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Many studies indicate that there is a (mainly dormant) microbial component in the
progressive development of Alzheimer-type dementias (ADs); and that in the case
of Gram-negative organisms, a chief culprit might be the shedding of the highly
inflammagenic lipopolysaccharide (LPS) from their cell walls. We have recently shown
that a highly sensitive assay for the presence of free LPS [added to platelet poor plasma
(PPP)] lies in its ability (in healthy individuals) to induce blood to clot into an amyloid
form. This may be observed in a SEM or in a confocal microscope when suitable
amyloid stains (such as thioflavin T) are added. This process could be inhibited by human
lipopolysaccharide-binding protein (LBP). In the current paper, we show using scanning
electron microscopy and confocal microscopy with amyloid markers, that PPP taken
from individuals with AD exhibits considerable amyloid structure when clotting is initiated
with thrombin but without added LPS. Furthermore, we could show that this amyloid
structure may be reversed by the addition of very small amounts of LBP. This provides
further evidence for a role of microbes and their inflammagenic cell wall products and
that these products may be involved in pathological clotting in individuals with AD.

Keywords: Alzheimer-type dementia, amyloid, clotting, dormancy, infection, microbes

INTRODUCTION

The progression of AD is accompanied by a great many observable changes, both molecular and
physiological, and it is the commonest form of dementia (Takizawa et al., 2015). It is currently
estimated that 5.4 million Americans have Alzheimer’s Disease and that by mid-century the
number of people living with Alzheimer’s Disease in the United States alone is projected to grow to
13.8 million (Alzheimers Association, 2016). AD is not only recognized as a neuro-inflammatory
but also a systemic inflammatory condition, as AD individuals present with abnormal clotting
(hypercoagulation), decreased fibrinolysis (hypofibrinolysis), elevated levels of coagulation factors,
hyperactivated platelets, and vascular defects that include cerebrovascular dysfunction, decreased
cerebral blood flow, and blood–brain barrier (BBB) disruption (Ripollés Piquer et al., 2004;
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Lee et al., 2008; Cortes-Canteli et al., 2012; Bester et al., 2015;
Maiese, 2015; Nielsen et al., 2015; von Bernhardi et al., 2015;
Pretorius et al., 2016a).

We have previously shown that AD individuals present with
various hematological abnormalities in terms of fibrin(ogen),
platelet, and erythrocyte (RBC) structure, and this is summarized
in Figure 1. In brief, AD individuals exhibit pathological levels
of circulating cytokines, and “free” iron levels (albeit typically
observed as serum ferritin) are also raised (Kell, 2009; Bester
et al., 2013; Kell and Pretorius, 2014; Pretorius and Kell, 2014;
Pretorius et al., 2016a). These circulating molecules are known
to cause both hypercoagulation and hypofibrinolysis (Kell and
Pretorius, 2015b). We have also suggested that, at least in part,
the upregulation of cytokines and coagulation factors are due
to the presence of potent circulating bacterial cell wall products,
that include LPSs (Pretorius et al., 2016a). This purposely implies
(as reviewed in Kell and Pretorius, 2018) that many of the
pathologies seen in AD are due to the presence of the very
potent circulating LPS inflammagen molecules (and other such
molecules, e.g., lipoteichoic acid from Gram-positive bacteria).
The presence of some sort of infection, with the infectious agents
typically in a dormant state (Kell and Pretorius, 2015a; Kell et al.,
2015; Potgieter et al., 2015), is central to this line of thought. It
is supported by a great many papers that suggest that, although
various risk factors have been identified and implicated in AD
pathogenesis, including family history and genetics, central to
the development of AD is in fact the presence of infections (e.g.,
Ripollés Piquer et al., 2004; Kamer et al., 2008a,b; Miklossy, 2008,
2011a,b; Honjo et al., 2009; Eriksson et al., 2011; Itzhaki and
Wozniak, 2012; Amor et al., 2013; de Souza Rolim et al., 2014;
Itzhaki, 2014; Karim et al., 2014; Shaik et al., 2014; Singhal et al.,
2014; Singhrao et al., 2014; Gaur and Agnihotri, 2015; Itzhaki
et al., 2016).

We recently reviewed the evidence that dormant, non-
growing bacteria are a crucial feature of AD, that their growth
in vivo is normally limited by a lack of free iron, and that it
is this iron dysregulation that is an important factor in their
resuscitation (Potgieter et al., 2015; Pretorius et al., 2016a; Kell
and Pretorius, 2018). We have also presented evidence that
bacterial cells can be observed by ultrastructural microscopy in
the blood of AD patients (Pretorius et al., 2016a). A consequence
of this is that these bacterial cells might shed highly inflammatory
components such as LPS. LPS is known to be able to induce
(apoptotic, ferroptotic, and pyroptotic; Dong et al., 2015)
neuronal cell death. LPS is also raised in AD, and it is found
inside the brain and closely associated with the amyloid areas in
the brains of these individuals (Lee et al., 2008; Deng et al., 2014;
Zhao and Lukiw, 2015; Zhao et al., 2015). Recently, Zhan and
co-workers also reviewed literature showing that Gram-negative
bacteria (E. coli) can induce the formation of extracellular
amyloid, and that the degraded myelin basic protein (dMBP) co-
localizes with β amyloid (Aβ) and LPS in amyloid plaques in AD
brains (Zhan et al., 2018).

Abbreviations: AD, Alzheimer-type dementia; LBP, lipopolysaccharide-binding
protein; LPS, lipopolysaccharide; PPP, platelet poor plasma; SEM, scanning
electron microscope.

We recently also provided evidence that LPS (and LTA
from Gram-positive bacteria) could induce amyloid formation
in healthy fibrin(ogen), the most abundant plasma protein in
blood, after it is added at tiny concentrations to blood from
healthy individuals (followed by the clotting agent thrombin)
(Pretorius et al., 2016b, 2018a). We then studied the presence
of amyloid in these clots (before and after addition of LPS),
using confocal microscopy and fluorescent markers for amyloid.
In those experiments, we saw that addition of LPS to healthy
PPP caused a significant increase of amyloid fluorescent signal,
compared to the naïve sample (i.e., samples without added
LPS). In these papers, we also showed that LBP can inhibit the
formation of such amyloid structures (Pretorius et al., 2016b,
2018a). Furthermore, we showed that (some) of the (naïve)
fibrin(ogen) molecules are amyloid in conditions such as type 2
diabetes and Parkinson’s Disease, and that in these conditions,
LBP added to PPP of such individuals, could also reduce the
extent of amyloid fibrin(ogen) structure (Pretorius et al., 2017a,b,
2018a,b).

Thus, the question now arose as to whether the extent of
fibrin-type amyloid in PPP varies between AD individuals and
suitably matched controls, and whether the removal of any LPS
using the mopping agent, LBP, could remove the amyloid signal
present in the (naïve) plasma of AD individuals.

Indeed, Zhang et al. (2009) reported elevated levels of
LPS concentrations in plasma from patients with sporadic
amyotrophic lateral sclerosis and AD, as compared to healthy
controls. The present paper provides further evidence of the
presence of LPS in PPP of AD individuals, as we showed that LBP
could remove amyloid (fluorescent) signal from AD plasma. Our
observation is therefore consistent with the general view set out
above that there is a major dormant microbial component to AD.

MATERIALS AND METHODS

Ethical Statement, Volunteer Details, and
Blood Collection
Blood samples were obtained from non-smoking, Alzheimer-
type dementia (AD) patients, identified by a Neurologist and
under the care of a medical practitioner. Specifically, care was
taken to exclude vascular dementia. We also recruited “healthy”
age-matched individuals that did not smoke. It should be noted
that the term “healthy” is used in this paper to describe an
individual who does not have dementia. Ethical clearance was
obtained from the Health Sciences Ethical committee from the
University of Pretoria, and informed consent was obtained from
family members who act as carers of the patients (81/2013,
amended 2015). Healthy individuals also filled in consent forms.
Blood was collected in two 4 mL citrate tubes and one 4 mL
clotting tube for iron level determination. This collection and all
handling of samples were performed under very strictly aseptic
conditions, to prevent any microbial contamination of samples.

Iron Tests
Serum ferritin, transferrin, and serum iron was tested at a
pathology laboratory in South Africa.

Frontiers in Aging Neuroscience | www.frontiersin.org 2 August 2018 | Volume 10 | Article 257

https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-10-00257 August 22, 2018 Time: 16:22 # 3

Pretorius et al. Amyloid Formation in the Plasma of Alzheimer-Type Dementia

FIGURE 1 | Alzheimer-type dementia (AD) is associated with hematological abnormalities that include (dys)regulated cytokines, iron and clotting factors. Increased
LPS levels are also known to be present in AD. We have suggested that the presence of LPS not only is one of the causes of (dys)regulated cytokines, clotting
factors and oxidative stress, but the cause of fibrin(ogen) and RBC dysfunction. We investigate here if fibrin(ogen) in AD is amyloid in nature, and if LBP can reverse
fibrin(ogen) amyloid structure.
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LPS-Binding Protein
A final added LBP exposure concentration of 4 ng L−1 LBP was
used and LBP was purchased from Sigma (recombinant product
SRP6033; >95% pure).

Scanning Electron Microscopy (SEM) of
Platelet Poor Plasma (PPP)
At least 30 min after the blood was collected in citrate tubes
by venepuncture, PPP were obtained and frozen at −80◦C. PPP
was prepared by centrifuging citrated whole blood for 15 min at
3,000 g at room temperature. After all samples were collected,
PPP were thawed and 10 µL mixed with 5 µL thrombin to
create an extensive fibrin network. Thrombin was provided by the
South African National Blood Service, and the thrombin solution
was at a final exposure concentration of 10 U mL−1 (initial
product concentration is 20 U mL−1 made up in PBS containing
0.2% human serum albumin, see footnote 1 for a description
of how thrombin units are calculated). A Zeiss ULTRA Plus
FEG-SEM with InLens capabilities was used to study the surface
morphology of erythrocytes, and micrographs were taken at 1 kV.
SEM preparation was done as previously reported (Pretorius
et al., 2017c).

Airyscan Confocal Microscopy
PPP was thawed, followed by preparation of clots for analysis
using confocal Airyscan methods. We added Thioflavin T (ThT)
(a well-established amyloid stain; LeVine, 1999; Biancalana et al.,
2009; Biancalana and Koide, 2010; Groenning, 2010; Sulatskaya
et al., 2011, 2012; Kuznetsova et al., 2012; Picken and Herrera,
2012; Younan and Viles, 2015; Kuznetsova et al., 2016; Rybicka
et al., 2016) at a final concentration of 5 M to 200 µL to either
healthy PPP, naïve AD PPP, or after a 10 min exposure of AD
PPP to 4 ng L−1 (final concentration) LBP. These PPP samples
were incubated (protected from light) for 1 min. This step was
followed with the addition of thrombin, added in the ratio 1:2
to create extensive fibrin networks. A coverslip was placed over
the prepared clot, and viewed immediately with a Zeiss LSM
510 META confocal microscope with super-resolution (Airyscan)
capabilities. The Airyscan detector increases the resolution by a
factor of 1.7, achieving super-resolution of 140 nm, and with a
Plan-Apochromat 63×/1.4 Oil DIC objective. Excitation was at
488 nm and emitted light was measured at 505–550 nm.

Statistical Analysis and Data-Sharing
Histogram-Based Analysis of SEM and ThT Staining
For each picture, we obtained the histogram of intensities (8-
bit scale) using the histogram function of ImageJ. From this
we calculated the coefficient of variation (CV; as standard
deviation/mean). For details of this analysis method, see
(Pretorius et al., 2017b, 2018a). Quantification of fluorescent
marker binding (ThT) was done by assessing the variance
between (black) background and the presence of fluorescent
pixels where ThT fluorescent binding was present in the clots.

1https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/
Product_Information_Sheet/1/t6884pis.pdf

Increased ThT binding is here reflected as increased fluorescence
which shows increased amyloid protein structure in fibrin(ogen)
(see Pretorius et al., 2017a, 2018a) for a detailed explanation of the
methods. We used the histogram function in ImageJ (FIJI) and
calculated the coefficient of variation (CV) (as SD/mean) of the
histogram of different pixel intensities as our metric to quantify
and discriminate between clots of healthy (age-controlled) naïve
PPP and clots from AD with and without LBP.

A healthy clot (i.e., a clot taken from a healthy individual),
viewed with SEM looks somewhat like a bowl of spaghetti with
elongated fibrin fibers. In AD individuals, this clot structure
changes to a dense and matted hypercoagulated clot (Bester
et al., 2015). We also used the CV calculation described above
to analyze SEM clots. The fibrin fibers of healthy individuals
have a greater variation of dark and light areas, due to the
elongated fibers, with open areas between the individual fibers.
With an increased hypercoagulability and amyloid formation, the
clots become matted and dense, resulting in a more uniform
grayness. We used this difference in structure as our metric,
where increased hypercoagulability is related to an increase in
amyloid formation and this is visible as a more uniformly dense
morphology with less color gradient.

The statistical analysis of CV data was performed with
GraphPad 7, using the one-way ANOVA analysis with Tukey’s
multiple comparison’s test comparing the mean of each column
with the mean of every other column.

Availability of Data and Material
Raw data, including original micrographs can be accessed at:
https://1drv.ms/f/s!AgoCOmY3bkKHiJRrop6cF6uhTnQA1A or
https://www.researchgate.net/profile/Etheresia_Pretorius.

RESULTS

As discussed in the introduction, AD is not only known for
the presence of neuroinflammation, but also for the presence
of hematological abnormalities, including an increased presence
of LPS and also (dysregulated) cytokines, iron and clotting
factors, which result in oxidative stress and abnormal clotting.
Previously we showed that abnormal clotting and the presence of
bacterial inflammagens like LPS, result in fibrin(ogen) becoming
amyloid in nature, and that we can remove the signal by
addition of LBP (Pretorius et al., 2017a,b, 2018b). In Figure 1,
we set out our hypothesis: that also in AD, the presence of
LPS, together with dysregulated iron levels and oxidative stress,
causes fibrin(ogen) to become amyloid and that we can reverse
this with LBP. Furthermore, we show this reversal by using
both ultrastructure (SEM) and the fluorescent marker ThT using
Airyscan (confocal) microscopy. The rationale behind using LBP
is that, if the amyloid structure is indeed due to the presence
of bacterial inflammagens, LBP would remove it by binding to
these inflammagnes, thus preventing it from causing amyloid
fibrin(ogen) deposits.

Table 1 shows the demographics of individuals with AD, as
well as healthy, age-controlled individuals. Transferrin, iron, %
saturation of iron and serum ferritin were measured in these

Frontiers in Aging Neuroscience | www.frontiersin.org 4 August 2018 | Volume 10 | Article 257

https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/1/t6884pis.pdf
https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/1/t6884pis.pdf
https://1drv.ms/f/s!AgoCOmY3bkKHiJRrop6cF6uhTnQA1A
https://www.researchgate.net/profile/Etheresia_Pretorius
https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-10-00257 August 22, 2018 Time: 16:22 # 5

Pretorius et al. Amyloid Formation in the Plasma of Alzheimer-Type Dementia

TABLE 1 | Demographics for the healthy and the Alzheimer-type dementia
individuals used in this study.

Alzheimer’s
disease (N = 20)

Healthy individuals
(N = 11)

p-Values

Gender 15 F; 5 M 7 F; 4 M 0.7

Age 77.3 ± 12.1 70.0 ± 13.0 0.13

Iron (µM) 12.4 ± 5.02 19.0 ± 4.39 0.001

Transferrin (g·L−1) 2.2 ± 0.47 2.4 ± 0.30 0.13

% transferrin
saturation

24.2 ± 10.79 31.9 ± 7.52 0.04

Serum ferritin
(ng·mL−1)

96 (30.5–113) 66 (29–84) 0.4

Gender was compared using Fisher’s exact test. Age and iron measurements were
compared using the unpaired t-test. Serum ferritin was compared using the Mann–
Whitney test following the non-normal distribution of this measurement. All analyses
were done using GraphPad 7. Data are presented as either mean± STD or median
(lower quartile–upper quartile; interquartile range). Bold numbers show significant
p-values.

individuals, and these values, particularly serum ferritin, is used
as an indication of the level of systemic inflammation (Kell, 2009;
Kell and Pretorius, 2014).

In our hypothesis and Figure 1 we argue that there is
a link between oxidative stress, increased iron levels and
inflammation, and this is directly linked to the presence
of bacterial inflammagens like LPS. In our sample, healthy
individuals had low mean serum ferritin, where in the
AD population it was approximately three times higher.
However, despite the large difference in mean serum ferritin
values between the two groups, the difference was not
statistically significant owing to large variation within the
samples.

Table 2 shows results for the analysis of the clots using
both SEM and confocal microscopy. Micrographs were
analyzed as discussed in Section “Materials and Methods”.
Table 2 shows p-values and statistics of CVs calculated from
SEM (micrographs showing ultrastructure) and Airyscan
(micrographs showing fluorescence). We compared CVs from

TABLE 2 | Data for Alzheimer-type dementia and healthy individuals showing the
coefficients of variation (CV) of the intensity of the pixels in the clot images (Tukey’s
analysis).

p-Value Mean difference 95.00% CI of
difference

Airyscan coefficients of variation p-values (AD: N = 20; Control: N = 10)

Control vs. AD <0.0001 −0.35 −0.5 to −0.2

Control vs. AD + LBP 0.8 0.05 −0.14 to 0.2

AD vs. AD + LBP <0.0001 0.39 0.2 to 0.5

Scanning electron microscopy coefficients of variation p-values
(AD: N = 20; Control: N = 11)

Control vs. AD <0.0001 0.2 0.1 to 0.3

Control vs. AD + LBP 0.06 −0.07 −0.15 to 0.003

AD vs. AD + LBP <0.0001 −0.3 −0.4 to −0.24

Airyscan and SEM images were used and statistical analysis was done to compare
CVs from controls vs. AD individuals. Bold numbers show significant p-values.

controls and AD individuals, and that produced the p-values
(Table 2).

Figure 2A gives an example of the clot structure, as viewed
with SEM, from a representative healthy individual. We analyzed
each SEM micrograph with ImageJ and produced a histogram
that gave us the mean and the standard deviation for each
micrograph (see section “Materials and Methods”). Figure 2B
shows such a representative histogram of the 8-bit intensity
for the SEM micrograph shown in Figure 2A. All micrograph
histograms were used to calculate the CVs for each participant
(both controls and AD individuals) (statistical analysis shown in
Table 2). Figure 3 shows SEM images before and after treatment
of a representative examples of three AD PPP clots, with and
without LBP.

Figure 4 show a representative micrograph and its histogram
from a healthy individual, using Airyscan confocal microscopy.
Figure 5 shows clots from AD individuals before and after
LBP treatment. In healthy clots, there is little to no binding of
ThT to amyloid fibrin(ogen) proteins. In AD clots, significant

FIGURE 2 | (A) Clot structure from a representative healthy individual as seen
with SEM. All clots were created by adding thrombin to PPP (prepared after
whole blood is centrifuged for 15 min at 3,000 g). (B) Representative
histogram of the 8-bit intensity for the SEM clot shown in (A).
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FIGURE 3 | (A) Naïve clot structures from representative Alzheimer-type
dementia individuals as seen with SEM. (B) The same samples treated with
LBP. The size marker is the same for all panels.

FIGURE 4 | (A) Clot structure from a representative healthy individual as seen
with Airyscan super-resolution confocal microscopy. PPP from each individual
was incubated with the fluorescent marker ThT. PPP were mixed with
thrombin to create an extensive fibrin network. (B) Representative histogram
of the 8-bit intensity for the Airyscan clot shown in (A).

ThT binding fluorescence is noted, suggesting increased amyloid
formation in fibrin(ogen). When LBP is added to AD PPP, ThT
show significantly decreased binding. Figures 6A,B show graphs
and boxplots from the CV analysis. LBP added to PPP from AD
individuals (with added thrombin to initiate clotting), seems to
aid in the removal of amyloid signal so that the fibrin(ogen)
structure now looks more like that of the controls (noted by
using two techniques: Airyscan and SEM). Furthermore, the
p-values between controls vs. AD with added LBP in both the

FIGURE 5 | (A) Naïve clot structure from representative Alzheimer-type
dementia individuals as seen with Airyscan super-resolution confocal
microscopy. PPP from each individual was incubated with the fluorescent
marker ThT. PPP were mixed with thrombin to create an extensive fibrin
network. (B) Micrograph of the PPP clots from the same individual in the
opposite column (A), after treatment with LBP, followed by addition of ThT
and clot preparation.

Airyscan and SEM analysis, showed that added LBP makes
AD clots not significantly different to the controls (p = 0.8
and 0.06).

DISCUSSION

We have previously determined that in many inflammatory
conditions, the “normal” clotting of blood, involving the
polymerisation of fibrinogen to fibrin, produces a fibrin fiber
structure that becomes amyloid in nature, and that this might
be due to the presence (in part) of the potent inflammagen LPS,
which comes from the membranes of Gram-negative bacteria
(Potgieter et al., 2015, 2016b, 2017b, 2018a; Kell and Pretorius,
2017a,b) and is a potent inflammagen (Walter et al., 2007; Kell
and Pretorius, 2015a). This would be consistent with the many
studies (reviewed in Miklossy, 2015; Itzhaki et al., 2016; Kell and
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FIGURE 6 | Graphs and boxplots from coefficient of variation (CVs) form histogram data of Airyscan analysis (A) and SEM (B). Coefficients of variation (CV) of the
intensity of the pixels in the clot images was done using the Tukey’s analysis. Control vs. AD and AD vs. AD + LBP significantly differ by < 0.0001. Control vs.
AD + LBP are not significantly different.

Pretorius, 2018) that imply that there is a (dormant) microbial
component in AD. Previous research (see Poole et al., 2013;
Bester et al., 2015; Zhan et al., 2016a,b; Zhao et al., 2017a,b)
found LPS inside the brains of Alzheimer’s disease patients, as
well as an increase in circulating LPS. LPS is known to cross
(and possibly to damage Liu et al., 2001; Xaio et al., 2001;
Jaeger et al., 2009; Jangula and Murphy, 2013; Banks et al., 2015)
the BBB and lead to β-amyloid depositions (Lee et al., 2008).
Furthermore, neurotoxic microbial-derived components from
the GI tract microbiome can cross aging GI tracts and BBBs and
contribute to progressive proinflammatory neurodegeneration
(Zhao and Lukiw, 2018). In a recent review, Zhan and co-
workers describe that LPS indeed associates with amyloid
plaques, neurons and oligodendrocytes in AD brains (Zhan et al.,
2018). These authors also showed that LPS infiltrates the AD
nucleus and can induce an inflammatory signaling program

in brain cells, including up-regulation of the pro-inflammatory
microRNA miRNA-146a via a NF-kB signaling circuit (Zhan
et al., 2018).

Here we also show that the hypercoagulable structure
of fibrin(ogen) in AD patients is different from healthy
individuals, in that they appear to be amyloid (as shown
with the fluorescent marker ThT) and that their structure,
viewed with SEM, is matted and dense. In healthy clots, fibrin
has a typical “spaghetti-like” structure (Kell and Pretorius,
2015b). We could reverse aberrant clotting in AD PPP by
the addition of LBP. LBP binds bacterial inflammagens and
our results would therefore point to the presence of bacterial
inflammagens in AD PPP – that is, LBP could bind to and thus
prevent these inflammagens from causing amyloid formation
in the AD PPP when clots are formed after addition of
thrombin.
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When we added LBP to PPP from AD individuals (by
incubating their PPP with LBP), we showed that the p-values were
not significantly different (p = 0.8 and 0.06) between AD and
control donor blood. Therefore, LBP, incorporated in a therapy,
might not only prevent aberrant clotting in these individuals, but
might also reduce the circulating LPS pool that could eventually
cross into their brains via the BBB. Of course, a damaged BBB
can admit the transfer (atopobiosis; Potgieter et al., 2015) of the
organisms themselves (Miklossy, 2011a, 2015; Bajpai et al., 2014;
Tang et al., 2017), where they may be detected ultrastructurally
(Mattman, 2001), and that may continue to shed inflammagens.
We therefore suggest that LBP might eventually be used as
treatment to prevent the damaging effect of LPS on fibrin(ogen)
and hypercoagulation, and even to prevent (at least in part) the
deposition of amyloid-β (Aβ) plaques in the brain and the loss
of cognitive function that accompanies this neurodegenerative
disease. However, we note that a control protein, such as human
IgG should, in future, be used to present the specific effect of
LBP on amyloid formation, to further elucidate the physiological
processes discussed in this paper. In future, our hypothesis could
also be tested in a transgenic murine model of AD (TgAD) or
the 5xFAD (amyloid over-producing) model or equivalent (Vale
et al., 2010; Jeong et al., 2018).
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