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Prion diseases are transmissible progressive neurodegenerative conditions
characterized by rapid neuronal loss accompanied by a heterogeneous neuropathology,
including spongiform degeneration, gliosis and protein aggregation. The pathogenic
mechanisms and the origins of prion diseases remain unclear on the molecular
level. Even though neurodegenerative diseases, including prion diseases, represent
distinct entities, their pathogenesis shares a number of features including disturbed
protein homeostasis, an overload of protein clearance pathways, the aggregation of
pathological altered proteins, and the dysfunction and/or loss of specific neuronal
populations. Recently, direct links have been established between neurodegenerative
diseases and miRNA dysregulated patterns. miRNAs are a class of small non-coding
RNAs involved in the fundamental post-transcriptional regulation of gene expression.
Studies of miRNA alterations in the brain and body fluids in human prion diseases
provide important insights into potential miRNA-associated disease mechanisms and
biomarker candidates. miRNA alterations in prion disease models represent a unique
tool to investigate the cause-consequence relationships of miRNA dysregulation in
prion disease pathology, and to evaluate the use of miRNAs in diagnosis as biomarkers.
Here, we provide an overview of studies on miRNA alterations in human prion diseases
and relevant disease models, in relation to pertinent studies on other neurodegenerative
diseases.

Keywords: microRNAs, prion diseases, sCJD, prion diseases animal models, brain, CSF, blood,
neurodegenerative disorders

INTRODUCTION

Prion diseases are rapidly progressive, fatal neurodegenerative disorders, characterized by
widespread neuronal loss, gliosis, spongiform change and deposition of the pathological PrPSc

protein in the Central Nervous System (CNS) (Appleby et al., 2009). Similarly to other
neurodegenerative disorders (NDs), dysfunctional proteostasis is a key feature in prion diseases.
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Changes in the cellular prion protein (PrPC) metabolism and its
conversion into an aberrant isoform (PrPSc) in a self-propagating
manner are attributed to prion diseases pathogenesis (Colby
and Prusiner, 2011). However, precise molecular pathogenic
mechanisms remain unclear. Prion disease model systems,
including animal and cell culture models, recapitulate different
aspects of disease mechanisms and are valuable for exploring
underlying pathogenesis (Zou and Gambetti, 2004; Watts and
Prusiner, 2014; Brandner and Jaunmuktane, 2017).

miRNA dysregulation has been linked to several NDs (Hébert
and De Strooper, 2009; Abe and Bonini, 2013; Tan et al., 2015),
including prion diseases. miRNAs are a class of short, non-
coding RNAs that regulate gene expression post-transcriptionally
through translational inhibition and/or mRNA degradation.
They are involved in several biological processes, including
neuronal function and survival (Zhang et al., 2007). miRNA
biogenesis includes several processing steps mediated by multiple
miRNA maturating proteins in the nucleus and cytoplasm
(Ha and Kim, 2014). miRNAs are usually transcribed by RNA
polymerase II as long, primary miRNA transcripts and undergo
a series of cleavage events by the ribonucleases Drosha and
Dicer, as well as post-transcriptional modifications, such as
splicing and editing (Slezak-Prochazka et al., 2010). Mature
miRNAs interact with Argonaute proteins to form the miRNA-
induced silencing complex (RISC), which mediates translational
repression or target degradation through binding to mRNAs
(Bartel, 2009; Hammond, 2015). Various regulatory mechanisms
affect miRNAs processing efficiency and activity (Finnegan and
Pasquinelli, 2013; Ha and Kim, 2014).

A collective view of miRNA alterations in prion disease
patients and/or relevant disease models is currently unavailable.
We review experimentally validated miRNA alterations in the
brain and body fluids of human prion diseases and/or disease
models. We compare these deregulated miRNAs with other NDs;
we comment on possible outcomes of miRNA dysregulation
in prion diseases and discuss potential underlying mechanisms
of this deregulation. We further discuss the diagnostic and
therapeutic potential of miRNAs. Finally, we present future
perspectives in the prion diseases miRNA research field.

miRNA SIGNATURES IN THE BRAIN OF
PRION DISEASES-AFFLICTED
INDIVIDUALS

Studies on miRNA alterations were conducted in the brain of
patients afflicted with sporadic Creutzfeldt-Jakob disease (sCJD)
(Montag et al., 2009; Lukiw et al., 2011; Llorens et al., 2018), Fatal
Familial Insomnia (FFI) (Llorens et al., 2018) and Gerstmann–
Sträussler–Scheinker syndrome (GSS) (Lukiw et al., 2011).

Altered miRNA expression has been investigated in animal
and cell culture models including: (a) a sCJD mouse model
that recapitulates CJD brain neuropathology (Padilla et al.,
2011; Llorens et al., 2014, 2017, 2018), (b) BSE-infected
macaques (Montag et al., 2009) (c) murine models intracerebrally
inoculated with various scrapie strains [RML (Majer et al., 2012;

Boese et al., 2016), 139A (Gao et al., 2016), Me7 (Gao et al., 2016)
and 22A (Saba et al., 2008)] or scrapie infected SMB-S15 cells
(Gao et al., 2016), (d) murine hypothalamic GT1-7 cells infected
with a mouse adapted human GSS strain (Bellingham et al., 2012;
Bellingham and Hill, 2017) and (e) murine neuroblastoma cells
propagating the 22L scrapie strain (Montag et al., 2012).

We detected limited overlap among the altered miRNAs
reported by these studies. This is likely explained by the multitude
of factors that vary between analyzed prion models and/or
strains, different miRNA profiling platforms and heterogeneity
of analyzed tissues (bulk tissue, microdissected neurons, isolated
synaptoneurosomes, etc.). When comparing different miRNA
profiling platforms, interplatform reproducibility is often not
fully achieved and even variations within the same platform
have been described (Chugh and Dittmer, 2013). Methodological
advantages, drawbacks and features, possibly contributing to
limited results overlap are briefly discussed below.

Microarray technology, quantitative real-time reverse
transcription PCR (qRT-PCR) and/or Northern Blot analyses
were used for targeted miRNA profiling. Microarrays enabled
simultaneous quantification of several miRNAs at the expense
of specificity, due to the homogeneous hybridization conditions
used. Individual miRNA qRT-PCR assays, based on either
stem-loop or locked nucleic acid-modified (LNA) primers,
enhanced specificity and enabled differentiation of mature
miRNAs from precursors (Pritchard et al., 2012; Chugh and
Dittmer, 2013). Even though highly sensitive, Northern Blot
analysis, is time-consuming and laborious for large scale miRNA
analysis (Koshiol et al., 2010).

Application of small RNA sequencing (RNAseq) allowed high-
throughput analysis on single-nucleotide resolution, offering
comprehensive and unbiased miRNA quantifications. However,
method-dependent distortions in miRNA quantification have
been reported. Multiple factors, such as RNA G/C-content
or secondary RNA structures, can influence cDNA synthesis
(Raabe et al., 2014). Overall, platform-specific biases affect
the consistency and accuracy of miRNA profiling, which may
contribute to variability in miRNA quantification (Chugh and
Dittmer, 2013).

Despite the limited overlap, some miRNAs presented similar
deregulation in at least two independent disease contexts. Table 1
summarizes experimentally validated miRNAs found to display
similar deregulation patterns in prion affected brain tissue, at
clinical disease.

Upregulation of miR-146a-5p was demonstrated in six
independent studies, including sCJD and GSS (Lukiw et al.,
2011), sCJD and the corresponding mice model (Llorens et al.,
2018), mice scrapie models [139A (Lukiw et al., 2011; Gao et al.,
2016), Me7, S15 (Gao et al., 2016), 22A (Saba et al., 2008)], and
CA1 (Cornu Ammonis region 1) neurons (Majer et al., 2012), as
well as forebrain synaptoneurosomes (Boese et al., 2016) from
RML infected mice. Additionally, miR-146a-5p showed a trend
toward upregulation in an in vitro scrapie model (Montag et al.,
2012).

Similarly, miR-26a-5p was upregulated in: (a) sCJD brain, (b)
sCJD mice (Llorens et al., 2018) and (c) BSE-infected macaques
(Montag et al., 2009). Analogous deregulation, also extending
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to 22A-scrapie mice, was observed for miR-342-3p (Saba et al.,
2008). Upregulation of miRNA-195-5p was reported in FFI, sCJD
and in sCJD-mice (Llorens et al., 2018). Increased levels of
miR-16-5p, miR-29b-3p, let-7i-3p, miR-378a-3p, miR-449a, and
miR-154-5p were observed in sCJD patients and in the sCJD mice
model brain, suggesting disease-specific miRNA profiles (Llorens
et al., 2018). Further, upregulation of miR-341-3p, miR-3470a,
miR-3473a, miR-879-5p, and miR-200b-5p in the cortex of mice
infected with several scrapie strains (Gao et al., 2016) suggests
common responses at the miRNA level elicited by different
scrapie strains.

Among downregulated miRNAs, miR-124-3p was reduced in
the frontal cortex and cerebellum of both sCJD patients and
sCJD mice (Llorens et al., 2018) and in RML-infected mice
CA1 neurons (Majer et al., 2012). Other miRNAs downregulated
in the cortex of mice infected with different scrapie strains
were miR-182-5p, miR-200a-3p, miR-96-5p, and miR-200b-3p
(Gao et al., 2016). A similar pattern was observed for miRNA-
141-3p, which was also downregulated in RML-mice forebrain
synaptoneurosomes (Boese et al., 2016).

Temporal miRNA Expression Analyses in
Prion Diseases
Temporal miRNA analyses in: (a) RML mice CA1 microdissected
neurons (Majer et al., 2012; Burak et al., 2018), (b) RML mice
forebrain and hippocampus synaptoneurosomes (Boese et al.,
2016) and (c) sCJD mice cortex and cerebellum (Llorens et al.,
2018), suggest distinct and dynamic miRNA signatures in disease
progression. A trend toward upregulation for miR-124-3p, miR-
16-5p, miR-26a-5p, miR-29a-3p, miR-132-3p, and miR-140-5p
at pre-clinical stages, followed by downregulation to basal levels
during disease progression and a further reduction throughout
the clinical disease stage was identified in RML mice CA1
neurons; miR-146a-5p displayed increased levels throughout
disease progression, reaching its highest levels at preclinical
stages (Majer et al., 2012). Upregulation of miR-16-5p was also
observed during early prion disease in RML mice neurons by a
follow-up study (Burak et al., 2018). Upregulation of miR-124-3p
was also detected in pre-clinical RML mice synaptoneurosomes,
along with miR-32-5p, miR-136-5p, miR-150-5p, miR-345-5p,
and miR-361-5p, while miR-141-3p, miR-183-5p, and miR-200c-
3p were reduced in the same preparations (Boese et al., 2016).

Interestingly, among a pool of miRNAs specifically
dysregulated in clinical sCJD disease, miR-124-3p and miR-
16-5p change their expression during early symptomatic phase
in sCJD mice (Llorens et al., 2018), suggesting their contribution
in pre- and early clinical disease mechanisms.

A schematic illustration of temporal miRNA alterations
during disease progression is shown in Figure 1.

miRNA Deregulation Patterns in Prion
Diseases and Other NDs
Some miRNAs dysregulated in prion diseases are also altered
in the brain of other NDs, displaying a similar or contrasting
trend. The upregulated in prion diseases miR-146a-5p has been
found overexpressed in active Multiple Sclerosis (MS) lesions

(Junker et al., 2009), and in Alzheimer’s disease (AD) brain (Sethi
and Lukiw, 2009; Müller et al., 2014) associated with different
cellular contexts, including neurons (Wang et al., 2016) and
astrocytes (Cui et al., 2010; Arena et al., 2017). Differential miR-
146a-5p expression is suggested by in vitro studies in brain cells
contributing to inflammatory cell type-specific functions during
neurodegeneration (Li et al., 2011). Similar to miR-146a-5p, miR-
195-5p is upregulated in prion disease brain and in inactive MS
lesions (Junker et al., 2009); miR-16-5p is upregulated in both
prion diseases and AD brain (Müller et al., 2014) and miR-26a-
5p is increased in prion diseases and in dopaminergic midbrain
Parkinson’s disease (PD) neurons (Briggs et al., 2015).

On the contrary, miR-29b-3p displays opposite regulation in
MS and AD compared to prion diseases, as it is downregulated
in normal appearing white matter (NAWM) (Noorbakhsh et al.,
2011) and in chronic MS lesions (Lau et al., 2013); the same
miRNA is decreased in the anterior temporal cortex and
cerebellum of AD patients with increased BACE1 expression
(Hebert et al., 2008).

Similar miRNA alterations in prion diseases and other NDs
may indicate common miRNA-regulated molecular pathways.
Identification of prion-disease-specific miRNA alterations in
human brain, followed by robust confirmation in appropriate
models, are required to gain insights into the specific role
of miRNAs deregulation in prion diseases, and/or therapeutic
potential.

FUNCTIONAL IMPLICATIONS OF miRNA
ALTERATIONS IN PRION DISEASES

One outstanding question is to what extent miRNA alterations
(Table 1) reflect prion disease processes. Since miRNAs are
involved in the regulation of complex gene networks, reported
miRNA alterations in prion disease have the potential to be
involved in virtually every aspect of disease pathophysiological
mechanisms.

Interesting functional implications for potentially disease-
associated miRNAs have been observed. The brain-enriched,
NF-κB-sensitive miR-146a-5p has been suggested as a mediator
of inflammatory microglial responses in prion disease (Lukiw
et al., 2011; Saba et al., 2012). Additionally, compelling
evidences revealed significant miR-146a-5p overexpression in
prion disease neurons (Majer et al., 2012; Boese et al., 2016;
Llorens et al., 2018), suggesting that neuronal miR-146a-5p
induction is triggered by pathological stimuli. Further, miR-
146a-5p overexpression in a neuronal cell culture model
resulted in MAP1B downregulation, indicating miRNA-mediated
mechanisms involved in microtubules networks regulation,
with extensions to synaptic plasticity (Chen and Shen, 2013).
Moreover, miR-146a-5p has been linked with regulation of
reactive oxygen species generation (redoximiR), through NOX4
repression (Cheng et al., 2013).

The neuron-enriched miR-124-3p has been associated
with neurite outgrowth (Maiorano and Mallamaci, 2009),
dendritic complexity (Sanuki et al., 2011) and cholinergic
anti-inflammatory responses (Sun et al., 2013), suggesting that its
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FIGURE 1 | Correlation between miRNA alterations and disease progression in prion diseases. Temporal miRNA profilng during prion disease progression in CA1
neurons (Majer et al., 2012), synaptoneurosomes (Boese et al., 2016) and brain regions (Llorens et al., 2017) revealed distinct miRNA alterations with disease
progression. Different disease stages are featured by specific miRNA signatures. Upregulation of miR-146a-5p, miR-16-5p and miR-26a-5p appeared in two prion
disease models across disease progression. Downregulation of miR-124-3p was specifically observed during clinical prion disease stages, while the same miRNA
(miR-124-3p) was found upregulated in CA1 neurons and synaptoneurosomes at pre-clinical stages in two prion disease models.

pre-clinical upregulation may reflect compensating mechanisms
to overcome synaptic dysfunction (Cunningham et al., 2003;
Hilton et al., 2013) and inflammatory processes (Carroll et al.,
2015) during early disease responses.

In vitro studies revealed that lentiviral-based miR-16-5p
overexpression, mimicking miR-16-5p upregulation observed in
disease condition, induce reduced neurite length and branching
of cultured hippocampal neurons (Burak et al., 2018). Also
neuroprotective roles were suggested for miR-16-5p in the aging
brain (Parsi et al., 2015), indicating multivariable effects of single
miRNAs on cellular processes (Wilczynska and Bushell, 2015).

All the above highlight the complexity of miRNA-mediated
regulation of cellular processes, stressing the need for further
studies to globally identify miRNA-mRNA interactions within the
disease context.

MECHANISMS OF ALTERED miRNA
SIGNATURES IN HUMAN PRION
DISEASES

Expression and cellular miRNA abundance is influenced by
mechanisms including genetic and epigenetic factors, RNA
editing, alteration of transcription factors targeting miRNA,
altered miRNA biogenesis, miRNA turnover and/or miRNA

sorting in specific cellular compartments (Schanen and Li, 2011;
Bronevetsky and Ansel, 2013; Tomaselli et al., 2013; Gulyaeva and
Kushlinskiy, 2016).

Genetic variations, such as single nucleotide polymorphisms
(SNPs) in miRNA genes or their target sites affecting miRNA
expression, biogenesis and target binding (Jin and Lee, 2013; Saba
and Booth, 2013) have been associated with NDs (Saba et al.,
2014; Zhang et al., 2015; Moszyńska et al., 2017). A miR-146a
promoter SNP (rs57095329) is associated with susceptibility to
FFI and correlated with appearance of mutism and detection
of the 14-3-3 protein in the Cerebrospinal Fluid (CSF) of sCJD
patients (Gao et al., 2017). The same SNP has been suggested
as a risk factor for AD (Cui et al., 2014), while another SNP
(rs2910164) residing in pri-miR-146a, has been associated with
AD (Zhang et al., 2015) and MS (Kiselev et al., 2015; Li et al.,
2015; Park et al., 2016; Zhou et al., 2017).

Dysfunctional regulatory pathways involving transcription
factors may underlie miRNA alterations in prion diseases. A pool
of miRNAs upregulated in sCJD brain has been observed to
be under the control of STAT3 (Llorens et al., 2018), which
is upregulated and activated in prion diseased brain (Llorens
et al., 2014; Carroll et al., 2015), suggesting a STAT3-dependent
mechanism of miRNA deregulation in sCJD.

Disruption of miRNA biogenesis may contribute to miRNA
dysregulation in prion diseases. Reduced levels of the essential
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miRNA maturing proteins Drosha, its cofactor DGCR8 and
Dicer have been reported in sCJD patients brain (Llorens et al.,
2018). Argonaute proteins, essential components of the miRNA-
guided gene regulation, show altered subcellular distribution in
sCJD brain (Llorens et al., 2018). Interestingly, PrPC has been
shown to interact with Argonaute proteins under physiological
conditions, promoting and stabilizing RISC complexes (Gibbings
et al., 2012). Whether the presence of PrPSc or the lack of
PrPC functionality directly contributes to miRNA dysregulation
in prion disease deserves investigation. Figure 2 summarizes
potential mechanisms of miRNA deregulation in prion diseases.

Other NDs also display deregulated miRNA biogenesis (Tan
et al., 2015); upregulation of Drosha, DGCR8 and Dicer has
been observed in MS patients brain (Jafari et al., 2015); further,
abnormal cellular distribution of Drosha (Porta et al., 2015) and
Dicer dysfunction (Emde et al., 2015) have been reported in ALS
patients brains.

ALTERED miRNAs AS POTENTIAL
DIAGNOSTIC TOOLS IN PRION
DISEASES

Peripheral circulating miRNA profiles corresponding to miRNAs
from peripheral blood mononuclear cells (PBMCs), blood
plasma/serum and CSF, either as free-circulating molecules
or as exosome contents, may provide important indicators
of pathophysiological processes in the brain (Sheinerman and
Umansky, 2013; Grasso et al., 2015).

In contrast to other NDs such as AD (Kiko et al., 2013; Müller
et al., 2014; Lusardi et al., 2016) and MS (Quintana et al., 2017),
very limited information on experimentally validated miRNA
alterations in CSF from healthy and prion diseases affected
individuals is available. A preliminary analysis including a small
number of miRNAs selected based on their deregulation in sCJD
human brain, indicated low correspondence between altered
miRNAs in sCJD brain and CSF. Several miRNAs displaying
increased levels in sCJD brain, such as miR-26a-5p, miR-195-5p,
let-7i-3p, miR-378a-3p, miR-449a, miR-124-3p, and miR-154-
5p, did not show significant differences in sCJD CSF samples
compared to healthy individuals (Llorens et al., 2018). However,
identification of miR-204-5p differential levels in the CSF of
controls and sCJD patients, indicates the potential use of CSF
miRNAs as biomarkers for prion diseases diagnosis.

Regarding the diagnostic potential of miRNAs in prion
diseases utilizing less invasive sampling methods, a recent study
reported increased levels of circulating miR-342-3p and miR-21-
5p in the plasma of sheep naturally affected by scrapie (Rubio
et al., 2017), encouraging high-throughput analyses of plasma
miRNAs in animal and human prion disease cases in relation to
control samples and further validation of the most potent targets.

Interestingly, increased levels of miR-342-3p and miR-21-
5p were also reported in exosomes released from murine
hypothalamic cells infected with the mouse-adapted M1000
strain of human GSS (GSS-GT1-7) (Bellingham et al., 2012).
Exosomes are lipid vesicles derived from most cells, including
neurons and glia; they carry specific enriched subsets of nucleic

acids, including miRNAs and mRNAs, various proteins and
lipids. Exosomal pathways are considered as contributors to
inter-cellular communication, and to several neurodegenerative
states by spreading pathological proteins and other disease-
associated molecules (Hartmann et al., 2017; Soria et al.,
2017). In prion diseases, the exosomal miRNA provides an
appealing approach for disease-specific diagnostic signatures.
Since exosomes may be detected in CSF, blood plasma or
serum, it is tempting to speculate that exosomes isolated from
body fluids of prion affected individuals would present specific
miRNA patterns of potential diagnostic value. Toward this goal,
miR-21-5p and miR-322-5p (also identified as upregulated in
exosomes from GSS infected cells, Bellingham et al., 2012), not
previously suggested as biomarkers in blood serum/plasma of
other NDs such as AD (Geekiyanage et al., 2012; Kiko et al.,
2013; Dong et al., 2015; Guo et al., 2017; Nagaraj et al., 2017;
Zeng et al., 2017), MS (Vistbakka et al., 2017), PD (Ding et al.,
2016; Dong et al., 2016; Ma et al., 2016), and ALS (Freischmidt
et al., 2013), emerge as prion-specific biomarker candidates.
Other prion infected exosomal miRNAs with diagnostic potential
include let-7b-5p, miR-29b-3p, miR-222-3p, and miR-342-3p;
these miRNAs display inverse deregulation in prion infected
exosomes (upregulation, Bellingham et al., 2012) compared to
ALS (let-7b-5p in ALS patients serum, Freischmidt et al., 2013),
or AD [miR-29b-ep in AD patients serum (Geekiyanage et al.,
2012) and/or PBMCs (Villa et al., 2013), miR-222-3p in AD
patients serum (Zeng et al., 2017) and miR-342-3p in AD
serum (Tan et al., 2014)]. Other upregulated in prion infected
exosomes miRNAs, such as let-7i-5p and miR-128-3p, and
the downregulated miR-146a-5p, display similar deregulation
patterns in MS patients exosomes (let-7i-5p, Kimura et al., 2018),
Primary Progressive (PPMS) MS patients serum (miR-128-3p,
Vistbakka et al., 2017) and AD (miR-146a-5p, Kiko et al., 2013;
Dong et al., 2015) or PD patients serum (miR-146a-5p, Ma et al.,
2016).

Further high throughput studies and subsequent validation
are required to identify effective prion specific miRNA
biomarkers in body fluids.

FUTURE PERSPECTIVES IN PRION
DISEASES miRNA RESEARCH

To explore the functional role of dysregulated miRNA networks
in prion disease pathology it is crucial to understand the
contribution of specific miRNA-mRNA target interactions
involved in disease mechanisms in vivo. Transcriptomic-wide
studies, such as high-throughput sequencing of RNA isolated by
RISC immunoprecipitation could allow the global identification
of miRNAs and their targets in a tissue- and cell-specific manner
in prion diseases. The first approach toward profiling active
miRNAs in prion disease was provided by (Llorens et al., 2018),
through identification of disease-relevant miRNAs bound to
Argonaute proteins in sCJD brain. In order to gain a complete
picture of the role of miRNA dysregulation in disease, reported
miRNA alterations need to be integrated into the complex cellular
context of the brain and temporal disease evolution. Temporal

Frontiers in Aging Neuroscience | www.frontiersin.org 6 July 2018 | Volume 10 | Article 220

https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-10-00220 July 20, 2018 Time: 15:57 # 7

Kanata et al. miRNAs in Prion Diseases

FIGURE 2 | Schematic representation of cellular mechanisms possibly implicated in miRNA dysregulation in prion diseases. The canonical miRNA biogenesis and
function pathway is indicated in green boxes. Mechanisms possibly contributing to miRNA dyregulation in prion diseases are indicated with dashed red lines. miRNA
genes, residing in exonic, intronic or intergenic regions, are transcribed by RNA polymerase II or III (1). Altered miRNA gene transcription rate may impact miRNA
levels. This can be associated to altered ( 6=) abundance of Transciption Factors (TF) inducing miRNA gene expression (e.g., STAT3), and/or to Single Nucleotide
Variants (SNPs) residing within miRNA-gene promoter regions (e.g., rs57095329, illustrated as solid red line). Upon transcription, pri-miRNAs’ flanking sequences are
removed by the microprossesor complex, containing Drosha and DGCR8 (2). This processing generates pre-miRNA stem-loop structures (3). Pre-miRNAs are
exported into the cytoplasm through Exportin5 (EXPO5). Dicer removes the pre-miRNA loop, generating a miRNA duplex (4). SNPs in miRNA genes may interfere
with pri- and/or pre-miRNAs processing by Drosha/DGCR8 (2) and Dicer (4) respectively. RNA editing, mediated by ADARs and/or APOBEC1, may occur in pri-
and/or pre-miRNAs, introducing Single Nucleotide Variants (SNVs) with the potential to affect miRNA maturation (2, 4). Reduced Drosha, DGCR8 and Dicer levels,
reported in human prion diseases, may impact miRNA maturation (2, 4). Following Dicer processing, the miRNA duplex is loaded from the RISC-loading complex
(RLC) onto RISC. Ago proteins, are core components of RISC, forming the active functional unit of the miRNA-mediated gene regulation (5). Abnormal subcellular
localization of Ago proteins, reported in sCJD, may affect miRNA machinery (5). PrPC-Ago interactions, which stabilize RISC, may be affected by PrPSc presence.
Similarly, PrPSc could possibly impact PrPC-Dicer interactions and thus miRNA maturation and function. Incorporated into the RISC complex, miRNAs promote
either translational repression or mRNA degradation, according to sequence complementary (5). SNPs in miRNA seed sequences and/or RNA editing events
possibly occurring within miRNA seed sequences may impact miRNA-target mRNA interactions and even redirect miRNAs in new targets (5).

and cellular resolution can be achieved by single-cell RNAseq,
miRNA in situ hybridization techniques and a broad range of
experimental methods that are able to reflect in vivo disease
processes.

miRNAs hold potential to restore dysregulated pathways
within critical time periods in prion disease progression, due to
their ability to simultaneously control a large number of genes
(Ouellet et al., 2006). The use of artificial miRNAs targeting PrPC

has been demonstrated to reduce PrPC expression, inhibiting
prion propagation in neuroblastoma cells (Kang et al., 2011) and
in primary neuronal cultures (Pfeifer et al., 2006; Kang et al.,
2017). Lentivector-mediated RNAi reduction of endogenous
PrPC in scrapie-infected mice renders them resistant to prion
infection, demonstrating the therapeutic potential of RNAi based
therapy in prion diseases (Pfeifer et al., 2006; Ridolfi and Abdel-
Haq, 2018). In this context, recent studies revealed exosomes as
promising delivery systems, crossing the blood brain barrier (Ha
et al., 2016; Chen et al., 2017; Yang et al., 2017).

Studying miRNA dysregulation in prion diseases mouse
models is an appealing approach to dissect the causative
involvement and consequential effects of miRNA alterations
in prion disease pathology. Especially, the sCJD mouse
model recapitulates disease hallmarks (Padilla et al., 2011)
and resembles dysregulated gene expression networks during
disease progression, including the brain region-specific miRNA
alterations observed in sCJD (Llorens et al., 2014, 2018). This
model provides an attractive tool to study the specific role
of miRNA-regulated pathways in prion disease progression
and a unique platform to assess biomarker candidates and/or
therapeutic targets.

CONCLUSION

We summarized the current knowledge on miRNA alterations
and underlying cellular mechanisms in human prion diseases,
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highlighting potential links between impaired miRNA
regulatory pathways and disease etiology. Gaining a complete
picture of disease-associated miRNA signatures in a cell-
type dependent manner will be the first step to new
research lines in developing therapeutic strategies for prion
diseases.
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