010). Clinical symptoms in PSP
patients include prominent hypokinesia, oculo-motor and
balance disturbances (Dickson et al., 2010). In contrast, PD is
characterized by the accumulation of alpha synuclein (SNCA) in
the substantia nigra pars compacta. PD patients exhibit classical
motor symptoms that include rigidity, tremor and bradykinesia
(Ascherio and Schwarzschild, 2016). To date, diagnosis of
PD and PSP patients is based on the assessment of motor
symptoms and response to dopaminergic therapy (Ascherio
and Schwarzschild, 2016). The problem with this approach is
that PSP and PD patients manifest similarities at early stages
of the disease and both respond to dopaminergic treatment,
which makes the diagnosis very challenging (Dickson et al.,
2010). The high misdiagnosis rate between PD and PSP reaching
approximately 30% heightens the urgency for the identification
of highly specific biomarkers capable of distinguishing these
diseases (Rajput and Rajput, 2014; Santiago and Potashkin,
2014c).

Although substantial progress has been made in the
discovery of blood biomarkers for PD (Khoo et al., 2012;
Ciaramella et al., 2013; Qiang et al., 2013; Santiago and
Potashkin, 2013a, 2014a, 2015b, 2017; Santiago et al., 2014,
2016; Alieva et al., 2015; Calligaris et al., 2015; Locascio et al.,
2015; Swanson et al., 2015), very few studies have addressed
the misdiagnosis problem between PD and PSP. Our first
studies identified a splice-variant specific signature capable
of distinguishing PD from healthy and APD (Potashkin
et al., 2012). This biomarker signature was composed of
13 splice variants including fatty acid hydroxylase domain
containing 2 (FAXDC2; C5ORF4), coatomer protein complex
subunit zeta 1 (COPZ1), microtubule-actin crosslinking factor 1
(MACF1), wntless WNT ligand secretion mediator (WLS),
proteoglycan 3, pro eosinophil major basic protein 2 (PRG3),
zinc finger protein 160 (ZNF160), elongation factor Tu GTP
binding domain containing 2 (EFTUD2), mitogen-activated
protein 4 kinase 1 (MAP4K1), membrane palmitoylated
protein 1 (MPP1), pyruvate kinase M2 (PKM2), solute carrier
family 14 member 1 (SLC14A1-s), SLC14A1-l and zinc finger
protein 134 (ZNF134; Potashkin et al., 2012). Seven out these
13 biomarkers, including FAXDC2 (C5ORF4), COPZ1, MACF1,
WLS, PRG3, ZNF160 and EFTUD2, replicated in a second
independent cohort of participants that included PD and
healthy controls (HCs), but not APD patients (Santiago

et al., 2013). Another promising study used a network
approach integrating our microarray data (Potashkin et al.,
2012) in order to identify protein tyrosine phosphatase,
non-receptor type 1 (PTPN1) as a potential biomarker for
PSP (Santiago and Potashkin, 2014c). PTPN1 was capable
of distinguishing PD from PSP patients with 86% overall
diagnostic accuracy. Nonetheless, these markers have not
been replicated in an independent set of participants that
includes PSP patients. In this study, we tested a subset of
nine RNA biomarkers in blood samples obtained from the
PD Biomarkers Program (PDBP). We hypothesized that these
RNA markers from our previous studies could be helpful for
the differential diagnosis between PD and PSP and may be
informative of clinical features including disease progression
and cognition.

MATERIALS AND METHODS

Study Participants
Samples used in this study were obtained from PDBP, a
consortium of clinical sites funded by the National Institute of
Neurological Diseases and Stroke (NINDS, National Institutes
of Health (NIH), United States). The consortium projects focus
on the development of clinical and laboratory-based biomarkers
for PD diagnosis, progression and prognosis. RNA samples used
in this study were obtained from Penn State Milton S. Hershey
Medical Center and University of Florida College of Medicine.
The Institutional Review Boards (IRB) of each PDBP center
and the Rosalind Franklin University of Medicine and Sciences
approved the study protocol. Written informed consent was
obtained from all participants before inclusion in the study. PD
patients were recruited and evaluated by movement disorder
specialists using establish criteria (Rosenthal et al., 2016). Disease
severity was assessed using the Movement Disorder Society
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) part III
and Hoehn & Yahr scale. Inclusion and exclusion criteria were
the following: PD patients had a history of adequate response
to dopaminergic therapy and history of asymmetrical symptom
onset. HC had no history of neurological disorder; PSP patients
were over 40 years old with vertical gaze palsy and/or slow
vertical gaze/postural instability during first year of diagnosis.
Additional inclusion and exclusion criteria have been published
elsewhere (Rosenthal et al., 2016). The demographic and clinical
characteristics of the study participants selected for this study are
listed in Table 1.

RNA Samples
We obtained a total of 138 RNA samples at baseline from
age and sex-matched early stage PD, PSP patients and
HC from PDBP. Standardized clinical and biospecimen
collection procedures were used for all participants. Each
biospecimen collection follows the PDBP protocol and
mirrors the Alzheimer’s Disease Neuroimaging Initiative
(ADNI), BioFIND and PPMI protocols. Collected biosamples
are sent to the NINDS Repository (Coriell Laboratories),
undergo quality control, and are cataloged. Blinded RNA
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TABLE 1 | Demographic and clinical characteristics of Parkinson’s disease Biomarkers Program (PDBP) participants.

Characteristic HC (n = 50) PD (n = 48) PSP (n = 40) P valuea P valuea P valuea

(HC/PD) (HC/PSP) (PD/PSP)

Age, mean (SD) [95% CI], years 69 (6) [68–71] 70 (6) [68–72] 70 (7) [68–72] 0.91 0.97 0.89
Age of onset, mean (SD) [95% CI], years N.A. 64 (8) [60–66] 68 (8) [65–70] N.A. N.A. 0.02
Female/male, No. (%male) 25/25 (50) 25/23 (48) 20/20 (50) 0.90b 0.90b 0.90b

Disease duration, median (range), years N.A. 6.3 (0.17–25) 2.5 (0.17–9.2) N.A N.A <0.0001
Hoehn & Yahr stage, mean (SD) 0.10 (0.36) 2.04 (0.96) 2.35 (1.81) <0.0001 <0.0001 0.34
MDS-UPDRS total, mean (SD) [95% CI] 6.48 (6.6) [4.5–8.3] 50.33 (41.3) [3.3–62.3] 57.23 (33.5) [46.5–67.9] <0.0001 <0.0001 0.39
MDS-UPDRS part III 4.58 (5.8) [2.92–6.24] 33.60 (22.2) [27.1–40.1] 46.93 (18.4) [41.0–52.8] <0.0001 <0.0001 0.0028
MoCA, mean (SD) [95% CI] 26.20 (2.1) [25.6–26.8] 23.11 (3.6) [22–24.2] 20.32 (4.9) [18.6–21.9] <0.0001 <0.0001 0.006

Abbreviations: CI, 95% confidence interval; HC, healthy controls; MoCA, Montreal Cognitive Assessment; MDS-UPDRS, Unified Parkinson’s Disease Rating Scale; PD,
Parkinson’s disease; PSP, progressive supranuclear palsy; SD, standard deviation; y, years. aBased on a Student t-test. bBased on chi-square test (X2).

samples were shipped in dry ice to Rosalind Franklin
University of Medicine and Sciences for the studies described
herein.

Quantitative Polymerase Chain Reaction
Assays
Samples with RNA integrity values >6.0 and absorbance
260/280 between 1.8 and 2.4 were used in this study.
0.4 microgram of RNA was reverse transcribed into cDNA
using a mix of random hexamer primers (High Capacity
cDNA Synthesis Kit, Life Technologies, Carlsbad, CA, USA).
Quantitative polymerase chain reaction assays (qRT-PCR)
were performed using ViiA7 real-time PCR system (Thermo
Fisher Scientific, Waltham, MA, USA). Each 25 microliters
reaction contained Bullseye EvaGreen qPCR 2X Mastermix
(MIDSCI, St. Louis, USA) and primers at a concentration
of 0.05 mM. Primer sequences are indicated in Table 2.
Amplification steps used were as follows: denature at 95◦C
for 10 min, annealing at 95◦C for 15 s extension at 60◦C
for 45 cycles of amplification and 95◦C extension for 15 s
Melting curve was performed using the following conditions:
60◦C for 1 min following by 5◦C/s and 95◦C for 15 s
qRT-PCR assays were performed in triplicates. The geometric
mean of the two reference genes, glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) and actin beta (ACTB), were used to
normalize for input RNA. Expression data was analyzed using
the comparative ∆∆Ct method. In this method, the amount of
target is normalized to an endogenous reference and relative to a
calibrator.

Statistical Analysis
Statistical analyses were performed using STATISTICA 12
(StatSoft, OK, USA) and GraphPad Prism version 5 (GraphPad
Software Inc., CA, USA). A Student-t-test (unpaired, two
tailed) was used to assess the differences between two groups
and a chi-square test was used to analyze categorical data.
Correlation analysis was performed using the Pearson method.
A Bonferroni corrected p-value of 0.005 or less was regarded
as significant. A forward stepwise linear discriminant analysis
was performed to determine the variables that best discriminated
between groups as described previously (Potashkin et al.,
2012). Biomarker performance was assessed using a receiver
operating characteristic curve (ROC) analysis. All the data
used in preparation of this manuscript is publicly available at:
https://pdbp.ninds.nih.gov/.

RESULTS

Demographic and Clinical Characteristics
of Study Participants
There were no significant differences in mean age and sex
distribution between PD, PSP and HC (Table 1). PD patients
had a significantly lower age of onset (64 vs. 68 years old)
and a higher disease duration (6.3 vs. 2.5 years) compared to
PSP patients. There were no significant differences in Hoehn
& Yahr (2.04 vs. 2.35) and MDS-UPDRS total scores (50.33 vs.
57.23) between PD and PSP patients. Analyses of the clinical
metrics to assess PD staging and cognition, MDS-UPDRS part
III and Montreal Cognitive Assessment (MoCA), showed some

TABLE 2 | Primer sequences for the biomarkers tested in PDBP.

Biomarker Forward Reverse

1 GAPDH CAACGGATTTGGTCGTATTGG TGATGGCAACAATATCCACTTTACC
2 ACTB TCACCCACACTGTGCCATCTACGA CAGCGGAACCGCTCATTGCCAATGG
3 COPZ1 GATTTTGTGGTGGGAAAGAGT TGACAGCTCCCCTAGATCTTTG
4 FAXDC2 (C5ORF4) GACATGGTGGATCCTGTGAAACT GAAAGATATCATGCACTGGTTGAAA
5 SLC14A1s CACTCATGTGCCTGCATGCT AACAGGGCCGCTGCTATG
6 COPS7A ATGAGTGCGGAAGTGAAGGTG GCTCTCTAACATTGGGCATGTC
7 MLST8 ATCCGCATGTATGATCTCAACTC CCACAGACGCGATGTTCTTG
8 PTPN1 AAGAACAAAAACCGAAATAGGTACAGA CCAAAAGTGACCGCATGTGT
9 NAMPT CTATAAACAATATCCACCCAACACAAG GTTTCCTCATATTTCACCTTCCTTAATT
10 EFTUD2 AGCAGGCGAGAGATGGATGA CGGCTGTTGGGTAGTACTTCTTG
11 PTBP1 GCTCAGGATCATCGTGGAGAA ATCTTCAACACTGTGCCGAACTT
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differences between PD and PSP patients. For example, PSP
patients exhibited significantly higher MDS-UPDRS part III
(46.93 vs. 33.60) and lower MoCA scores (20.32 vs. 23.11)
compared to PD patients (Table 1).

Evaluation of RNA Biomarkers in PDBP
Study Participants
A subset of nine RNA biomarkers were tested in 50 HC, 48 PD
and 40 PSP blood samples at baseline from individuals nested
in the PDBP cohort by qRT-PCR assays (Table 2). Seven out
of the nine biomarkers including COPZ1, FAXDC2, EFTUD2,
SLC14A1s, PTPN1, nicotinamide phosphoribosyl transferase
(NAMPT) and polypyrimidine tract binding protein 1 (PTBP1)
were tested in our previous studies (Potashkin et al., 2012;
Santiago et al., 2013, 2016; Santiago and Potashkin, 2014c,
2015a,b). In this study, we also tested two additional biomarkers,
COP9 signalosome subunit 7A (COPS7A) and MTOR associated
protein, LST8 homolog (MLST8). These markers were selected
from a ranked list of potential candidates identified in a network
analysis for PSP (Santiago and Potashkin, 2014c). Several
biomarkers showed significant correlations with clinical features.
For example, SLC14A1-s mRNA correlated with MDS-UPDRS
total (r = −0.18, p = 0.03) and MDS UPDRS part III scores
(r = −0.18, p = 0.03). Expression levels of three biomarkers,
COPZ1 (r = 0.21, p = 0.01), PTPN1 (r = 0.18, p = 0.03) andMLST8
(r = 0.18, p = 0.01) correlated with MoCA scores.

We next investigated the capacity of each biomarker for
distinguishing between the following groups: PD vs. PSP,
PD vs. HC, and PSP vs. HC. Analysis of each biomarker
alone did not reach significance after adjusting for multiple
comparisons (p < 0.005; Supplementary Table S1). Of note,
COPZ1 (p = 0.008) and PTPN1 (p = 0.008) trended toward
significance when comparing PD vs. HC but failed to reach
significance after adjusting for multiple comparisons. We

TABLE 3 | Linear discriminant analysis for RNA PD biomarkers tested in PDBP.

PD vs. PSP PD vs. HC PSP vs. HC CI vs. CN

Variables
retained in the
model

COPZ1
PTPN1

COPZ1
PTPN1

COPZ1
PTPN1
FAXDC2
SLC14A1s
NAMPT

COPZ1
PTPN1
FAXDC2
EFTUD2
MLST8
Age

Variables
removed from
the model

EFTUD2
FAXDC2
SLC14A1s
NAMPT
PTBP1
MLST8
COPS7A
Age
Sex

EFTUD2
FAXDC2
SLC14A1s
NAMPT
PTBP1
MLST8
COPS7A
Age
Sex

EFTUD2
PTBP1
MLST8
COPS7A
Age
Sex

SLC14A1s
NAMPT
PTBP1
COPS7A
Sex

Overall
diagnostic
accuracy (%)

62.5% 58% 69% 65.9%

A forward step-wise linear discriminant analysis was performed to identify the best
group of variables for discriminating between groups. CI, cognitively impaired; CN,
cognitively normal; HC, healthy controls; PSP, progressive supranuclear palsy; PD,
Parkinson’s disease.

performed a linear discriminant analysis to assess whether
combination of biomarkers could be useful for discriminating
between PD vs. HC and PSP vs. HC. Linear discriminant analysis
showed that PTPN1 and COPZ1 were the only markers retained
in the model capable of discriminating PD from HC with 58%
overall diagnostic accuracy (Table 3). Evaluation of biomarker
performance by receiver operating characteristic curve analysis
(ROC) resulted in an area under the curve (AUC) value of
0.56. The same analysis was performed to identify the best
group of biomarkers for discriminating PSP from HC. In this
analysis, five biomarkers, PTPN1, COPZ1, FAXDC2, SLC14A1s
and NAMPT were identified as the best group of markers for
distinguishing PSP from HC with an overall diagnostic accuracy
of 69% (Table 3). ROC analysis resulted in an AUC value of 0.66.

Similarly, we analyzed which biomarkers in combination
could be useful for distinguishing PD from PSP. Linear
discriminant analysis showed that two biomarkers, COPZ1 and
PTPN1, were retained in the model as useful for discriminating
PD from PSP patients. Specifically, PTPN1 and COPZ1 together
achieved an overall diagnostic accuracy of 62.5% (Table 3).
The remaining variables including age, sex, FAXDC2, NAMPT,
SLC14A1s, PTBP1, EFTUD2, COPS7A and MLST8 did not
contribute to the discrimination between the groups and were
therefore eliminated from the model. ROC analysis resulted in
an AUC value of 0.60.

RNA Markers Associated With Cognitive
Decline
Since some of the biomarkers correlated with MoCA, a
standard clinical measure for cognitive performance, we
investigated the potential of each biomarker for identifying
cognitively impaired (CI) subjects. Cognitive performance was
defined using the MoCA cutoff lower than 26 for cognitive
impairment as previously described (Santiago and Potashkin,
2015a; Weintraub et al., 2015). There were 51 cognitively normal
(CN) and 87 CI participants in this subset of PDBP. Three
biomarkers, COPZ1, PTPN1 and EFTUD2 were significantly
downregulated in CI compared to CN individuals (Figure 1).
Evaluation of biomarker performance by ROC analysis resulted
in AUC values of 0.57 for COPZ1, 0.57 for EFTUD2
and 0.64 for PTPN1. Combination of these three markers
resulted in AUC value of 0.65. We next performed a
linear discriminant analysis to determine which variables best
distinguished between CI and CN. This analysis showed that
six variables including age, PTPN1, COPZ1, FAXDC2, EFTUD2
and MLST8 were retained in the model as the best discriminant
factors (Table 3). Using these six variables CI subjects were
distinguished from CN with an overall 65.9% accuracy. Sex,
COPS7A, NAMPT, SLC14A1s, and PTBP1 did not contribute
to the discrimination between the groups and were therefore
eliminated from the model. ROC analysis resulted in AUC
value of 0.63.

DISCUSSION

Replication and validation of biomarker studies in PD is essential
for the translation of biomarkers into useful diagnostic tools
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FIGURE 1 | RNA biomarkers associated with cognitive decline. Relative abundance of COPZ1, PTPN1 and EFTUD2 was compared in subjects with normal
cognition (CN = 51, circles) to cognitively impaired (CI = 87, triangles). Error bars represent the 95% confidence interval (CI). A p-value of less than 0.05 was regarded
as significant based on a Student t-test (two-tailed).

for researchers and clinicians. Several biomarkers have shown
promise for identifying early stage PD patients, however, very
few studies have been replicated in independent clinical cohorts
or addressed the misdiagnosis problem in PD. Specifically, only
a handful of studies have evaluated the potential of biomarkers
in distinguishing PD from APD (Potashkin et al., 2012; Santiago
and Potashkin, 2014c; Hansson et al., 2017). In this study, we
evaluated the diagnostic and prognostic potential of previously
identified RNA blood biomarkers for PD in samples nested in
PDBP. Replication in a well-characterized cohort like PDBP that
included PSP patients was important to assess the performance of
our biomarkers in distinguishing PD from APD, which remains
an unmet need in the field.

The primary objective of this study was to replicate previously
identified RNA biomarkers in an independent set of samples that
includes PSP patients.We tested a subset of biomarkers including
FAXDC2 (C5ORF4), COPZ1, EFTUD2, SLC14A1-s, HNF4A,
PTBP1 and PTPN1. The biomarkers evaluated in this study have
been implicated in pathways involved in the pathogenesis of PD.
For example, FAXDC2 is a member of the fatty acid hydrolase
superfamily known to be involved in cholesterol metabolism,
which has been shown to contribute to neurodegeneration in PD
(Paul et al., 2017). COPZ1 encodes a subunit of the cytoplasmic
coatomer complex involved in autophagy and protein trafficking
(Santiago and Potashkin, 2015a; Bensellam et al., 2016). EFTUD2
encodes the splicing factor U5–116 kD and it may play a role
in RNA splicing during neural development (Lei et al., 2017). In
this context, aberrant alternative splicing in blood of PD patients
have been reported in numerous studies (Potashkin et al., 2012;
Santiago et al., 2013; Alieva et al., 2014). In addition, COPZ1
and EFTUD2 have been associated with cognitive decline in
PD patients (Santiago and Potashkin, 2015a). Other biomarkers
including hepatocyte nuclear factor 4 alpha (HNF4A), PTBP1
and PTPN1 have been implicated in glucose metabolism and
insulin regulation, biological processes that have been extensively
associated with the pathogenesis of PD (Knoch et al., 2006;
Santiago and Potashkin, 2013b, 2015a). We also tested two
additional biomarkers,MLST8 and COPS7A that were identified
in our previous study on PSP (Santiago and Potashkin, 2014c).
MLST8 is a subunit of the mammalian target rapamycin

complexes 1 and 2 (mTORC1, mTORC2) known to regulate
mTOR kinase activity (Kim et al., 2003) which has been involved
in a neuroprotective mechanism in PD (Malagelada et al., 2010).
COPS7A encodes a component of the COP9 signalosome, a
protein complex involved in the ubiquitin conjugation pathway,
protein misfolding and autophagy (Liu et al., 2016), pathways
implicated in the development of PD (Cook et al., 2012).

First, we analyzed the capacity of each biomarker
independently to distinguish between groups (PD vs. HC,
PD vs. PSP and PD vs. PSP). None of the biomarkers alone
reached statistical significance after adjusting for multiple
comparisons. Notably, only two biomarkers, COPZ1 and PTPN1
trended toward significance (p = 0.008) but failed to reach
significance after adjusting for multiple comparisons. Despite
these results, it is important to note that these markers have been
replicated in samples from several independent cohorts. For
instance, COPZ1 has been replicated in two cohorts of medicated
PD patients (Potashkin et al., 2012; Santiago et al., 2013) and
in a cohort of drug-naïve PD patients (Santiago and Potashkin,
2015a).

We next investigated whether combination of biomarkers
could be useful for distinguishing between groups. To this
end, we performed a linear discriminant analysis as previously
described (Potashkin et al., 2012; Santiago et al., 2013). Based on
the discriminant analysis, two biomarkers, COPZ1 and PTPN1
were capable of distinguishing PD from PSP patients while
the remaining biomarkers were excluded from the model. The
overall accuracy obtained with these two biomarkers was 62.5%.
This accuracy is less than that obtained in our previous studies.
For example, our original splice variant signature distinguished
PD from APD patients with 95% diagnostic accuracy in samples
obtained from the Diagnostic and Prognostic Biomarkers for
Parkinson’s Disease (PROBE) study (Potashkin et al., 2012).
However, the APD group in PROBE was comprised of multiple
system atrophy and PSP patients, whereas the present study
only includes PSP patients. Further, PTPN1 alone achieved
an overall diagnostic accuracy of 86% in discriminating PD
from PSP patients in samples obtained from PROBE (Santiago
and Potashkin, 2014c). The discrepancy in the results may be
explained by several differences in the clinical studies including,
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patient population and protocols for sample collection and
storage.

Analysis of biomarker expression in PD patients compared
to HC showed that COPZ1 and PTPN1 were the only two
biomarkers selected with the highest discriminant power for
distinguishing between groups with a 58% overall diagnostic
accuracy. Similarly, we also determined which biomarkers
combined could distinguish PSP from HC. Five biomarkers
including PTPN1, COPZ1, FAXDC2, SLC14A1s and NAMPT
distinguished PSP from HC with a 69% diagnostic accuracy.
Although this result is encouraging, the real challenge is not
to distinguish PSP from HC but rather finding specific and
sensitive biomarkers that facilitate the differential diagnosis
between PD and PSP. Collectively, these results suggest that
these markers alone or in combination do not possess the
ideal diagnostic capacity required in a robust biomarker
for distinguishing PD from PSP. Combination of multiple
biomarkers including, protein, RNA, imaging and other clinical
tests will be required to build a diagnostic model for PD.
In this regard, blood neurofilament light chain (NfL) protein
distinguished PD from APD patients including PSP, MSA and
corticobasal syndrome with high accuracy, 91% specificity and
82% sensitivity (Hansson et al., 2017). In addition, imaging
techniques have achieved high sensitivity and specificity in
distinguishing PD from APD. For example, free-water derived
from diffusion magnetic resonance imaging (MRI) has been
useful for detecting differences in the substantia nigra of PD
patients compared to PSP, MSA and HC (Planetta et al., 2016;
Ofori et al., 2017). Thus, combining COPZ1 and PTPN1mRNAs
with protein markers like NfL and/or imaging markers could
improve the diagnostic accuracy of PD and PSP patients. In
addition to these markers, there are other interesting molecular
signatures that have shown promise in distinguishing PD from
HC and other neurodegenerative diseases that could be tested in
samples from PSP patients. For example, a molecular signature
in blood composed of five genes, p19 S-phase kinase-associated
protein 1A (SKP1A), huntingtin interacting protein-2 (HIP2),
aldehyde dehydrogenase family 1 subfamily A1 (ALDH1A1),
19 S proteasomal protein (PSMC4) and heat shock 70-kDa
protein 8 (HSPA8), distinguished early-stage and de novo PD
from HC and Alzheimer’s disease patients with 90.3% sensitivity
and 89.1% specificity (Molochnikov et al., 2012). Transcriptomic
profiling of blood employing RNA sequencing is a robust
method for finding additional candidate biomarkers. In this
context, RNA sequencing analysis revealed gene expression
changes in blood of PD patients before and after deep brain
stimulation treatment (Soreq et al., 2013, 2015a,b). These
high-throughput technologies combined with bioinformatic
analyses including weighted gene coexpression networks have
been useful for identifying changes in gene expression of
both protein-coding and small and long regulatory RNAs
(lncRNAs) in neurodegenerative diseases (Guffanti et al., 2014;
Santiago and Potashkin, 2014b). For instance, RNA sequencing
analysis revealed over 3000 lncRNAs coexpressed in both brain
and blood of PD patients (Soreq et al., 2014). Therefore, a
comprehensive analysis of the blood transcriptome using RNA
sequencing and network analyses will be key for identifying

biologically relevant biomarkers for PSP. Further, weighted
gene co-expression networks analysis in both brain and blood
datasets will be useful for elucidating potential mechanisms of
disease pathogenesis in PSP (Guffanti et al., 2014; Soreq et al.,
2014).

Cognitive impairment is a disabling non-motor symptom
frequently observed in PD patients. The decline in cognitive
performance has been documented in de novo and untreated
PD patients suggesting cognitive impairment may be one of the
earliest manifestations in the development of PD (Santiago and
Potashkin, 2015a; Weintraub et al., 2015). Identifying predictors
and biomarkers of cognitive impairment is expected to be
valuable in patient classification, stratification and personalized
treatment (Mollenhauer et al., 2014). In this study, three
biomarkers, COPZ1, PTPN1 andMLST8 correlated with MoCA,
although the correlation values were low. Further analysis
showed that three biomarkers COPZ1, EFTUD2 and PTPN1
were significantly downregulated in CI subjects compared to
normal cognition suggesting these biomarkers may be useful
to assess cognitive performance in patients. Evaluation of
biomarker performance by ROC analysis resulted in AUC
values of 0.57 for COPZ1, 0.57 for EFTUD2 and 0.64 for
PTPN1 indicating a modest diagnostic accuracy. Combination
of these three markers together resulted in AUC value of
0.65. The AUC value for PTPN1 alone resulted in 0.64,
therefore combination of the three markers did not improve
substantially the diagnostic accuracy. We next sought to build
a diagnostic model for cognitive impairment. Discriminant
analysis showed that the best predictors of cognitive decline
were EFTUD2, COPZ1, PTPN1, FAXDC2, MLST8 and age.
This signature distinguished cognitive impairment from CN
subjects with 66% accuracy. In this regard, two of these
biomarkers, EFTUD2 and PTBP1 correlated with MoCA scores
in drug naïve PD patients obtained from the Parkinson’s
Progression Markers Initiative (PPMI; Santiago and Potashkin,
2015a). Further analysis showed that relative expression of both
EFTUD2 and PTBP1 was significantly downregulated in PD
patients with cognitive impairment compared to PD patients
with normal cognition (Santiago and Potashkin, 2015a). Thus,
these results confirm the association of EFTUD2 with cognitive
impairment in a second independent cohort. Evaluation of
the other markers included in the signature in a larger
and well-characterized cohort of participants is warranted. In
addition, combination of these RNA markers with protein
biomarkers previously identified as predictors of cognitive
performance like epidermal growth factor (EGF) and insulin like
growth factor 1 (IGF-1) may improve the diagnostic accuracy
and patient stratification (Chen-Plotkin et al., 2011; Pellecchia
et al., 2014). In addition, given the presence of cognitive
impairment in dementia with Lewy bodies, vascular dementia,
vascular parkinsonism and PD dementia (Wen et al., 2017;
Jellinger and Korczyn, 2018), it will be important to assess the
utility of these markers in distinguishing between the different
dementia subtypes.

There are several important aspects in this study design
that need to be considered when interpreting the results from
this study and its discrepancies with our previous studies. For
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example, PDBP differs from PPMI in that PD patients enrolled
in the latter were de novo patients not taking PD medications
at the time of enrollment. Dopaminergic treatment can certainly
affect gene expression and introduce bias since control groups
are exposed to different medications. To ensure consistency
and allow the successful replication and validation of biomarker
studies, standardized protocols for RNA extraction, sample
processing and storage must be followed among all clinical
sites.

Given the complex heterogeneity in PD clinical subtypes it
has become evident that a single biomarker may not be useful
as a diagnostic tool for PD and APD. Multimodal biomarker
approaches including molecular markers, imaging and clinical
tests may be the route to improve the diagnosis and the
clinical management of PD patients. Further, the different PD
clinical subtypes and comorbidities associated with PD should be
considered in the design of future biomarker studies (Santiago
et al., 2017). Replication and validation of biomarkers studies
in independent cohorts as well as the dissemination of positive
and negative results should be encouraged among researchers in
order to advance the development of diagnostic strategies for PD.
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