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Background: Primary progressive aphasia (PPA) is a clinical syndrome characterized by

the neurodegeneration of language brain systems. Three main clinical forms (non-fluent,

semantic, and logopenic PPA) have been recognized, but applicability of the classification

and the capacity to predict the underlying pathology is controversial. We aimed to study

FDG-PET imaging data in a large consecutive case series of patients with PPA to cluster

them into different subtypes according to regional brain metabolism.

Methods: 122 FDG-PET imaging studies belonging to 91 PPA patients and 28 healthy

controls were included. We developed a hierarchical agglomerative cluster analysis

with Ward’s linkage method, an unsupervised clustering algorithm. We conducted

voxel-based brain mapping analysis to evaluate the patterns of hypometabolism of each

identified cluster.

Results: Cluster analysis confirmed the three current PPA variants, but the optimal

number of clusters according to Davies-Bouldin index was 6 subtypes of PPA. This

classification resulted from splitting non-fluent variant into three subtypes, while logopenic

PPA was split into two subtypes. Voxel-brain mapping analysis displayed different

patterns of hypometabolism for each PPA group. New subtypes also showed a different

clinical course and were predictive of amyloid imaging results.

Conclusion: Our study found that there are more than the three already recognized

subtypes of PPA. These new subtypes were more predictive of clinical course and

showed different neuroimaging patterns. Our results support the usefulness of FDG-PET

in evaluating PPA, and the applicability of computational methods in the analysis of brain

metabolism for improving the classification of neurodegenerative disorders.

Keywords: primary progressive aphasia, positron emission tomography, fluorodeoxyglucose, brain metabolism,

clustering analysis, frontotemporal dementia, Alzheimer’s disease, unsupervised machine learning
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1. INTRODUCTION

Primary progressive aphasia (PPA) is a clinical syndrome
characterized by neurodegeneration of language brain systems
(Mesulam et al., 2014). It may be the onset of several
neurodegenerative disorders, including tauopathies, TDP-43
proteinopathies, and Alzheimer’s disease (AD). Clinically,
current classification distinguishes three main variants: non-
fluent or agrammatic, semantic, and logopenic. Non-fluent PPA
is associated with tauopathies, such as progressive supranuclear
palsy, but also TDP-43 proteinopathies. The semantic variant
is closely associated with TDP-43 type C pathology, and the
logopenic variant may be the onset of AD in approximately 80–
90 % of cases (Marshall et al., 2018). This current classification
into three clinical variants has been a milestone in PPA research,
because it has improved the clinical-pathological correlation
(Matias-Guiu and Garcia-Ramos, 2013). However, prediction
of the underlying pathology using clinical features is still
incomplete, and even the usefulness of the current classification
is a matter of debate.

In this regard, some studies have found a large percentage of
patients not fulfilling the diagnostic criteria for a specific subtype,
especially the logopenic variant (Sajjadi et al., 2012; Mesulam
and Weintraub, 2014; Wicklund et al., 2014). Furthermore,
other studies have suggested that apraxia of speech should be
separated from agrammatic/non-fluent aphasia (Josephs et al.,
2012) and have proposed alternative ways to categorize subtypes
of PPA (Botha et al., 2015). Because several pathological entities
have been associated with PPA (different tauopathies, AD, and
three subtypes of TDP-43 proteinopathies) (Harris et al., 2013),
clinical diagnosis should advance in order to improve the
prediction of the underlying pathology in each individual patient.
In addition, PPA patients may develop a second syndrome during
the clinical course, such as atypical parkinsonian syndromes,
behavioral symptoms like in behavioral variant frontotemporal
dementia, dementia of Alzheimer’s type, etc. (Rogalski and
Mesulam, 2009; Matias-Guiu et al., 2015a). However, despite the
efforts to improve cognitive and linguistic assessment of patients
and their classification, the diagnosis of PPA is still challenging,
and the existence of two, three or more clinical variants is
controversial (Vandenberghe, 2016).

Neurodegenerative diseases are determined by a relatively
specific predilection of each disease for certain brain regions
and networks (Cummings, 2003; Leyton et al., 2016). 18F-
Fluorodeoxyglucose positron emission tomography (FDG-PET)
is considered a useful tool in the evaluation of patients with
neurodegenerative disorders and, specifically, in PPA (Matias-
Guiu et al., 2015b, 2017a). In fact, FDG-PET shows synaptic
dysfunction and neurodegeneration and, hence, is a reliable
biomarker, since it depicts specific brain regions impaired in each
patient.

We hypothesized that performing clustering analyses of
regional brain metabolism could allow an improvement in the
classification of PPA patients. Thus, we aimed to study FDG-
PET imaging data of a large consecutive case series of patients
with PPA using unsupervised clustering algorithms in order to
find out the optimal classification groups. We aimed to verify the

standard three-groups classification of PPA types and, then, to
discover subtype representations of the disease that could derive
into different clinical course.

2. METHODS

2.1. Participants
This study involved 150 FDG-PET imaging studies belonging
to 91 patients with PPA (31 of them were scanned a second
time during the follow-up, making a total of 122 scans) and 28
healthy controls (all of whom were scanned once). Participants
were recruited consecutively in our center between November
2011 and May 2017, and they were followed-up until March
2018. Three cases with crossed aphasia (i.e., those patients with
predominant right-hemisphere hypometabolism) were excluded.
All patients met the current consensus criteria for PPA (Gorno-
Tempini et al., 2011) and they were classified into the three
clinical variants according to the diagnostic criteria (clinical and
neuroimaging supported) and follow-up. Thus, clinical diagnosis
of PPA variant was based on more than the initial assessment to
avoid the existence of undetermined cases or the overdiagnosis
of certain variants according to the current consensus criteria
(Sajjadi et al., 2012; Matias-Guiu et al., 2014)

All participants underwent a detailed neurological and
neuropsychological assessment, together with FDG-PET.
Language assessment was performed following current
recommendations for PPA (Gorno-Tempini et al., 2011),
and has been described elsewhere (Matias-Guiu et al., 2015a;
Matías-Guiu et al., 2017b). Amyloid imaging was available
in 43 patients. PPA patients were followed every 6 months
approximately, with a mean time of follow-up of 29.9 ± 17.3
months from FDG-PET imaging until the end of the follow-up or
the end of the study. During follow-up, progressive supranuclear
palsy, corticobasal syndrome, and amyotrophic lateral sclerosis
were defined according to the diagnostic criteria for “probable”;
behavioral syndrome was defined as the development of
symptoms suggestive of the behavioral variant of frontotemporal
dementia, such as disinhibition, dietary changes, empathy loss,
etc. impacting in daily living with or without dementia; and
dementia was defined as the impairment in daily-living activities
due to other deficits beyond language and with no signs or
symptoms suggestive of another alternative disorder (Hauw
et al., 1994; Brooks et al., 2000; Armstrong et al., 2013). Healthy
controls were recruited from the Department of Neurology
among patients’ spouses or healthy volunteers. Healthy controls
were matched to the PPA group by age and gender, underwent
a comprehensive neuropsychological examination to exclude
cognitive deficits, and neurological diseases and suggestive
symptoms were confidently ruled out. The Institutional Research
Ethics Committee from our center approved the research
protocol.

2.2. FDG-PET Images Acquisition and
Preprocessing
PET images were acquired following European
guidelines (Varrone et al., 2009). Images were obtained in a
Siemens Biograph True Point PET-CT scanner that integrates

Frontiers in Aging Neuroscience | www.frontiersin.org 2 July 2018 | Volume 10 | Article 230

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Matias-Guiu et al. Clustering Analysis of PPA

FIGURE 1 | Distribution of patients within each cluster. X-axis represents the number of clusters, while in the Y-axis we show the number of patients assigned to each

cluster. The different colors of the bars indicate the clinical PPA diagnosis for each patient within the cluster (1 non-fluent/agrammatic, 2 semantic, 3 logopenic) and

healthy controls.

TABLE 1 | Distribution of patients per cluster and clinical PPA diagnosis for Linkage.

4 Clusters

PPA K0 K1 K2 K3

1 46 0 0 0

2 15 0 0 0

3 2 37 22 0

HC 2 0 0 26

5 Clusters

PPA K0 K1 K2 K3 K4

1 22 0 24 0 0

2 13 0 0 0 0

3 2 37 0 22 0

HC 0 0 2 0 26

6 Clusters

PPA K0 K1 K2 K3 K4 K5

1 22 0 24 0 0 0

2 0 0 0 15 0 0

3 2 37 0 0 22 0

HC 0 0 2 0 0 26

7 Clusters

PPA K0 K1 K2 K3 K4 K5 K6

1 22 0 24 0 0 0 0

2 0 0 0 15 0 0 0

3 2 37 0 0 22 0 0

HC 0 0 2 0 0 14 12

8 Clusters

PPA K0 K1 K2 K3 K4 K5 K6 K7

1 16 0 24 0 0 6 0 0

2 0 0 0 15 0 0 0 0

3 1 37 0 0 22 1 0 0

HC 0 0 2 0 0 14 12 0

The number of patients assigned to each cluster are shown, and their previous clinical PPA diagnosis is represented by the column labeled PPA. Values 1, 2, and 3 in the first column
correspond to non-fluent/agrammatic, semantic and logopenic PPA, respectively, whereas HC represents healthy controls. Kn specifies the number of clusters, where n = 0,1, ..,N and
N is a value between 4 and 8.
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a 6-detector CT with a late-generation PET using lutetium
oxyorthosilicate crystals. Patients fasted for at least 6 h before
the scan. 18F-FDG (185 MBq) was administered intravenously
30 min before acquisition of images. During this period of
time, patients remained at sensory rest. CT scan parameters
were: kVp/effective mAs/rotation: 130/40/1; slice thickness: 3
mm; reconstruction interval: 1.5 mm; and pitch: 0.75. For PET
acquisition, one bed position was obtained, and the acquisition
time was 10 min.

Images were preprocessed using Statistical Parametric
Mapping 8 software (https://www.fil.ion.ucl.ac.uk/spm/). They
were realigned, and normalized to the Montreal Neurological
Institute standard space using a specific FDG-PET template

for cognitive disorders (Della Rosa et al., 2014). Global
mean normalization was performed individually. Marsbar
software was used to perform a region of interest analysis
of 116 brain areas of the Automatic Anatomical Labeling
atlas belonging to the whole brain. Thus, mean uptake
values were obtained for each participant in 116 regions of
interest.

2.3. Data Analysis
Clustering analysis (Hennig et al., 2015) is one of the most
frequent algorithms for processing data. It is based on the
idea of distance and similarity among the attributes of the
samples. Recently, several types of clustering algorithms have

FIGURE 2 | Dendrogram from the classification with Linkage and the criterion function Davies-Bouldin. 4 clusters.

FIGURE 3 | Dendrogram from the classification with Linkage and the criterion function Davies-Bouldin. 8 clusters.
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been developed: hierarchical clustering, partitional clustering,
model-based clustering, grid-based clustering and density-
base clustering. Each one applies different optimization
methods. In this study, we applied Agglomerative Hierarchical
Clustering (HCA) as unsupervised learning algorithm (Everitt
et al., 2011), particularly the Ward Linkage (Ward, 1963)
algorithm.

HCA belongs to the special case of overlapping clustering
algorithms. These iterative bottom-up classification methods
create a sequence of partitions, which satisfy that C =

⋃n
i=1 Ci,

whereCi with i = 1, 2, ..n are different partitions. The lowest level
partitions are included into the highest level partitions.

The process starts clustering two closer observations and
a new cluster is merged in every step. The process builds
a tree structure known as dendrogram, and continues until
all observations are clustered. The root class contains all the
observations. There are several aggregation methods and, in this
work, we have selected the Ward’s Linkage method.

This algorithm does not guarantee finding the optimal
solution, but it has demonstrated to provide a good behavior.
Moreover, although the computational cost associated with
Hierarchical Clustering is higher than partitional Clustering, the
dendrogram obtained allows us to explore different partitions,
simply by changing the cut-off level as shown in the dendrogram
representation. In this way, the problem of not knowing
the k value in advance, like for instance in the k-means
algorithm (Mathworks, 2008), is solved. As a result, this
clustering technique produces good clustering solutions (Jain and
Dubes, 1988).

Ward’s method works in terms of dissimilarities and it is based
on the minimum variance method and the Error Sum of Squares
(SSE). Ward’s method estimates the proximity between clusters
through their centroids. It measures the proximity between two
clusters according to the increase of the SSE. Ward’s method tries
to minimize the sum of the squared distances for each point into
the cluster, with respect to each cluster’s centroid.

Dissimilarities between a cluster with i and j as components,
and the rest of the objects, are computed following
the Lance-Willians dissimilarity formula, as shown in
Equation (1).

d(i
⋃

j, k) = αid(i, k)+ αjd(j, k)+ βd(j, k)+ γ |d(i, k)− d(j, k)|

(1)
where i corresponds to the components in the cluster i, αi, αj,
β , and γ are the agglomerative criterion. For the Ward’s method

αi =
|i|+|k|

|i|+|j|+|k| , β =
|k|

|i|+|j|+|k| and γ = 0. The coordinates of the

cluster center, comprising i and j, are computed as g =
|i|gi+|j|gj
|i|+|j| ,

which represent a vector in the space of the set of attributes.
|i||j|
|i|+|j| ||gi − gj||2 computes the dissimilarity between cluster with

centers gi and gj.
The following analysis was carried out using both Matlab

and Weka software. Initially, we evaluated the possibility of
finding 4, 5, 6, 7, and 8 clusters in the acquired data.
This process was performed in Matlab with the evalclusters
function and the mentioned unsupervised learning algorithm,
using the Davies-Bouldin criterion (Davies and Bouldin, 1979).
Evalclusters function returned 8 as the optimal number of

FIGURE 4 | Davies Bouldin values for the number of cluster explored (4, 5, 6, 7, and 8). Lower values of this metric mean a better fitting of the sample data to the

number of clusters.
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clusters. However, we decided to launch tests with clusters
from 4 to 8, in order to analyze how patients were split into
subgroups.

Davies-Bouldin (DB) indexmeasures the similarity of clusters,
and how compact a cluster is. DB depends both on the
data and the algorithm. A minimum value represents a more
compact cluster and therefore the clustering performed has
higher homogeneity. DB is computed as R = 1

n

∑n
i=1 Ri, where

Ri is the maximum value for Rij =
si+sj
dij

with i 6= j and dij is the

distance between the centers of clusters i, j.
After this set of experiments, the next task was to apply the

Ward Linkage method according to the number of potential
clusters to explore, and in order to obtain a classification of
patients for this number of clusters. This process was carried out
using the Weka software. As a result, patients were assigned to
different clusters in accordance with the classification method
and the data similarity.

2.4. Brain Metabolism Analysis of Clusters
FDG-PET images of each obtained cluster were compared to an
additional control group of 32 healthy subjects. Prior to statistical

analysis, images had been spatially normalized and smoothed
at 12 mm full-width at half maximum. Statistical Parametric
Mapping version 8 was used for preprocessing and analysis. A
two-sample T test was conducted to compare between groups,
using age and gender as covariates. Statistical significance was set
at p < 0.05 using family-wise error correction at cluster level. All
voxel-based mapping analyses and statistics are shown in Table
S1 (Supplementary Material).

3. RESULTS

3.1. Description of the Sample
The sample included 122 FDG-PET imaging studies from 91
patients with PPA: 46 with the non-fluent, 15 with semantic,
and 61 with logopenic variants. The mean age of the PPA
group was 73.48 ± 7.79, and 63 (51.6%) were women. Mean
age of onset of symptoms was 70.65 ± 10.67 years. In the
PPA group, at the moment of FDG-PET imaging, Mini-
Mental State Examination score was 23 [interquartile range
14–27] and Addenbrooke’s Cognitive Examination was 51.22
± 23.4. Mean Functional Activities Questionnaire score was
4 [0–12].

FIGURE 5 | Clustering in four groups. Voxel-based brain mapping analysis showing regions with lower metabolism in the group k1 (logopenic PPA subtype 1, in red)

and the group k2 (logopenic PPA subtype 2, in green) in comparison to healthy controls.
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3.2. Cluster Analysis General Results
Clustering results are represented in Figure 1, where a graph
for each number of clusters is drawn. For a better explanation
of the results, Table 1 details the distribution of patients per
cluster.

Figure 2 shows the dendrogram from the 4-cluster scenario,
while Figure 3 shows the dendrogram for the corresponding
8-cluster scenario.

The application of the Davies-Bouldin criterion function
returned 8 as the optimal number of clusters, with an index value
of 2.079, as shown in Figure 4. The figure also shows how 4
clusters could be the second best option, while 5, 6, and 7 clusters
were not selected by this quality metric.

3.3. Clinical and Neuroimaging
Characteristics for 4 Clusters
The following groups were found when classifying for 4
clusters. The first group k0 included 65 patients, and mainly
comprised patients with non-fluent and semantic PPA. The
second (k1, n = 37) and third groups (k2, n = 22) were mostly
patients with logopenic PPA, while k3 (n = 26) were healthy
controls.

In comparison to healthy controls, k0 showed lower
metabolism mainly in the left frontal lobe and the anterior
temporal lobe. k1 showed hypometabolism in two main clusters:
the first one involving the left supramarginal, superior, middle

and inferior temporal gyri and the inferior parietal lobule; and
the second one including left middle and inferior frontal gyri and
precentral gyrus. k2 showed lower metabolism in a main cluster
in the left hemisphere involving themiddle, superior, and inferior
temporal gyri, as well as fusiform, angular, and parahippocampal
gyri. There was an additional cluster in the right temporal lobe
and the right angular gyrus (Figure 5).

When available, amyloid biomarkers were positive in all cases
classified into k1 and k2 clusters (18/18 and 15/15, respectively)
and negative in 90% of cases classified into the k0 cluster (1/10
positive).

During follow-up, k0 evolved mainly to progressive
supranuclear palsy (n = 18, 27.7 %) and behavioral symptoms
(n = 13, 20 %). Patients within the k1 group evolved to global
dementia in 26 (70.3 %). In k2, 15 (68.2 %) progressed also to
dementia.

3.4. Clinical and Neuroimaging
Characteristics for 5 and 6 Clusters
In this analysis, groups mainly involving logopenic PPA and
healthy controls remained unchanged. Conversely, the group
including non-fluent and semantic variants was divided in two
(in the case of 5 clusters classification) and three (in 6 clusters)
groups: k0 (n = 24), k2 (n = 26), and k3 (n = 15). k0 and k2
were patients with non-fluent PPA, while k3 were all patients with
semantic PPA.

FIGURE 6 | Clustering in six groups. Voxel-based brain mapping analysis showing regions with lower metabolism in the group k0 (non-fluent PPA subtype 1, in blue)

and the group k2 (non-fluent PPA subtype 2, in yellow) in comparison to healthy controls.

Frontiers in Aging Neuroscience | www.frontiersin.org 7 July 2018 | Volume 10 | Article 230

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Matias-Guiu et al. Clustering Analysis of PPA

In comparison to healthy controls, k0 showed lower
metabolism in the left frontal lobe (superior, middle, medial and
inferior frontal gyru, cingulate), insula, caudate and extended
also to left inferior parietal lobule and middle temporal gyrus.
k2 showed lower metabolism in left frontal lobe (precentral,
cingulate, middle, medial, and inferior frontal gyri) and also in
the right frontal lobe (medial, middle and superior frontal, and
cingulate gyri) (Figure 6). In turn, k3 showed lower metabolism
in twomain clusters in bilateral anterior temporal lobe (especially
in the left side), and extended to some regions of the frontal lobe
(Figure 7).

Amyloid imaging was negative in all cases in k0 (n = 3) and
k3 (n= 6), and positive in one case in k2.

During follow-up, patients in the k0 group developed
symptoms of progressive supranuclear palsy (n = 6, 25.0 %),
global dementia (n = 6, 25 %), and behavioral syndrome (n = 4,
16.7 %). In k2, most patients evolved to progressive supranuclear
palsy (n = 12, 46.2 %). In k3, 9 cases (60 %) developed a
behavioral syndrome.

3.5. Clinical and Neuroimaging
Characteristics for 7 and 8 Clusters
When 7-8 clusters were considered, the former k0 group in
6 clusters was further subdivided into two subgroups (k0, n
= 17; and k5, n = 7). Besides, healthy controls were also
subdivided in two subgroups (k6, n = 14; and k7, n = 12). The
subdivision of healthy controls in two groups probably reflects
gender differences in regional brain metabolism, because 100% of
cases in k6 and k7 were women and men, respectively(Hu et al.,
2013).

In comparison to the healthy control group, k0 showed lower
metabolism in the left frontal lobe (superior, middle and inferior
frontal gyri, cingulate, insula), inferior and temporal gyri, left
caudate, left inferior parietal lobule, and left rectal gyrus.

Furthermore, k5 showed lower metabolism in a large cluster
involving inferior, middle and superior frontal gyri, anterior
cingulate, insula and orbital gyri in the left hemisphere. k5
also showed additional regions of hypometabolism including left
inferior parietal lobule and angular gyri, left inferior and middle

FIGURE 7 | Clustering in six or eight groups. Voxel-based brain mapping analysis showing regions with lower metabolism in the group k3 (semantic PPA, in green) in

comparison to healthy controls.
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temporal gyri, and some small clusters in right middle frontal
gyrus, left thalamus, and left medial frontal gyrus (Figure 8).

During follow-up, k5 evolved to dementia with (n = 4,
57.1 %) or without (n = 2, 28.6 %) prominent behavioral
symptoms. k0 showed a more heterogeneous clinical course: 6
(35.3 %) developed progressive supranuclear palsy) and 4 (23.5
%) dementia with no other signs. The different clinical courses of
each cluster are summarized in Figure 9.

4. DISCUSSION

Our study addresses an open issue in the field of PPA
regarding how patients with PPA should be classified into
different subtypes. This is a very relevant question because
current classification into three clinical variants aims to predict
underlying pathology. Classification of PPA patients should
be useful for outcome prediction, and it may be crucial in
the near future when disease-modifying therapies are available.
Our results confirm the current classification in non-fluent,

semantic, and logopenic variants, but also suggest that current
categorization may be improved.

The analysis of the distribution of patients among 4 clusters
indicates that the HCA method Linkage distinguishes between
patients associated with frontotemporal lobar degeneration
(group k0), AD (groups k1 and k2) and healthy controls.
This suggests, on the one hand, the capacity of FDG-PET
to discriminate between frontotemporal degeneration and AD;
and, on the other hand, to distinguish between PPA and
healthy controls. Interestingly, patients who clinically belong
to the logopenic variant were divided in two groups. Both
groups showed left parieto-temporal hypometabolism. However,
the first one associated left frontal hypometabolism, while the
second one involved left posterior cingulate and right parieto-
temporal hypometabolism. Some previous studies have suggested
the existence of some subtypes within the logopenic variant,
which might explain the clinical heterogeneity of this variant
(Machulda et al., 2013; Leyton et al., 2015). In our series,
the percentage of progression to dementia was similar in both
groups.

FIGURE 8 | Clustering in eight groups. Voxel-based brain mapping analysis showing regions with lower metabolism in the group k0 (non-fluent PPA subtype 1A, in

violet) and k5 (non-fluent PPA subtype 1B, in green) in comparison to healthy controls.
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FIGURE 9 | Flowchart of patient distribution within clusters, taking into account predominant clinical variants according to consensus classification and second clinical

syndromes. Non-fluent PPA is shown in blue, semantic PPA in green, logopenic PPA in yellow, and healthy controls in orange. ALS, amyotrophic lateral sclerosis;

bvFTD, behavioral variant frontotemporal dementia; CBS, corticobasal syndrome; PPA, primary progressive aphasia; PSP, progressive supranuclear palsy.

Classification in 6 clusters divided the former group
including several variants of PPA associated with frontotemporal
degeneration in three subgroups: k0 (which could be called non-
fluent subtype 1), k2 (non-fluent subtype 2), and k3 (which
corresponds to the semantic variant). The second syndrome
during the follow-up in k2 was more frequently progressive
supranuclear palsy, which has been considered very specific
for tauopathies 4R (Josephs et al., 2006). In contrast, non-
fluent subtype 1 showed more heterogeneous progression.
However, when classifying in 8 clusters (6 subtypes of PPA),
k0 is subdivided in k0 (which could be named as non-
fluent subtype 1A) and k5 (which could be called non-fluent
subtype 1B). k5 evolved mainly to dementia with or without
prominent behavioral symptoms but without parkinsonism or
motor neuron disease, which might be suggestive of TDP-43 type
A proteinopathy. Patterns of hypometabolism differed between
groups. In the non-fluent subtype 1, hypometabolism was mainly
restricted to the left hemisphere, involving left frontal lobe and
also the temporal and parietal lobes. This is a neuroimaging
pattern previously associated with TDP-43 proteinopathies type
A (Rohrer et al., 2010; Harper et al., 2017). Conversely, non-
fluent subtype 2 showed a more medial and bilateral impairment

of the frontal lobe, which has been previously associated with
evolution to progressive supranuclear palsy (Josephs et al.,
2012; Matias-Guiu et al., 2015a). These results agree with
previous studies with pathological confirmation, which have
described some neuroimaging patterns more suggestive of
tau than TDP-43 proteinopathies in non-fluent PPA, such
as the more medial frontal and subcortical impairment, or
the greater involvement of white matter than gray matter in
MRI (Caso et al., 2014; Xia et al., 2017; Santos-Santos et al.,
2018).

Our study suggests that FDG-PET may classify patients
with PPA and, in turn, it could enable the prediction of the
clinical course and possible underlying neuropathology. This is
especially relevant considering some difficulties, limitations, and
reduced availability of other PET tracers for amyloid and tau.
In this regard, amyloid imaging may not be specific for AD,
especially with aging, or it may be indicative of mixed pathology
in cases associated with frontotemporal degeneration (Santos-
Santos et al., 2018). In turn, tau tracers such as 18F-AV1451
showed also milder uptake in tauopathies not associated with AD
or even TDP-43 proteinopathies, as has been recently outlined
(Makaretz et al., 2017; Josephs et al., 2018).
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According to Davies-Bouldin index, 6 subtypes of PPA (8
clusters) seem to be the a more optimized classification. We
included a group of 31 patients with a second FDG-PET study
during the follow-up and, in all cases, both studies were classified
in the same cluster. Thus, none cluster seems to be a later
stage of a previous one, and this supports the idea that each
cluster represents a specific subtype of PPA. To our knowledge,
this is the first study using computational analysis performed
on the FDG-PET attributes in PPA, which may improve the
classification of patients. Some previous studies have used data
mining techniques applied to neuropsychological and language
performance (Knibb et al., 2006; Wicklund et al., 2014; Maruta
et al., 2015; Hoffman et al., 2017), generally confirming the
non-fluent and semantic variants, but questioning the logopenic
subtype. For instance, Hoffman et al. found three main clusters,
the first one including the semantic variant, the second one
patients with non-fluent and logopenic variants, and the third
cluster with patients inmore advanced stages of disease (Hoffman
et al., 2017). Analysis of the topography of brain metabolismmay
represent a better source for computational algorithms, because
it is less influenced by several factors such as culture, educational
level, etc., which impact on language and cognitive assessments.

Our study has some limitations. First, although clusters are
clearly defined, HCA methods, particularly Linkage, present
as weakness that every cluster is compared only with the
closest cluster. In addition, cluster analysis was based on brain
metabolism in several regions of interest based on AAL atlas.
Second, amyloid biomarkers were not performed in all patients,
and tau imaging was not available. Further research is necessary
to validate our findings in independent cohorts of patients,
especially with longitudinal neuroimaging and pathological
confirmation.

In conclusion, we found that unsupervised clustering analysis
of FDG-PET data favored, based on the Davies-Bouldin index,
the classification of PPA into six variants rather than three
subtypes as currently recommended in consensus PPA criteria.
These subtypes try to go beyond the current categorization in
three variants, probably improving the prediction of clinical
outcome. In this regard, we have identified three subtypes within
non-fluent variant, two subtypes within logopenic PPA, and
confirmed the semantic variant. These results also support the
usefulness of FDG-PET in evaluating PPA and the possibility

to improve the classification of patients with PPA using FDG-
PET imaging exclusively. Furthermore, our study suggests
the applicability of computational methods for clustering in
the analysis of brain metabolism, which could provide new
insights in neurodegenerative disorders. Future studies should
evaluate clinical and language features, and longitudinal follow-
up characteristics of each new subtype.
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