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Human neurons function over an entire lifetime, yet the molecular mechanisms which
perform their functions and protecting against neurodegenerative disease during aging
are still elusive. Here, we conducted a systematic study on the human brain aging
by using the weighted gene correlation network analysis (WGCNA) method to identify
meaningful modules or representative biomarkers for human brain aging. Significantly,
19 distinct gene modules were detected based on the dataset GSE53890; among
them, six modules related to the feature of brain aging were highly preserved in diverse
independent datasets. Interestingly, network feature analysis confirmed that the blue
modules demonstrated a remarkably correlation with human brain aging progress.
Besides, the top hub genes including PPP3CB, CAMSAP1, ACTR3B, and GNG3
were identified and characterized by high connectivity, module membership, or gene
significance in the blue module. Furthermore, these genes were validated in mice of
different ages. Mechanically, the potential regulators of blue module were investigated.
These findings highlight an important role of the blue module and its affiliated genes in
the control of normal brain aging, which may lead to potential therapeutic interventions
for brain aging by targeting the hub genes.

Keywords: normal brain aging, prefrontal cortical regions, transcriptomic, weighted gene correlation network
analysis (WGCNA), hub gene

INTRODUCTION

Brain aging is characterized by a progressive loss of physiological integrity including
loss of gray and white matter volume, a general loss of dendritic spines, loss of
synaptic plasticity, increased axonal bouton turnover rates, and elevated inflammation,
leading to impaired function and increased vulnerability to neurodegenerative disease
(Salthouse, 2009; Dorszewska, 2013; Grillo et al., 2013; Lopez-Otin et al., 2013).
However, the systematic cellular mechanisms behind the normal brain aging phenotypic
changes in the absence of neurodegenerative disease of healthy older adults are only
barely understood. Inspiringly, precision medicine has emerged as a new approach to
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health care base on the individual’s molecular drivers of
disease (Montine and Montine, 2015). Therefore, applying
this tailored and molecular mechanism-based approach to
understand and reduce the negative impacts of brain aging
are very promising. Even though recent reports have suggested
the distinct changes in the expression of genes at the single
neuron level (Kadakkuzha et al., 2013), the systematic cellular
mechanisms behind the normal brain aging phenotypic changes
in the healthy older adults are only barely understood. One
method to study molecular mechanisms of aging is the high-
throughput technology. However, the biased process in large
changes analysis of differential gene expression, as well as lacking
the consideration of the relationship between changing genes as
a whole are inevitable drawbacks for this method (Furlong, 2013;
Lou et al., 2017).

In order to explore the dynamic changes for understanding
the system-level properties of normal brain aging progress in
an unbiased manner, one network approach, named weighted
gene correlation network analysis (WGCNA) is proposed. It can
group functionally correlated genes into modules (Langfelder and
Horvath, 2008). These modules are constructed by calculating a
correlation network analysis of large, high-dimensional datasets,
which are based on pairwise correlations between genes due to
their similar expression profile, and can correlate with different
stages of clinical traits (Langfelder and Horvath, 2008). The R
package for WGCNA has been successfully applied in various
biological contexts, e.g., cancer (Heiland D. et al., 2017; Sun et al.,
2017), mouse genetics (Savas et al., 2017), and analysis of brain
imaging data (Heiland D. H. et al., 2017), which can also be used
to describe the correlation structure between gene expression
profiles, image data, genetic marker data, proteomics data, and
other high-dimensional data (Langfelder and Horvath, 2008).
The R package along with its source code and additional material
are freely available at https://cran.r-project.org/web/packages/
WGCNA/WGCNA.pdf. Even though, WGCNA approach has
provided a comprehensive characterization of the transcriptomic
changes for disease’s functional interpretation and led to new
insights into the molecular aspects of clinical-pathological
factors, there are very few reports applying WGCNA to identify
gene co-expression networks associated with normal brain
aging. To fulfill this gap, we conduct a WGCNA method by
calculating module-trait correlations based on GSE53890 public
microarray dataset, which include 41 samples and 24,455 genes.
This approach identifies six meaningful co-expression modules
significantly related to normal brain aging and highly preserved
in other brain aging datasets. Besides, hub genes contributing
to normal brain aging are also verified. Herein, this paper is
devoted to discovering novel gene signatures that greatly impact
the progression of normal brain aging by WGCNA approach.

MATERIALS AND METHODS

mRNA Expression Data
First, the microarray-based expression dataset GSE53890
provided by Lu et al. (2014) was downloaded from the NCBI

Gene Expression Omnibus (GEO1). This dataset contained
quantile normalized genome-wide expression profiles of adult
human brain samples from prefrontal cortical regions, including
samples from 12 young (<40 years), 9 middle aged (40–70 years),
16 normal aged (70–94 years), and 4 extremely aged (95–
106 years). And these postmortem brain tissue samples used in
this study were neuropathologically normal for age, and were
derived from non-demented individuals (Supplementary File 1,
Table S16). The dataset was produced using Affymetrix Human
Genome U133 plus 2.0 arrays, which allowed the expression
analysis of over 47,000 transcripts. The other microarray datasets
referenced during the study (GSE1572, GSE71620, GSE30272,
GSE21779, and GSE11882) were also available in the public
repository from NCBI GEO datasets. All the other datasets
supporting the findings of this study were available within the
article and provided it as Supplementary File 2, Table S1.
For the public datasets, its detailed experimental methods and
descriptions could be found in the original references. Notably,
only the human normal brain aging samples in these datasets
were included in our study.

Microarray Data Analysis
After the raw data of GSE53890 was downloaded in CEL
format, it was pre-processed identically with the R package
affy by using the Robust Multichip Average (RMA) function
for background correction, normalization, and summarization
with the quantiles method (Irizarry et al., 2003; Giulietti et al.,
2016). For this purpose, a cross-platform common identifier, the
array annotation data hgu133plus2.db was used to transform the
array probes to the respective Entrez Gene ID. Probes matching
multiple genes were removed from the dataset, and then we
calculated the average expression values of genes matching
multiple probes. A proper threshold was set based on the amount
of genes filtered out.

Gene Co-expression Network
Construction
Co-expression networks were constructed using WGCNA (v1.47)
package in R (Langfelder and Horvath, 2008). After filtering
genes, gene expression values were imported into WGCNA to
construct co-expression modules using the automatic network
construction with default settings. First, a matrix of adjacencies
using the WGCNA function adjacency was constructed by
calculating Pearson correlations between all pairs of genes across
all selected samples, after which this matrix was computed
into a Topological Overlap Matrix (TOM) using the function
TOMsimilarity (Zhang and Horvath, 2005). The TOM, referred
to the interconnection between two genes, was used as input
for hierarchical clustering analysis, and a cluster of genes with
high topological overlap was defined as a module. Finally,
modules were identified on the dendrogram with the function
cutreeHybrid from the R package dynamicTreeCut algorithm
(Langfelder et al., 2008). The module eigengene (ME) was
considered as a representation of the gene expression profiles
in a module, which was defined as the basic component of

1https://www.ncbi.nlm.nih.gov/gds
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a given module (Langfelder and Horvath, 2008). The module
membership (MM) was calculated by the WGCNA function
signedKME that correlated the ME with gene expression values,
so it quantified how close a gene was to a given module
(Langfelder and Horvath, 2008). Moreover, genes, which were
infirmly correlated with all of the MEs (|kME| < 0.7), were
assigned to none of the modules (Lou et al., 2017). Finally, the
interesting module network was visualized by Cytoscape_3.3.0
(Demchak et al., 2014).

Calculation of Module-Trait Correlations
and Module Preservation
Correlations among gene expression modules and phenotypic
trait for GSE53890 were investigated; age and sex were chosen
as our interesting trait. Modules having significant relationships
with age trait were listed in Supplementary File 1, Table S3.
Modules were labeled with a conventional color scheme.
Besides, a WGCNA integrated function (modulePreservation)
was applied to calculate module preservation statistics between
two relevant datasets. And then, two composite preservation
statistics for module preservation were delineated as follows: the
definition of Zsummary was the average of Z-scores computed
for density and connectivity measures, which represented the
significance of observed statistics. Analogously to the definition
of median rank, the statistic median rank was defined as the
average calculation of median ranks for connectivity and density
measures of each module (Langfelder et al., 2011; Lou et al.,
2017). Eventually, median rank was useful for identifying relative
preservation among multiple modules; if a module had a lower
median rank, it tended to exhibit stronger observed preservation
statistics than a higher one. Zsummary was used to assess the
significance of observed statistics by distinguishing preserved
from non-preserved modules via permutation testing 200 times
(Langfelder et al., 2011; Lou et al., 2017).

Feature Vectors in WGCNA Network
The correlation between individual genes and biological trait
(age and sex) was defined as the gene significance (GS). The
summation of adjacency performed over all genes in a particular
network was calculated as the intramodular connectivity (K.in).
Generally, if GS and MM were highly associated, it implied that
genes were the highly important elements for modules and were
most significantly correlated with the trait. Meanwhile, if the MM
was highly related to K.in, it indicated that a gene was more
vital than the given module (Zhang and Horvath, 2005; Lou
et al., 2017). From above, hub genes were usually characterized
with high GS, high MM and high K.in in a module, which were
highly connected with other genes and hence of high functional
significance, as well as tended to be located in the center of a
module network (Lou et al., 2017).

Functional Annotation of the Modules
For genes in each module, Gene Ontology (GO) and KEGG
pathway enrichment analysis were conducted to analyze the
biological functions of modules. Significantly enriched GO terms
and pathways in genes in a module comparing to the background

were defined by hypergeometric test and with a threshold of
false discovery rate (FDR) less than 0.05. The Enrichr database2

contained a large collection of gene set library; these libraries
had been constructed from many sources such as published
studies and major biological and biomedical online databases
(Chen et al., 2013; Giulietti et al., 2016). Thus, we input the
interesting modules into the Enrichr by comparing them to
the annotated gene sets libraries. Enrichr implemented four
scores to assess enrichment results: p-value, q-value, rank (Z-
score), and combined score. The rank score or Z-score was
computed to assess the deviation from an expected rank by
using a modification to Fisher’s exact test. Finally, the combined
score was calculated by multiplying the two scores as follows:
C = log(p)∗Z. Where C is the combined score, p is the p-value
computed using Fisher’s exact test, and Z is the Z-score computed
to assess the deviation from the expected rank (Chen et al., 2013;
Giulietti et al., 2016; Lou et al., 2017).

Animal Study and Histological Analysis
of Mouse Brain
Animal housing and experiments were carried out according
to the guidelines of the Animal Ethics Committees of Jinan
University and were performed under the standard biosecurity
and institutional safety procedures. Male C57BL/6J mice (3-
month-old and 12-month-old) were maintained in a 12-h light–
dark-cycle at room temperature with access to food and water
ad libitum in our animal facilities. The mice were divided into
two groups (3-month-old and 12-months-old). At the end of
the experiments, brains were fixed by intracardial perfusion
with 4% (vol/vol) paraformaldehyde (PFA) in PBS, followed
by the fixation in the same mixture overnight. Then, they
were processed for paraffin embedding, according to standard
procedures. A part of the brain tissue was homogenated
in TRIzol R© Plus RNA Purification Kit (Life Technologies),
and one microgram of RNA was then reverse transcribed to
cDNA using the High Capacity cDNA Reverse Transcription
Kit (Invitrogen) for the quantitative real-time PCR analysis.
Formalin-fixed brain tissue was processed into 4 µm thick
paraffin sections and stained with hematoxylin and eosin (HE)
staining. For quantification of neuronal density, randomly
selected areas within the hippocampus or the cortex were imaged
at a magnification fluorescent microscope (Carl Zeiss, Axio
Imager.A2, Germany).

MDA and SOD Determination
About 200 ± 50 mg brain tissues of prefrontal cortex (PFC)
was taken and washed by precooled normal saline (NS) for
at least three times. And then, they were converted to 100g/L
of brain homogenates in a homogenizer filled with nine times
the mass of precooled NS. The homogenates were centrifuged
at 4◦C for 20 min at a speed of 3500 r/min. The protein
quantification of supernatant was estimated by BCA method.
And then, proper amount (50–100 µg) of supernatant’s lipid
peroxidation levels (MDA) and SOD activity were measured

2http://amp.pharm.mssm.edu/Enrichr
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according to the specifications of MDA kit (S0131, Beyotime,
China) and SOD kit (S0101, Beyotime, China).

qPCR Analysis
Total RNA from PFC brain tissue was extracted by TRIzol
(Invitrogen, United States). Synthesis of cDNA was performed
by using 2 µg of total RNA with PrimeScriptTM Reverse
Transcriptase (Takara) according to the manufacturer’s
instructions. Specific primers used for PCR were listed as
follow:

5′-GTAACCCGTTGAACCCCATT-3′ (18S rRNA-sense),
5′-CCATCCAATCGGTAGTAGCG-3′ (18S rRNA-anti-sense);
5′-CCTGAACACCGCACATAC-3′ (Ppp3cb-sense),
5′-CATCACCTTGGTCAACCC-3′ (Ppp3cb-anti-sense);
5′-GAAGGCCTGGCTTACCTACC-3′ (Camsap1-sense),
5′-AGACCCAAAGCAGCTACACC-3′ (Camsap1-anti-sense);
5′-CCAAAGGAGGGTGTTGAGAGG-3′ (Actr3b-sense),
5′-GCCATGTCGTATAGGCCACTT-3′ (Actr3b-anti-sense);
5′-GCACTATGAGTATTGGTCAAGCA-3′ (GNG3-sense),
5′-GTGGGCATCACAGTATGTCATC-3′ (GNG3-anti-sense).

The gel image was acquired in the Gel Doc 1000 system and
analyzed using the Quantity One software (Bio-Rad Laboratories,
Hercules, CA, United States). 18S rRNA was chosen as the
endogenous control and cycle dependence was carried out to
ensure that the PCR products fell within the linear range.
Quantitative real-time PCR was performed using the SYBR R©

Premix Ex Taq Kit (Takara) in a 7900 Real Time PCR System
(Applied Biosystems, United States) for at least three independent
experiments. The relative quantification expression of each gene
was normalized to 18S rRNA, and calculated using the 2−111CT

method.

Statistical Analysis
All experiments were performed for at least three independent
times, and the data were expressed as the mean ± standard
deviation (SD). All statistical analysis was performed using
GraphPad Prism 6 Software (GraphPad Software, San Diego, CA,
United States). Comparison between two groups was conducted
by using Student’s t-test. P-values less than 0.05 were considered
as statistically significant.

RESULTS

Pre-processing of the Aging Human
Prefrontal Cortex Datasets and
Construction of Weighted Gene
Co-expression Networks
The combined dataset (GSE53890) containing a total of 41
samples [12 young (<40 years), 9 middle aged (40–70 years),
10 normal aged (70–90 years), and 10 extremely aged (90–
106 years)] with clear brain aging staging was applied into this
study (Supplementary File 2, Table S1 and Figure S1). Raw data
from each microarray dataset were then pre-processed identically

for background correction and normalization. Firstly, probes
matching multiple genes were removed out from these datasets,
and secondly the average expression value of gene measured
by multiple probes was calculated as the final expression value.
Finally, we identified in total 24,455 genes that were expressed
(Supplementary File 1, Table S1). Besides, constructing a
WGCNA needed an optimal soft-thresholding power to which
co-expression similarity was raised to calculate adjacency. Thus,
we performed the analysis of network topology for various soft-
thresholding powers in order to have relative balanced scale
independence and mean connectivity of the WGCNA. As shown
in Figures 1A,B, power 8, the lowest power for which the scale-
free topology fit index reached 0.90, was chosen to produce
a hierarchical clustering tree (dendrogram). Next, through
dynamic tree cut and merged dynamic, 35 distinct gene modules
were generated in the hierarchical clustering tree (dendrogram)
from 41 samples and each module labeled by different colors was
shown by the dendrogram (Figure 1B), in which each tree branch
constituted a module and each leaf in the branch is one gene.
The size of modules ranged from 64 (darkolivegreen module)
to 9,296 (turquoise module) genes. As shown in Figure 1C, the
module network dendrogram was constructed by clustering ME
distances. Modules with high K.in were located at the tip of
the branches since they exhibit the highest interconnectedness
with the rest of the module. The horizontal line (blue and red
line) represented the threshold (0.2) used for defining the meta-
modules. Thus, 19 distinct gene modules were identified. To
further quantify co-expression similarity of entire modules, we
calculated their eigengenes adjacency on their correlation of
the entire modules (Supplementary File 2, Figure S2) and 19
modules (Figure 1D) based on the heatmap, respectively. Each
module showed independent validation to each other as well, and
the progressively more saturated blue and red colors indicated
the high co-expression interconnectedness (Figure 1D). All
attributes of genes and samples were shown in Supplementary
File 1, Tables S2, S3.

Identification of Meta-Modules Related
to the Brain Aging
As we known, the ME is the first principal component of a given
module and can be considered as a representative of the module’s
gene expression profile. The 19 MEs for the 19 distinct modules
were each correlated with age trait, which has been shown
in eigengenes trait-specific expression profiles (Supplementary
File 1, Table S4). Next, we evaluated the relationship between
each module and aging status by correlating the eigengenes
of each module with age and sex traits. The age and sex
traits include the whole age and sex range in 41 individuals
(Supplementary File 2, Table S2). We found that, as expected,
six modules (blue, darkolivegreen, darkturquoise, magenta,
steelbule, midnightblue) exhibited similar characteristics in age
trait (absolute r > 0.5, P < 10−2; Figure 2A), while others
were not preserved. Notably, among them, four modules (blue,
darkolivegreen, magenta, steelbule) were negatively correlated
with age (r <−0.5, P < 10−2; Figure 2A), thereafter named anti-
aging module. Two positively correlated modules (darkturquoise
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FIGURE 1 | WGCNA network and module detection. (A) Selection of the soft-thresholding powers. The left panel showed the scale-free fit index versus
soft-thresholding power. The right panel displayed the mean connectivity versus soft-thresholding power. Power 8 was chose, for which the fit index curve flattens
out upon reaching a high value (>0.9). (B) Cluster dendrogram and module assignment for modules from WGCNA. Genes were clustered based on a dissimilarity
measure (1-TOM). The branches correspond to modules of highly interconnected groups of genes. Colors in the horizontal bar represent the modules. 35 modules
with 24,455 transcripts were detected with WGCNA. (C,D) Meta-module identification and module-module relationship. The module network dendrogram was
constructed by clustering module eigengene distances. The horizontal line (blue and red line) represents the threshold (0.2) used for defining the meta-modules.
Thus, 19 distinct gene modules were identified. In the heatmap of module-module relationship, the progressively more saturated blue and red colors indicated the
high co-expression interconnectedness.

and midnightblue) named aging module thereafter. Besides,
in our study, we found that the sex trait had no significant
relationship with the 19 distinct modules, so we just simply
ignored it. Further, a consensus clustering also confirmed the two
main group were clearly separated by the 41 aging samples from
young to old (Figure 2B). Similarly, the six interesting modules
based on ME expression profile and 41 samples with extract
age trait from young to old were also displayed in Figure 2C.
The module eigengene E in Y-value was defined as the first
principal component of a given module. It can be considered a

representative of the gene expression profiles in a module. The
X-value of Figure 2C from young to old in exact ages was shown
in Supplementary File 2, Table S2. Modules were labeled using a
conventional color scheme.

Module Stability and Preservation
Analysis
To test the stability of the indicated modules, a WGCNA
integrated function (modulePreservation) was applied to
calculate module preservation statistics and the Zsummary
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FIGURE 2 | Module-trait and the gene expression of interested modules in the aging human prefrontal cortex. (A) Supervised hierarchical cluster of each row
correspond to a module eigengene (n = 19), column to a trait. Each cell contained the corresponding correlation. High correlations was colored in red, low
correlation in blue. (B) Hierarchical cluster analysis of six interested modules, based on the module-trait’s correlation and p value (absolute r > 0.5, P < 10–2), four
modules (blue, darkolivegreen, magenta, steelbule) showed relatively high expression in young adults (red) and lower expression (green) in the aging population.
Conversely, the other two modules (darkturquoise and midnightblue) showed the opposite result. Each lane represented an individual prefrontal cortical brain
sample. (C) The histograms described the eigengene expression of each module from young to old.

score (Z-score) was used to evaluate whether a module was
conserved or not. Modules with a Z-score > 10 were regarded
as highly preserved. To ascertain if the identified modules
were preserved in other different datasets, an independent
validation was carrying out. We retrieved four datasets,
which was relevant to brain aging and all samples were from
human PFC. Results showed that the anti-aging modules

(blue, magenta, darkolivegreen) were preserved stably in
GSE11882, GSE30272, GSE71620, and GSE1572 datasets
(Figure 3), while aging modules (darkturquoise, midnightblue)
showed weak to none evidence for module preservation
according to the summary preservation analysis (Figure 3).
The blue and magenta modules were regarded as the highly
representative aging-associated modules, because they both
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made a higher conservation and consistent association with
brain aging.

Functional Enrichment Analysis of the
Gene Modules of Interest
To explore the biological functions of the anti-aging modules
(blue, magenta, darkolivegreen), we performed GO term
enrichment analysis, as well as pathway ontology analyses
by using the Database for Annotation, Visualization and

Integrated Discovery (DAVID3) (Huang da et al., 2009). Top
biological processes and KEGG pathway in each module was
shown in Table 1. For the blue module, the top two enriched
terms in GO ontology were “transport” (FDR = 3.34E-15)
or “establishment of localization” (FDR = 3.34E-15). For
the KEGG pathway analysis, the top enriched terms were
“Synaptic vesicle cycle” (FDR = 1.07E-09) and “cGMP – PKG
signaling pathway” (FDR = 3.14E-08). For magenta module

3http://david.abcc.ncifcrf.gov/

FIGURE 3 | Preservation analysis of GSE53890 network modules in different brain aging datasets. Each module was represented by its color-code and name. Left
figure showed the composite statistic preservation median rank. This measure tended to be independent from module size with high median ranks indicating low
preservation. Right figure showed preservation Zsummary statistic. The dashed blue and green lines indicated the thresholds Z = 2 and Z = 10, respectively.
Zsummary < 2 implied no evidence for module preservation, 2 < Zsummary < 10 implies weak to moderate evidence, and Zsummary > 10 implies strong evidence
for module preservation. The anti-aging modules (blue, magenta, darkolivegreen) showed high preservation statistics summary than expected by random chance
using bootstrapping validation procedures.

TABLE 1 | Top GO and pathway enrichment in each module.

Module Category Term P-Value FDR

Anti-aging module Blue GOTERM_BP GO:0006810-transport; GO:0051234-establishment of localization 6.54E-17 3.34E-15

Darkolivegreen GOTERM_BP GO:0007267-cell–cell signaling 1.69E-10 2.12E-08

Magenta GOTERM_BP GO:0007005-mitochondrion organization 2.06E-41 1.50E-39

Steelbule GOTERM_BP GO:0007267-cell–cell signaling 3.11E-03 4.86E-01

Aging module Darkturquoise GOTERM_BP GO:0016070-RNA metabolic process 1.29E-02 3.38E-01

Midnightblue GOTERM_BP GO:0090304-nucleic acid metabolic process 5.64E-02 9.83E-01

Module Category Term P-Value FDR

Anti-aging module Blue KEGG_PATHWAY ko04721:Synaptic vesicle cycle 3.69E-12 1.07E-09

Darkolivegreen KEGG_PATHWAY ko04713:Circadian entrainment 4.48E-03 1.76E-01

Magenta KEGG_PATHWAY ko00190:Oxidative phosphorylation 1.09E-21 2.98E-19

Steelbule KEGG_PATHWAY ko05032:Morphine addiction 7.74E-09 6.89E-07

Aging module Darkturquoise KEGG_PATHWAY ko04914:Progesterone-mediated oocyte maturation 1.26E-02 3.13E-01

Midnightblue KEGG_PATHWAY ko03022:Basal transcription factors 6.82E-04 4.70E-02

Frontiers in Aging Neuroscience | www.frontiersin.org 7 August 2018 | Volume 10 | Article 259

http://david.abcc.ncifcrf.gov/
https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-10-00259 August 24, 2018 Time: 10:32 # 8

Hu et al. Transcriptomic Signatures of Brain Aging

genes, the top enriched terms in the GO and KEGG pathway
databases were “mitochondrion organization” (FDR = 1.50E-
39) and “Oxidative phosphorylation” (FDR = 2.98E-19).
Moreover, genes in darkolivegreen module were found
to be significantly enriched in cell–cell signaling of the
GO term and circadian entrainment signaling pathway.
The complete annotation for each module was provided
in Supplementary File 1, Tables S5, S6. These findings
together with previous research implied that extensive
oxidative phosphorylation and accelerated mitochondrion
organization were the fundamental characteristics of brain
aging.

Network Analysis of the Gene Modules
of Interest
To further investigated the gene constitution of particular
modules which were most related with the brain aging, three
network unique properties such as GS, MM, and K.in were
carried out. Abstractly speaking, if a gene is higher with GS, MM,
and K.in, it is more meaningful with the clinical trait (Langfelder
et al., 2013; Lou et al., 2017). Thus, a specific module whose
MM, K.in or GS were significantly connected and associated with
the brain aging trait; it implied that this module may play a
more important biological role on aging progression (Lou et al.,
2017). Of the six interesting modules, blue, magenta and steelblue
modules showed significant correlations between MM and GS.
Similarly, there were also a markedly correlation between GS
and K.in in the blue, magenta, and steelblue modules (Figure 4).
Overall, module blue were observed as the best meaningful
module by its strongly positive correlations (r = 0.71, p < E-200
in GS vs. MM; r = 0.63, p < E-200 in GS vs. K.in). These results
indicated that blue module was closely involved in human brain
aging progression.

Characterization of the Blue Module
Content and Hub Genes
To explore the blue module’s gene expression profiles and its
distribution in the 41 samples, a hierarchical cluster analysis was
carried out, and result showed higher expression in young adults
(red) and lower expression (blue) in the 41 aging population
(Figure 5A). In the following, we focused on the core genes
of the blue module; the core genes usually characterized by a
high GS for aging status, as well as high MM and K.in. Thus,
network top interesting genes (top125) of the blue module based
on the above three indexes were listed in the Venn diagram and
12 genes were the intersections (Figure 5B and Supplementary
File 1, Table S10). Similarly, we modeled a network view of blue
module by cytoscape with TOM ≥ 0.25 and the 12 hub genes
of blue module was depicted in Figure 5C and Supplementary
File 1, Tables S11, S12. The values of each gene in the network
view of blue module based on the three parameters were as
follow: The K.in count ranged from 74.34 to 595.30, with an
average of 366.11 ± 115.46; The GS score ranged from −0.82
to 0.54, with an average of −0.59 ± 0.087; The MM count
ranged from −0.91 to 0.98, with an average of 0.81 ± 0.35.
Further, applying GeneMANIA18 database to simulate the blue

network gave the similar results (Supplementary File 2, Figure
S4). PPP3CB and CAMSAP1, based on MM and K.in indexes,
were the two top network hub genes and another two top
genes (ACTR3B and GNG3) ranked on GS were also disclosed.
Specifically, gene microarray in animal study has identified
in region CA3, the catalytic and regulatory subunits for the
phosphatase calcineurin (PPP3CB) are up-regulated by caloric
restriction influences (Zeier et al., 2011). The homologene of
PPP3CB in C. elegans, tax6 (C02F4.2), has been reported to
regulate C. elegans’ lifespan through DAF-16 (Tao et al., 2013),
and it also has a multiple functions in its development, fertility,
proliferation, and behavior (Lee et al., 2013). To the best of
our knowledge, there has been nothing directly implicating
CAMSAP1, ACTR3B, and GNG3 reported to be associated
with aging. However, ACTR3B has been showed involved in
age-associated cognitive dysfunction in the rat hippocampus
(Ottis et al., 2013). CAMSAP1 (Calmodulin Regulated Spectrin
Associated Protein 1) is probably a microtubule-binding protein
that plays a role in the regulation of cell morphology and
cytoskeletal organization. Through interaction with spectrin,
CAMSAP1 may regulate neurite outgrowth and GO annotations
related to this gene include microtubule binding and spectrin
binding. The following gene GNG3 (G Protein Subunit Gamma
3) has been shown to have GTPase activity and G-protein coupled
receptor binding activity from the GO annotations. Among its
related pathways are GABAergic synapse and p75 NTR receptor-
mediated signaling. All these four genes were significantly down-
regulated in advanced aging-brain (GSE53890). Significantly
lower expression of these genes was also validated in the aging-
brain in other cohorts (GSE71620, GSE30272, and GSE11882,
Figure 5D). These data suggested that PPP3CB, CAMSAP1,
ACTR3B, and GNG3 might function as the novel candidate
biomarkers for the normal brain aging.

Hub Genes Were Significantly
Down-Regulated in the Front Cortex
From Aging Mices
To further investigated whether hub genes expressed
differentially across the progressive stages of brain aging,
the 3-month-old and 12-month-old male C57BL/6 mices were
used. HE staining of brain tissue with different age stages was
shown to assess aging severity. The expression level of SOD and
MDA were also tested in the 3-month-old and 12-month-old
male C57BL/6 mices’ PFC (n = 6 in each group, Figures 6A,B),
revealing that aged mices compared to young mices showed
low level of SOD enzyme activity and high level of MDA. Then,
to explore if hub genes were modified in the different stage of
brain aging, we measured PPP3CB, CAMSAP1, ACTR3B, and
GNG3 mRNA levels in extracts of PFC from young adult (3
months) and aged (12 months) individuals. Similarly, the mRNA
level of PPP3CB, CAMSAP1, ACTR3B, and GNG3 were both
remarkably down-regulated in the aging mice’s PFC, as verified
by quantitative real time RT-PCR (qRT-PCR) (n = 3 in each
group, Figure 6C). The data in vivo above indicates a rather
close relationship between hub genes and normal brain aging
progression.
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FIGURE 4 | Module features of GS, MM and K.in. (A) Modules significantly correlated with aging status (young versus aged cases). Each point represented an
individual gene within each module, which were plotted by GS on the y-axis and MM on the x-axis. The regression line, correlation value, and p-value were shown
for each plot. (B) Correlation of the K.in (x-axis) and the GS (y-axis).

The Main Functional Organization of the
Blue Module
Next, for a more intuitive depiction of interesting modules,
the OmicShare tools, a free online platform for data analysis4,
was used to re-annotated the functional relevance of blue
and magenta module. With the cutoff set as Q-value < 0.05,
synaptic vesicle cycle, cGMP-PKG, and dopaminergic synapse
signaling pathway made up the main KEGG signaling
pathways in blue module and the top of three oxidative
phosphorylation, Huntington’s disease and Parkinson’s disease
pathways constituted the main KEGG signaling pathways in
magenta module, which were both depicted in bubble plots
(Supplementary File 2, Figure S3B). For the blue module, the
GO term of “transport” and “establishment of localization”
were significantly enriched. The top enriched GO terms for
magenta module were “mitochondrion organization” and “gene

4www.omicshare.com/tools

expression” (Supplementary File 2, Figure S3A). Moreover,
there was a widespread consensus that co-expressed genes
may be co-regulated by the common transcription factors
(TFs), histone modification and microRNAs, so we performed
a gene-set enrichment analysis by using ChEA, Encode, and
TargetScan database (Lachmann et al., 2010; Mouse et al.,
2012; Agarwal et al., 2015) for blue module. Thus, the top
of significantly enriched TFs were observed for REST (RE1-
Silencing Transcription factor), SUZ12 (SUZ12 polycomb
repressive complex 2 subunit), CREB1 (CAMP Responsive
Element Binding Protein 1), AR (androgen receptor), etc.
(Figure 7A and Supplementary File 1, Table S7). Consistently,
several studies showed that those TFs were functionally
associated with brain aging. For instance, the elevated REST
levels were closely related with increased longevity in aging
humans by regulating a neuroprotective stress response during
aging (Lu et al., 2014). For SUZ12, reports showed SUZ12
expression may regulate the transition from proliferation to
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FIGURE 5 | Characterization of the blue module. (A) Heat map showing hierarchical clustering of each samples based on the expression of the blue module genes.
(B) Venn diagram of blue module genes in the top of 125 based on high gene significance (GS), high module membership (MM), and high intramodular connectivity
(K.in). (C) Interaction of gene co-expression patterns in the blue module. The module was visualized using Cytoscape_3.3.0 software. The node colors coded from
green to red (low to high) indicated the K.in level when compared young with advanced brain aging state. The node size was proportional to the GS with age trait.
The higher of the GS, the bigger of the node size. (D) Four hub genes expression pattern in brain tissues according to GSE53890, GSE71620, GSE30272, and
GSE11882 cohort. Data were shown as box and whisker plot. Student’s t-test was used for statistical analysis. ∗∗p < 0.0, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.

cellular senescence (Overhoff et al., 2014). Specifically, in brain,
the cyclic AMP responsive element binding protein1 (CREB1) TF
was found to be involved in CREB signaling leading to cognitive
deficits as observed in normal aging and neurodegenerative
diseases by regulating specific genes (Paramanik and Thakur,
2013). Most recently, study showed that CREB1 was activated by
nutrient deprivation in adult neurons and mediated the improved
cognitive, electrophysiological, and pro-survival effects of low
calorie intake (Fusco et al., 2016). Meanwhile, in the rat liver, AR

expression might predict liver aging (Song et al., 1991; Supakar
et al., 1993). As we known, dietary calorie restriction could
retard age-related diseases and extends the invertebrate and
vertebrate lifespan; interestingly, reversed loss of AR expression
and restored androgen sensitivity in the aging liver were also
observed during dietary calorie restriction (Song et al., 1991;
Roy et al., 1996). Meanwhile, H3 lysine 27 trimethylation
(H3K27me3) got a strongly enrichment for most of the genes in
blue module (Figure 7B and Supplementary File 1, Table S8).
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FIGURE 6 | Expression of hub genes in different aging stage of C57BL/6J mice brain. (A,B) The representative HE staining of hippocampus and prefrontal cortex
with different age stages were shown. The production of SOD and MDA in different age of prefrontal cortex was presented. (C) Quantification of hub genes was
confirmed and presented. ∗p < 0.05, ∗∗p < 0.0, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.

It had shown that H3K27me3 was remodeled during early
development, and H3K27me3 was a repressive epigenetic mark
that changed dynamically during pre-implantation development
in mice, bovine and pig embryos (Bogliotti and Ross, 2012).
Finally, the most enriched miRNAs were observed for hsa-
miR-16-5p, hsa-miR-26b-5p, hsa-miR-15b-5p, hsa-miR-15a-5p
(Figure 7C and Supplementary File 1, Table S9). Study had
indicated that the miR-15 family (miR-15a, miR-15b) was
significantly down-regulated in the stress-induced premature
senescence (SIPS) of the human diploid fibroblast (HDF) and
human trabecular meshwork (HTM) cells (Li et al., 2009). In
addition, miR-15b was a negative regulator of stress-induced
SIRT4 expression thereby counteracting senescence associated
mitochondrial dysfunction and regulating the senescence-
associated secretory phenotype (SASP) and possibly organ
aging, such as photoaging of human skin (Lang et al., 2016).
Another study had shown forced expression of miR-16 could
enhance p21 expression via down-regulation of the polycomb
group protein Bmi1, thereby inducing cellular senescence
(Kitadate et al., 2016). However, There were still no evidences
whether the expression of hsa-miR-16-5p, hsa-miR-26b-5p,

hsa-miR-15b-5p, hsa-miR-15a-5p changed with human brain
aging.

DISCUSSION

The declining of cognitive function during aging has emerged
as one of the major medical challenges of the 21st century.
Earlier studies have demonstrated that neuronal loss is an
integral feature of the aging brain. More recently, it is becoming
clear that neuronal cell number is largely preserved and keeps
their cognitive function relatively intact in the neocortex and
hippocampus of the aging human brain, declining only in the
setting of neurodegenerative disease (Gomez-Isla et al., 1996;
Peters et al., 1998; Yankner et al., 2008; Lu et al., 2014). So,
investigating how genes jointly preserve neurons and cognitive
function relatively well during human brain aging is important,
yet challenging. Recently increasing studies focus on high-
throughput sequencing approach to investigated the regulation
of normal brain aging and WGCNA is characterized effectively
and systematically to find modules and gene signatures highly
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FIGURE 7 | Potential factors regulating genes in blue module. (A) Transcription factors. (B) Histone modification markers. (C) Enrichment of associated microRNA.

related with the clinical trait, such as the trait of brain aging.
In our study, the modules and hub genes identified here
are biologically rational. By using this analytical approach,
19 brain aging related modules were identified from the 41
human brain aging samples by reducing the complexity of
the expression profiles. Among them, six modules were found
to be significantly associated with brain aging progression.
Moreover, the conservation of six modules among different
datasets were also extensively studied. Further, we confirmed
that the blue and magenta modules might serve as the main
driver of brain aging based on the WGCNA meta-module,

and further through the network feature (GS, MM, and K.in)
analysis. Meanwhile, the enrichment of GO terms or pathway
for blue and magenta module was also highly concordant.
In particular, pathway analysis of these modules revealed
that synaptic vesicle cycle, cGMP-PKG signaling pathway and
oxidative phosphorylation were the top core gene sets of the
blue and magenta module in human brain aging. The effect of
oxidative phosphorylation on brain aging had been supported by
lots of researches which report the aging of mammalian brain was
associated with a continuous decrease of the capacity to produce
ATP by oxidative phosphorylation (Ferrandiz et al., 1994;

Frontiers in Aging Neuroscience | www.frontiersin.org 12 August 2018 | Volume 10 | Article 259

https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-10-00259 August 24, 2018 Time: 10:32 # 13

Hu et al. Transcriptomic Signatures of Brain Aging

Boveris and Navarro, 2008; Chakrabarti et al., 2011).
Correspondingly, reports showed that cGMP-PKG signaling
pathway might have a relatively relationship with the procedures
of brain aging. For example, study reported that the effect of aging
(4-, 12-, and 24-month-old animals) on the glutamate-cyclic
GMP-PKG could modulate alpha1, alpha(2/3)-Na, K-ATPase
activity in rat cerebellum and stimulate the glutamate-cyclic
GMP–PKG pathway at different levels by progressively decreased
of cyclic GMP levels, PKG basal activity and alpha(2/3)-
Na, K-ATPase activity (Scavone et al., 2005). In addition, we
found synaptic vesicle cycle signaling pathway was highly
associated with brain aging. However, few studies had reported
synaptic vesicle cycle could affect the normal brain aging or
neurodegenerative diseases. Thus, whether synaptic vesicle
cycle signaling pathway was related to aging requires further
validation. Besides, to make full use of blue module in the
development of efficient anti-brain aging strategies, small
compounds derived from the Library of Integrated Network-
based Cellular Signatures (LINCS) L1000 platform (Vempati
et al., 2014; Lou et al., 2017) affecting the blue module’s
gene expression was shown in Supplementary File 1, Tables
S13–S15 and Supplementary File 2, Figure S5. And these
candidate compounds might offer new drug interfere strategies
in the development of brain aging. Next, novel potential
biomarkers including PPP3CB, CAMSAP1, ACTR3B, and
MFSD4A were confirmed in blue module, after extensive cross-
validation. Interestingly, the co-expression mode of genes in
blue module and its regulators (TFs and epigenetic markers),
which might regulate the circuit during normal human brain
aging progression, were noteworthy. Our study also has some
limitations. First, there are a number of genes in blue module,
we only select the top of 125 interesting genes in the blue module
based on the indexes of GS, as well as MM and K.in, which may be
biased in investigating the hub genes regulating the brain aging to
some extent. Second, even though the hub genes in blue module
are implicated in aging as validated by the mRNA expression of
different GEO datasets and aging mices, as well as reported by
some literature annotations, there are still a lot of experiments
needed to validate these discovery clues. Recently studies suggest
that almost all aged brains show characteristic changes that
are linked to neurodegeneration. Therefore, this raises the
question whether these characteristic changes represent lesser
aspects of brain aging that do not considerably affect function or
whether they are the harbingers of neurodegenerative diseases
(Wyss-Coray, 2016). However, in our study, the postmortem
brain tissue samples were neuropathologically normal and non-
demented from the NCBI Gene Expression Omnibus. And only
the transcriptomic profile from cognitively normal individuals at

their certain ages were studied in WGCNA analysis. Besides,
to test the stability of the indicated modules, we retrieved
four datasets, which was also relevant to normal brain aging.
Results showed that the anti-aging modules (blue, magenta,
darkolivegreen) were preserved stably in GSE11882, GSE30272,
GSE71620, and GSE1572 datasets (Figure 3). Taken together,
this study generated a systematic and unbiased view of brain
aging related modules and genes. In particular, blue module and
genes regulating normal brain aging progression deserved further
attention, which might be exploited as a novel biomarker for the
evaluation of anti-aging interventions and highlight potential
new targets for the prevention or treatment of age-associated
brain disorders such as Alzheimer’s disease.
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