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Alzheimer’s disease (AD) is a late-onset dementia characterized by the deposition of
amyloid plaques and formation of neurofibrillary tangles (NFTs) which lead to neuronal
loss and cognitive deficits. Abnormal protein aggregates in the AD brain are also
associated with reactive microglia and astrocytes. Whether this glial response is
beneficial or detrimental in AD pathology is under debate. Microglia are the resident
innate immune cells in the central nervous system (CNS) that survey the surrounding
environment. Genome-wide association studies (GWAS) have identified the R47H
variant of triggering receptor expressed on myeloid cell 2 (TREM2) as a risk factor
for late-onset AD (LOAD) with an odds ratio of 4.5. TREM2 is an immunoreceptor
primarily present on microglia in the CNS that binds to polyanionic molecules. The
transmembrane domain of TREM2 signals through DAP12, an adaptor protein that
contains an immunoreceptor tyrosine-based activation motif (ITAM), which mediates
TREM2 signaling and promotes microglial activation and survival. In mouse models of
AD, Trem2 haplodeficiency and deficiency lead to reduced microglial clustering around
amyloid B (AB) plaques, suggesting TREM2 is required for plaque-associated microglial
responses. Recently, TREM2 has been shown to enhance microglial metabolism
through the mammalian target of rapamycin (MTOR) pathway. Although aberrant
metabolism has long been associated with AD, not much was known regarding how
metabolism in microglia might affect disease progression. In this review, we discuss
the role of TREM2 and metabolism in AD pathology, highlighting how TREM2-mediated
microglial metabolism modulates AD pathogenesis.
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ALZHEIMER’S DISEASE AND GENETIC RISK FACTORS

Alzheimer’s disease (AD), the most common form of dementia, is a progressive neurodegenerative
disorder clinically distinguished by loss of memory and deficits in cognitive functions.
Histologically, the hallmarks of AD are aggregation and accumulation of extracellular f amyloid
(AB) plaques and intracellular tau protein neurofibrillary tangles (NFT's), which results in extensive
neuronal death (Holtzman et al, 2011). Plaque forming AP peptides are derived from amyloid
precursor proteins (APP) that are sequentially cleaved by p-secretase and y-secretase (Holtzman
etal, 2011). On the other hand, hyperphosphorylated, aggregated microtubule-binding protein tau
dissociates from microtubules and forms NFT. Accumulation of AB plaques precedes tau-mediated
neuronal dysfunction and cognitive decline in both autosomal dominant and late-onset AD
(LOAD) patients (Jack et al., 2010; Bateman et al., 2012). Whether tau pathology is independent or
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downstream of AP remains elusive. Abnormal protein aggregates
in the AD brain are also associated with a glial response, which
includes activation and recruitment of microglia and astrocytes
to amyloid plaques (Sastre et al., 2006; Ransohoff, 2016). The
impact of AD-associated gliosis remains a topic of extensive
research.

Aging is the greatest risk factor for sporadic AD. Besides
that, genetic, epigenetic, and environmental factors all contribute
to the complexity of AD. Mutations in APP, presenilin 1
(PSENI), and presenilin 2 (PSEN2) cause a rare form of
AD that occurs in an autosomal dominant fashion (Bertram
et al,, 2010). Patients with familial AD develop symptoms as
early as their 20 s or 30 s. Mutations in APP, PSENI and
PSEN?2 cause increased total AP level or an increased ratio of
AB42 to APA40, leading to familial AD (Takasugi et al., 2003).
The genetics of the more common LOAD is more complex.
Many genetic risk factors have been implicated in increasing
susceptibility for LOAD, among which apolipoprotein E (APOE)
confers the highest odds ratio. One copy of the e4 allele of
APOE increases the risk of AD by ~4 fold (Strittmatter et al.,
1993), and individuals carrying two alleles of APOE4 have
a risk of developing AD 12-fold higher than individuals
with two copies of APOE3. In contrast, the APOE2 allele is
neuroprotective and reduces risk of AD by 50% compared with
APOE3 (Bertram et al., 2007). Genome-wide association studies
(GWAS) have identified additional genes associated with AD.
Multiple variants associated with an increased risk of developing
LOAD are in genes related to immune functions, including
triggering receptor expressed on myeloid cells 2 (TREM2),
CD33, CR1, EPHAI and ABCA7 (Hollingworth et al., 2011; Naj
et al, 2011; Lambert et al., 2013). Notably, multiple human
heterozygous rare variants in TREM2 were found with high
risks of LOAD (Guerreiro et al., 2013; Jonsson et al., 2013).
The most common variant within TREM2, rs75932628, encoding
an arginine to histidine at position 47 (R47H) that imparts a
partial loss of function, increases the risk for developing LOAD
by 4-fold (Guerreiro et al.,, 2013; Jonsson et al., 2013). Other
TREM?2 variants, including R62H, D87N, T96K, E151K, H157Y
and L211P, have been associated with LOAD, although their
functional effects vary and the impacts on TREM2 signaling
require further investigations (Guerreiro et al., 2013; Jin et al,,
2014; Song et al, 2017). Altogether, these genetic studies
highlighted the important role of microglia in regulating AD
progression.

MICROGLIA AND AD

Microglia are the resident innate immune cells in the central
nervous system (CNS) that account for ~10%-15% of cells.
Microglia are yolk sac-derived and represent a self-renewing
population that requires colony-stimulating factor 1 receptor
(CSFIR) signaling for development and survival (Ginhoux
et al, 2010; Wang et al., 2012; Elmore et al,, 2014). Besides
their function in brain immunosurveillance, microglia play an
important role in brain development and synaptic plasticity
by constantly surveying the surroundings. In steady state,
microglia engulf synapses through the complement pathway,

which is essential for synaptic connectivity and normal brain
development (Stevens et al.,, 2007; Schafer et al., 2012; Hong
et al, 2016). Cognitively, mice depleted of microglia show
defective learning and memory formation abilities (Parkhurst
et al., 2013).

The exact role microglia play in AD is not completely
clear. In vitro, AB oligomers can induce the production of
proinflammatory cytokines such as interleukin 1 beta (IL-1f) and
tumor necrosis factor alpha (TNFa) in microglia primed by LPS
or IFNy, as well as trigger reactive oxygen species (ROS) and
nitric oxide (NO) production (Meda et al., 1995; Parajuli et al,,
2013), leading to the hypothesis that microglia are neurotoxic
and contribute to a chronic neuroinflammatory environment
in neurodegeneration. Consistent with the idea, knockout of
the NLRP3 inflammasome pathway in APP/PS1 mice skews
microglia to anti-inflammatory states and protects the mice from
memory loss (Heneka et al., 2013). Additionally, AB deposition
induces inflammasome-dependent ASC specks formation in
microglia, which in turn seed AP oligomers and aggregates
and increase AP pathology in a feed forward loop. This
seeding is absent in ASC-deficient mice (Venegas et al., 2017),
suggesting that microglia facilitate plaque formation and play a
detrimental role in AD pathology. In contrast to these findings,
several studies support a neuroprotective role of microglia.
One striking feature of microglia in both AD mouse models
and AD patients is that they cluster around plaques (Ulrich
et al,, 2014; Condello et al., 2015; Jay et al., 2015; Wang et al,,
2015; Yuan et al,, 2016), providing a protective barrier between
neurons and AP and thus preventing neuronal dystrophy.
Furthermore, primary microglia cultures are able to phagocytose
AP complexed with apolipoproteins (Yeh et al., 2016). However,
in transiently microglia depleted AD mice, the overall Af
level is not affected, compared to wild-type (WT) AD controls
(Spangenberg et al.,, 2016), suggesting microglia’s dispensable
role in AP phagocytosis, which might be compensated by
astrocytes.

Single-cell RNA sequencing analysis has allowed finer
characterization of disease-associated microglia (DAM; also
defined as microglial neurodegenerative phenotype (MGnD)),
which localize to plaques in AD mouse models and are also found
in other neurodegenerative models, namely amyotrophic lateral
sclerosis (ALS) and experimental autoimmune encephalomyelitis
(EAE; Keren-Shaul et al, 2017; Krasemann et al, 2017).
DAM downregulate homeostatic microglial genes such as
P2ry12, Tmeml119 and Cx3crl, while inducing the expression
of several AD associated activation markers, such as Apoe,
Tyrobp and Trem2 (Keren-Shaul et al., 2017; Krasemann et al,,
2017). Keren-Shaul et al. (2017) proposed that TREM2 is
required for induction of fully activated DAM, which is
preceded by an intermediate state of microglial activation
initiated in a TREM2-independent manner. On the other
hand, Krasemann et al. (2017) showed that induction of
MGnD can be initiated by phagocytosis of apoptotic neurons
and is mediated by TREM2-induced expression of ApoE and
miR-155. TREM2 is a critical regulator of DAM activation
yet the exact role of TREM2 in this process needs further
investigations.
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FUNCTIONS OF TREM2

TREM2 is an immunoglobin (Ig) superfamily receptor present
on various cells of the myeloid lineage including CNS
microglia, bone osteoclasts, alveolar and peritoneal macrophages
(Colonna and Wang, 2016). TREM2 consists of an extracellular
V-type Ig-like domain, a transmembrane domain, a stalk
region that connects the two and a short cytoplasmic tail.
TREM2 binds to polyanionic molecules such as bacterial
lipopolysaccharide (LPS; Daws et al., 2003), phospholipids
(Wang et al, 2015), lipoproteins such as HDL and LDL
(Song et al., 2017), which form complexes with APOE and
APOJ (Atagi et al, 2015; Yeh et al, 2016) and apoptotic
neurons, and signals through DAP12 (TYROBP; Figure 1).
DAP12 is an adaptor protein that contains immunoreceptor
tyrosine-based activation motifs (ITAMs), which function as
docking sites for protein kinases. Upon TREM2 ligand binding,
the ITAMs of DAP12 get phosphorylated and recruit spleen
tyrosine kinase (SYK), which initiates protein tyrosine kinase
phosphorylation, phosphoinositide 3-kinase (PI3K) activation,
efflux of Ca?t and mitogen-activated protein kinase (MAPK)
activation. One report showed that DAP10, an adaptor closely
related to DAPI2, is required for the recruitment of the
p85 subunit of PI3K to DAP12 (Peng et al., 2010; Figure 1).
The triggering of kinase cascades by TREM2 activation promotes
microglial survival, proliferation and leads to rearrangement
of actin cytoskeleton. Lack of Trem2 impairs proliferation
of osteoclast precursors (Otero et al, 2012) and Trem2~/~
microglia or macrophages are less viable under stress (Wang
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FIGURE 1 | Triggering receptor expressed on myeloid cells 2

(TREM2) maintains microglial metabolism through the mammalian target of
rapamycin (MTOR) pathway in Alzheimer’s disease (AD). TREM2 pairs with
DAP12 through charge interactions in the transmembrane domain. Upon
TREM2 ligand binding, DAP12 gets phosphorylated and recruits spleen
tyrosine kinase (SYK), which initiates a cascade of signaling events, including
phosphoinositide 3-kinase (PI3K) activation, which is composed of p85 and
p110. The recruitment of p85 requires DAP10. One of the PI3BK downstream
targets AKT then activates mammalian target of rapamycin complex 1
(mMTORC1) and mTORC2, which inhibits autophagy. These signaling events
maintain microglia at high energy states so that in AD models, microglia are
able to cluster around amyloid plaques.

et al, 2015; Wu et al,, 2015). In vitro, several studies have
suggested that TREM2 may be a phagocytic receptor that
mediates phagocytosis of apoptotic neurons (Takahashi et al,
2005; N’Diaye et al., 2009) or lipidated AP (Yeh et al,
2016). TREM2 mutations Y38C and T66M that reduce cell
surface TREM2 expression impair phagocytosis (Kleinberger
et al., 2014). Migration of microglia towards injected apoptotic
neurons was also attenuated in Trem2~/~ mice (Mazaheri
et al., 2017). In addition, TREM2 also modulates inflammation.
In Trem2~/~ or Dapl2~/~ macrophages stimulated with low
amounts of toll-like receptor (TLR) agonists, the level of
inflammatory cytokines produced, such as TNFo and IL-6,
is significantly increased (Hamerman et al., 2006; Turnbull
et al, 2006), indicating TREM2 modulates TLR-mediated
inflammatory responses but only in response to low levels of
TLR stimulation. Furthermore, AP binds to TREM2 and activates
TREM2 signaling pathway (Lessard et al., 2018; Zhao et al., 2018).
Whether TREM2 binding to Af affects inflammatory responses
in microglia needs further studies, since very few changes in
cytokine production after AB stimulation alone were detected
(Zhao et al., 2018).

Membrane bound full-length TREM2 undergoes sequential
protease cleavages by a disintegrin and metalloproteases
(ADAMs) and y-secretase, which produces soluble TREM2
(sTREM2; Wunderlich et al., 2013; Kleinberger et al., 2014).
In AD patients, STREM2 levels increase in the cerebrospinal
fluid (CSF) and correlate with the levels of tau in CSF (Suérez-
Calvet et al,, 2016), indicating STREM2 as a biomarker for
AD. It is possible that sSTREM2 acts as a decoy receptor that
inhibits full length membrane-bound TREM2 from binding to
its ligands. Recently, two groups suggested sSTREM2 increases
cell viability (Wu et al., 2015; Zhong et al., 2017). However, a
receptor responsible for activating downstream survival signals
was not identified and thus the physiological function of
STREM2 remains elusive.

TREM2 AND AD PATHOLOGY

The importance of TREM2 in the CNS was first highlighted by
the discovery of Nasu-Hakola disease (NHD), a rare autosomal
recessive disorder presented with an early onset dementia.
Homozygous loss-of-function mutations in either TREM2 (such
as Q33X, Y38C and T66M) or DAP12 lead to NHD and FTD-like
syndrome (Bianchin et al., 2006; Guerreiro et al., 2013). More
recent studies have associated TREM2 with increased risk of
several neurodegenerative diseases, including AD (Guerreiro
etal,, 2013; Jonsson et al., 2013), Parkinson’s Disease (Rayaprolu
et al., 2013), frontotemporal dementia (Thelen et al., 2014) and
ALS (Cady et al,, 2014).

Mechanisms of TREM2-related neurodegeneration have
been intensively investigated. Many studies have shown that
microglia in mouse models and patients with AD upregulate
TREM2 expression (Frank et al.,, 2008; Lue et al., 2015; Wang
et al.,, 2015), suggesting that upregulation of TREM2 may be
associated with AD progression. Moreover, TREM2 plays a
prominent role in driving microgliosis in AD mouse models
and patients. In AD mice expressing WT Trem2, microglia
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cluster around plaques, providing a barrier to the surrounding
neurons (Ulrich et al., 2014; Jay et al., 2015; Wang et al,
2015, 2016; Yuan et al., 2016). On the contrary, the number
of plaque-associated microglia is significantly reduced in Trem2
deficient AD mice, and the effect is Trem2 gene dose-dependent
(Jay et al., 2015; Wang et al., 2015). In both transgenic mice
expressing the human TREM2 R47H or patients with the R47H
variant, a similar reduction in microgliosis is observed (Yuan
et al,, 2016; Song et al., 2018), supporting that R47H is a loss-of-
function mutation. Consistently, a larger number of dystrophic
neurites accumulate around plaques in Trem2~/~ 5xFAD mice,
compared to WT Trem2 5xFAD. The observations of plaque-
associated microglia are consistent with the identification of
DAM (Keren-Shaul et al.,, 2017; Krasemann et al., 2017). As
DAM are phagocytic, one would hypothesize that in Trem2~/~
AD mice, lack of DAM would lead to increased AP burden.
However, observations on plaque load in Trem2-deficiency AD
mice are inconsistent (Ulrich et al., 2014; Jay et al., 2015; Wang
et al,, 2015), which is likely due to different mouse models
used or timing at which the analyses were done (Jay et al,
2017). Despite discrepancies on plaque load, changes in plaque
morphology have been reported by several groups. In Trem2~/~
5xFAD mice, amyloid plaques appear with loosely packed cores
and more diffuse structures extending outward (Wang et al.,
2016; Yuan et al, 2016), which is also observed in R47H
carriers (Yuan et al, 2016), suggesting that TREM2-mediated
microglia-plaque interaction may be critical for compacting
amyloid fibrils. Whether the changes in plaque structure are
relevant to the role of TREM2 in AD is uncertain, since
diffuse non-fibrillar plaques also occur in cognitively normal
individuals (Morris et al., 2014). More studies are needed to
investigate if compositions of plaques are different. Besides,
whether the increased neuritic dystrophy in Trem2 deficient
mice is due to impaired clearance of damaged neurites by
Trem2~/~ microglia or the result of elevated damage by loosely
compacted plaques also remains unclear. Collectively, these
studies indicate that TREM2 signaling promotes microglial
responses to AP in AD.

The effects of TREM2 on tau-driven AD models have not
been intensely investigated. Recently, two groups that studied tau
models showed inconsistent results. In the PS19 tau transgenic
mice that express a human tau with the P301S mutation, lack
of Trem2 leads to less brain atrophy but no change in tau
phosphorylation or aggregation. These tau mice lacking Trem2
show reduced microgliosis and decreased microglial activation at
9-month old (Leyns et al., 2017). In contrast, in another study
using a mouse model expressing the full-length human tau gene,
Trem2 deficiency resulted in elevated hyperphosphorylation and
aggregation of tau (Bemiller et al., 2017). As with Ap models,
controversy on effects of TREM2 in tau pathology remains. The
relationship of AP and tau and how it is affected by TREM2 are
interesting topics for future studies.

TREM2 AND METABOLISM

Metabolic dysfunctions have long been associated with AD,
while most studies focused on neuronal metabolisms. Our group

and others have recently linked defective microglial function to
metabolism in dementia. Kleinberger et al. (2017) demonstrated
that cerebral metabolic rates of glucose slowed down as shown
by reduced FDG-uPET signal in a Trem2 T66M knock-in mouse
model of NHD. The reduced glucose usage could be due to
defective microglial function that impairs the metabolic states
of the brain, hinting that dysfunctional TREM2 might alter the
brain metabolism and thus promote pathogenesis (Kleinberger
etal., 2017).

In another study, it was shown that Trem2-deficient bone
marrow-derived macrophages exhibit a defective energetic
and anabolic state, which is further exacerbated by stress,
such as CSF1 reduction (Ulland et al., 2017). This metabolic
defect is a result of reduced mammalian target of rapamycin
(mTOR) signaling, which is ameliorated by activation of
Dectin-1, a receptor that activates downstream PI3K and
mTOR independent of TREM2, or cyclocreatine, a creatine
analog that restores ATP level. Impaired mTOR signaling
was also observed in microglia sorted from Trem2~/~
5xFAD mice. These results suggest that TREM2 maintains
microglia at high metabolic states through enhanced
activation of the mTOR pathway (Figure 1). Furthermore,
increased autophagy is detected in Trem2-deficient microglia
and in AD patients carrying one allele of the R47H or
R62H variant of TREM2, suggesting microglia attempt to
compensate the mTOR defects with autophagy as a survival
mechanism.

AUTOPHAGY AND AD

Autophagy is a self-eating process where cells clear misfolded
proteins and damaged organelles as a housekeeping mechanism
and as a survival mechanism during stress and starvation.
The formation of an autophagophore, an isolation membrane
that initiates autophagy and becomes the autophagosome later,
requires the ULK complex and the class III PI-3 kinase (PI3K)
complex composed of Vps34, Beclin-1, p150 and ATG14.
The ULK complex is inactivated by mammalian target of
rapamycin complex 1 (mTORC1) and positively regulated by
AMP-activated protein kinase (AMPK). Activation of ULK
and PI3K complexes recruit additional autophagy related
(ATG) proteins to drive autophagosome nucleation. Then
the ATG12-ATG5-ATG16 complex is recruited to facilitate
lipidation of microtubule-associated protein 1 light chain 3
(LC3), resulting in the conversion of LC3-I to LC3-II, as
the isolation membrane expands to form the autophagosome
(Kabeya et al., 2000). In mammalian cells, only LC3-II remains
on autophagosome membranes until after their fusion with
lysosomes, allowing it to be a marker for autophagy (Mizushima
et al., 2010).

Autophagy has been associated with AD. The levels of
autophagy protein Beclin 1 are decreased in AD patients but
not in AD mouse models (Pickford et al., 2008), pointing
to the possibility that Beclin 1 reduction occurs upstream of
amyloid pathology. Genetic ablation of one copy of Beclinl
reduces autophagy in cultured primary neurons and increases Ap
deposition and neuronal loss in an AD model. On the other hand,
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an increase of CD68 immunoreactivity, an activation marker,
with the absence of change in Ibal marks microglial activation
in Beclin 17/~ AD mice without affecting microglial number
(Pickford et al.,, 2008). These findings indicate that neuronal
autophagy plays a protective role in AD progression. In line
with this, overexpression of another autophagy gene, p62, by
adeno-associated virus (AAV) infection in neurons improves
cognitive functions and reduces AP pathology in an autophagy-
mediated manner (Caccamo et al., 2017). Pharmaceutically,
feeding mice with rapamycin, an inhibitor of the mTOR
pathway, induces autophagy in two mouse models of AD but
not in non-AD littermate controls, suggesting high Af level
is a trigger of autophagy. This rapamycin-mediated mTOR
inhibition leads to a reduction of AB42 level in the hippocampus
and an amelioration in memory deficits by increasing autophagy
(Caccamo et al., 2010; Spilman et al., 2010). Although all these
studies suggest a protective function of autophagy, whether this
effect is only mediated by neurons or if glia also play a role is
unclear.

Rather, our study demonstrated a role of TREM2 in
attenuating microglial autophagy (Ulland et al., 2017). Compared
to control, microglia lacking TREM2 contain more autophagic
vesicles as shown by electron microscopy. Increased autophagy
in Trem2-deficient microglia is a result of reduced mTOR
signaling in response to a low metabolic state of microglia
and this increase in autophagy is not sufficient to rescue
microglia from dying under stress, such as neuroinflammation.
Interestingly, dietary supplementation with cyclocreatine rescues
Trem2-deficient microglia from autophagy and partially corrects
the defect in microglial clustering in Trem2~/~ 5xFAD. These
results suggest that TREM?2 sustains microglial metabolism thus
allowing them to function properly. This study links TREM2 to
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