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Background: Among the neurodegenerative diseases of aging, sporadic Alzheimer’s
disease (AD) is the most prevalent and perhaps the most feared. With virtually
no success at finding pharmaceutical therapeutics for altering progressive AD after
diagnosis, research attention is increasingly directed at discovering biological and other
markers that detect AD risk in the long asymptomatic phase. Both early detection and
precision preclinical intervention require systematic investigation of multiple modalities
and combinations of AD-related biomarkers and risk factors. We extend recent unbiased
metabolomics research that produced a set of metabolite biomarker panels tailored
to the discrimination of cognitively normal (CN), cognitively impaired and AD patients.
Specifically, we compare the prediction importance of these panels with five other sets
of modifiable and non-modifiable AD risk factors (genetic, lifestyle, cognitive, functional
health and bio-demographic) in three clinical groups.

Method: The three groups were: CN (n = 35), mild cognitive impairment (MCI; n = 25),
and AD (n = 22). In a series of three pairwise comparisons, we used machine learning
technology random forest analysis (RFA) to test relative predictive importance of up to
19 risk biomarkers from the six AD risk domains.

Results: The three RFA multimodal prediction analyses produced significant
discriminating risk factors. First, discriminating AD from CN was the AD metabolite
panel and two cognitive markers. Second, discriminating AD from MCI was the AD/MCI
metabolite panel and two cognitive markers. Third, discriminating MCI from CN was the
MCI metabolite panel and seven markers from four other risk modalities: genetic, lifestyle,
cognition and functional health.

Conclusions: Salivary metabolomics biomarker panels, supplemented by other risk
markers, were robust predictors of: (1) clinical differences in impairment and dementia
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and even; (2) subtle differences between CN and MCI. For the latter, the metabolite
panel was supplemented by biomarkers that were both modifiable (e.g., functional)
and non-modifiable (e.g., genetic). Comparing, integrating and identifying important
multi-modal predictors may lead to novel combinations of complex risk profiles
potentially indicative of neuropathological changes in asymptomatic or preclinical AD.

Keywords: Alzheimer’s disease, mild cognitive impairment, cognitively normal, salivary metabolomics,
biomarkers, genetics, cognition, victoria longitudinal study

INTRODUCTION

Epidemiological projections point in the direction of increased
worldwide prevalence and growing burden of neurodegenerative
disease, especially Alzheimer’s disease (AD; Prince et al., 2015;
Alzheimer’s Association, 2016; Wimo et al., 2017). Given the
lack of success in developing therapeutics to reverse the course
of neurodegeneration in aging after diagnosis (Cummings et al.,
2014), research and clinical attention has shifted to multimodal
risk detection in asymptomatic phases (Sperling et al., 2011) so as
to promote early risk management or prevention (Anstey et al.,
2015). Early detection of sporadic AD may require systematic
attention to multiple modalities of biomarkers and risk factors,
perhaps beyond (but including) the established neurobiological
and clinical hallmarks of the disease (e.g., beta amyloid; Barnes
and Yaffe, 2011). Accordingly, recent research has focused on
testing panels, dosages, and interactions of multiple biomarkers,
examining their synergistic, modifying, or complementary
influences on phenotypes, pre-clinical trajectories or clinical
status (Edwards et al., 2015; McFall et al., 2015a; Iturria-
Medina et al., 2016; Sapkota et al., 2017; Sapkota and
Dixon, 2018). Arguably, identifying perturbations in profiles of
biomarkers in asymptomatic periods of impairment or AD may
provide a promising opportunity for developing precision or
programmatic interventions that could delay or prevent clinical
diagnosis (Imtiaz et al., 2014; Hampel et al., 2017). However,
translational progress may be optimized when one or more
of three conditions are available: (1) a roster of established
multi-modal modifiable risk biomarkers are included; (2) these
risk biomarkers can be estimated with valid but relatively
non-invasive technology; and (3) comparative prediction and
discrimination data are available (Anstey et al., 2015; Olanrewaju
et al., 2015; Casanova et al., 2016).

We adopt a multi-modal comparative approach to
determining the relative importance of multiple established
risk biomarkers of cognitive impairment and AD. The six
AD risk biomarker clusters include: (1) novel metabolomics
biomarker panels; (2) selected AD genetic risk polymorphisms
(e.g., Apolipoprotein E (APOE)); (3) functional health
(e.g., vascular); (4) lifestyle engagement (e.g., physical
activity); (5) cognitive performance (e.g., memory); and
(6) bio-demographic factors (e.g., sex). A total of 19 risk
biomarkers are available for testing simultaneously in three
pairwise competitive analyses conducted with machine learning
technology random forest analyses (RFA). This approach
identifies the predictors that contribute most significantly to
the discrimination of the clinical groups. In the present study,

these groups include the benchmark cognitively normal (CN)
as well as mild cognitive impairment (MCI) and AD groups.
The predictors vary in the extent to which they are likely
to be modifiable, an important consideration for potential
downstream intervention (Barnes and Yaffe, 2011; Anstey
et al., 2013b, 2015; Norton et al., 2014; Livingston et al., 2017).
We limited our predictors to those that are likely to require
relatively non-invasive assessment techniques. Accordingly,
in the present study, both metabolomics and genetic markers
were developed from salivary samples. A central aim of this
study was to examine the extent to which newly discovered
metabolomics biomarker panels would emerge as important
predictors of MCI and AD in the competitive context of a broad
range of other established and relatively non-invasive AD risk
factors.

Two of the present biomarker clusters are derived from
salivary samples collected in the context of longitudinal study
of aging. Saliva is of interest in research on biomarkers of
neurodegenerative diseases and aging for several reasons. It
is a premier non-invasive biofluid, easily collected and stored
(Wong, 2006) and increasingly acknowledged for its potential
as a source fluid for genomic, metabolomics and candidate
biomarker studies (Wishart et al., 2013; Liang et al., 2015). Its
viability for DNA extraction and genotyping is well established
and effectively applied in genetics of aging and dementia (McFall
et al., 2016; Sapkota et al., 2017). Recently, metabolomics
technology has advanced such that salivary samples have
provided source fluids for biomarker discovery in AD (Liang
et al., 2015; Figueira et al., 2016). In our previous work, we have
used salivary samples for genotyping, biomarker network and
interaction analyses (McFall et al., 2016; Sapkota et al., 2017),
and metabolomics-based discovery of biomarkers of impairment
and AD (Zheng et al., 2012; Huan et al., 2018). Although not yet
comprehensively compared across biofluid modalities, salivary
biomarkers may enable better accessibility to a wider range of
worldwide and diversity samples than as yet available via more
traditional biofluids (blood, cerebral spinal fluid; Hu et al., 2010;
Thambisetty and Lovestone, 2010; Mousavi et al., 2014; Trushina
and Mielke, 2014; Liang et al., 2016; Simpson et al., 2016; Toledo
et al., 2017).

The first set of biomarkers was developed in a previous
salivary metabolomics analysis of CN, MCI and AD samples.
Metabolomics is a global approach to detecting perturbations
in metabolic pathways that can reflect early and subtle disease-
related changes in the central nervous system (Kaddurah-
Daouk and Krishnan, 2009). It evaluates the metabolic
state of the organism. The metabolome represents the end
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and transitional products of interactions between genes,
proteins, and the environment (Xia et al., 2013; Jové et al.,
2014; González-Domínguez et al., 2015). The result of a
metabolomics analysis is an empirically and quantitatively
derived set of metabolites that discriminate between two
clinical groups and provide targets for further analyses of
mechanisms, associations and clinical applications (Mishur
and Rea, 2012; Ibáñez et al., 2013; Enche Ady et al., 2017).
In the present study, we assemble a set of discovered and
verified discriminant metabolite panels (comprised of more
than one biomarker) from a recent salivary AD metabolomics
study (Huan et al., 2018). Specifically, we developed putatively
identified metabolite panels discriminating CN, MCI and AD
groups (Huan et al., 2018). Unique metabolite biomarker panels
were developed for each pairwise comparison and all panels
displayed very high sensitivity for the comparisons. The AD
biomarker panel (discriminating AD fromCN) was comprised of
three metabolites (Methylguanosine, Histidinyl-Phenylalanine,
Choline-cytidine) that were associated with the phenylalanine
and histamine biosynthesis pathways (Huan et al., 2018). The
AD/MCI panel was comprised of three metabolites (Amino-
dihydroxybenzene, Glucosylgalactosyl hydroxylysine − H2O,
Aminobutyric acid + H2) that were provisionally associated with
lipid metabolism pathways1. The MCI/CN panel was comprised
of two metabolites (Glucosylgalactosyl hydroxylysine − H2O,
Glutamine-carnitine) and provisionally associated with carnitine
synthesis, oxidation of branched chain fatty acid, lipid and
fatty acid metabolism pathways2. Details of the metabolomics
procedures used in the earlier study are available elsewhere
(Zheng et al., 2012; Huan et al., 2018) and are summarized in
the present ‘‘Materials and Methods’’ section.

The genetic biomarker modality was also derived from
salivary samples. We selected AD genetic risk markers from an
available pool with relatively known properties and application
in multi-modal biomarker research (Williams et al., 2010; Karch
et al., 2014; Karch and Goate, 2015; Huynh and Mohan, 2017).
All four were detected in genome-wide association studies
and frequently linked to AD and cognitive decline (Harold
et al., 2009; Lambert et al., 2009; Chibnik et al., 2011). The
four genetic markers are: APOE rs7412, (rs429358; Brainerd
et al., 2011; Dixon et al., 2014; Runge et al., 2014; Mahoney-
Sanchez et al., 2016), Complement receptor 1 (CR1; rs6656401;
Crehan et al., 2012; Fonseca et al., 2016), Clusterin (CLU;
rs11136000; Thambisetty et al., 2013; McFall et al., 2016) and
Phosphatidylinositol-binding clathrin assembly protein (PICALM;
rs3851179; Barral et al., 2012; Xiao et al., 2012; Ferencz et al.,
2014; Morgen et al., 2014). APOE is the most established genetic
risk factor for AD and is involved in lipid transport and
metabolism (Liu et al., 2013). CR1 may be involved in rate of
Aβ42 clearance in AD (Lambert et al., 2009). CLU has been
associated with regulation of lipid transport, Aβ clearance, and
brain atrophy (Karch and Goate, 2015). PICALM is involved in
Aβ peptide production and connected to Aβ metabolism and
plaque formation (Xiao et al., 2012).

1http://www.hmdb.ca/metabolites/HMDB0000585
2http://www.hmdb.ca/metabolites/HMDB0000062

The remaining sets of AD risk factors have been examined
in observational research, reported in reviews, and linked to
early AD detection and potential prevention (Livingston et al.,
2017). The functional health predictor domain included three
dementia-related biomarkers: pulse pressure (PP), body mass
index (BMI) and gait timed walk; Qiu et al., 2003; Dahl et al.,
2013; Mielke et al., 2013; Emmerzaal et al., 2015; McDade
et al., 2016; McFall et al., 2016; MacDonald et al., 2017). PP, a
reliable proxy of arterial stiffness has been considered a better
predictor of poor vascular health compared to systolic blood
pressure alone (Raz et al., 2011; Nation et al., 2013) and linked
to (1) AD biomarkers in CN and AD risk (Nation et al.,
2013; McFall et al., 2016); (2) MCI (Yaneva-Sirakova et al.,
2012); (3) cerebral small vessel disease (Singer et al., 2014); and
(4) cognitive decline (McFall et al., 2015b). Lower late-life BMI
and highermid-life BMI has consistently been linked to increased
dementia risk (Emmerzaal et al., 2015). Potential mechanisms
(Emmerzaal et al., 2015) include: (1) greater inflammation
(Yaffe et al., 2004); (2) structural brain changes (Pannacciulli
et al., 2006); and (3) higher cholesterol levels in mid-life and
lower levels in late-life (Mielke et al., 2005). The lifestyle
activity predictor domain included four markers of everyday
engagement, with higher levels often associated with AD risk
reduction and lower levels with risk elevation. A standard
self-report instrument represented levels of everyday integrative
cognitive, novel cognitive, physical and social activities (Deary
et al., 2006; Bherer et al., 2013; Wang et al., 2013; Vemuri
et al., 2014; Thibeau et al., 2017). Cognitively stimulating lifestyle
activities (Vemuri et al., 2012) and physical activities (Chen
et al., 2016; Falck et al., 2017) have been shown to delay AD
onset. Specifically, physical activities may lead to improvements
in neurogenesis as a result of increased cerebral blood flow in
the dentate gyrus (Chen et al., 2016). The cognitive performance
predictor domain included four measures: episodic memory
(as early cognitive manifestation associated with hippocampal
dysfunction), EF (Stroop, which tests the ability to inhibit
cognitive interferences; Scarpina and Tagini, 2017), speed
(simple reaction time, the level of which reflects slower or
faster processing speed potential indicator of early normal or
preclinical cognitive decline (McFall et al., 2015a), and global
cognition (assessed with the Mini-Mental State Exam (MMSE)).
The bio-demographic domain included age, sex and education
(Li and Singh, 2014; Schneeweis et al., 2014; Jack et al., 2015;
Cadar et al., 2016; Riedel et al., 2016; Sachdev et al., 2016). Age
is the most important non-modifiable risk factor for developing
AD with large number of sporadic AD cases occurring after
65 years (Guerreiro and Bras, 2015). Sex differences have been
observed in AD with significantly higher prevalence in women
than men (Mazure and Swendsen, 2016). Lifestyle experiences
and choices (i.e., diet, exercise) vary by sex and may have an
indirect influence on the brain over the lifespan (Mazure and
Swendsen, 2016). Education has widely been used as a proxy
for cognitive reserve (Tucker and Stern, 2011; Stern, 2012,
2017). Adults with higher cognitive reserve (higher education
levels) may have greater tolerance to AD pathology than those
with lower cognitive reserve (lower education levels; Stern,
2012).
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For each of three comparative RFA prediction models we
included up to 19 predictors. RFA is a machine-learning-based
data exploration technique that combines large numbers of
regression tree predictions from a random sample of participants
and variables (Strobl et al., 2009; McDermott et al., 2017). It
accommodates multiple predictors and smaller sample sizes,
producing a solution that features a rank ordering of the top
important predictors of the target clinical condition. The general
objective was to examine and compare the extent to which new
salivary metabolite biomarker panels fared in the competitive
context of other AD biomarkers in predicting clinical status in
pairwise comparisons across three groups: CN, MCI and AD.

MATERIALS AND METHODS

Participants
Participants were community-dwelling older adult volunteers
from the Victoria Longitudinal Study (VLS), an ongoing
multi-cohort investigation of biomedical, genetic, metabolic,
functional, neurocognitive and other aspects of aging,
impairment and dementia. This study was carried out in
accordance with the recommendations of the Human Research
Ethics Guidelines, University of Alberta with written informed
consent from all subjects. All subjects gave written informed
consent in accordance with the Declaration of Helsinki. The
protocol was approved by the Human Research Ethics Board.
Detailed information on overall VLS recruitment, research
design, and participant characteristics are available elsewhere
(Dixon and de Frias, 2004; McFall et al., 2015a). For the present
study, the CN and MCI participants were drawn from a subset
of the main cohorts that participated in the VLS biofluid
and genetics initiative (2009–2012). The AD patients were
recruited from the Geriatric and Cognitive Clinic at the Glenrose
Rehabilitation Hospital (Edmonton). All participants (N = 82)
received a small honorarium for their contributions. The present
research includes adults classified as CN (n = 35; age 64–75 years;
62.9% female), MCI (n = 25; age 64–75 years; 60% female), and
diagnosed AD (n = 22; age 52–91; 72.7% female). Participant
demographic characteristics are presented in Table 1.

Classification and Diagnosis
To select CN and MCI participants, we initially applied
exclusionary criteria (no diagnosed dementia, cardiovascular
disease, stroke history, or psychiatric illness, MMSE ≥ 24) and
inclusionary criteria (two waves (4.5 years) of longitudinal data,

TABLE 1 | Clinical characteristics of CN, MCI and AD groupsa.

Characteristics CN MCI AD

N (total = 82) 35 25 22
Age (years)b 69.94 (3.80) 70.40 (3.38) 77.09 (11.20)
Gender (M/F) 13/22 10/15 6/16
Education, yearsb 15.69 (2.69) 14.68 (2.94) 11.59 (3.23)
Mini-Mental State Examb 28.46 (1.42) 27.39 (3.14) 21.32 (4.76)

CN, Cognitively Normal; MCI, Mild Cognitive Impairment; AD, Alzheimer’s disease.
aExclusionary, diagnostic, and classification criteria applied. bValues are mean
(standard deviation).

complete data on a separate cognitive reference battery). We
implemented an established and objective four-step cognitive
classification procedure that requires strict adherence to specific
assessment and selection rules (Dixon et al., 2007, 2014; de
Frias et al., 2009; Dolcos et al., 2012; Huan et al., 2018). We
conducted the full classification procedure at each of two waves
(about 4.5 years apart). At both waves, eligible participants
completed a five-domain cognitive battery, including measures
of key domains: perceptual speed, inductive reasoning, episodic
memory, verbal fluency and semantic memory. The procedure
was as follows. Source participants were: (1) stratified into
two age (64–73 and 74–95) and education (0–12 years and
13 + years) groups; (2) placed in appropriate age x education
subgroups; (3) analyzed for mean cognitive scores on all
tests; and (4) evaluated by score within respective age x
education subgroups. We applied a moderate criterion to
establish higher or lower (‘‘impaired’’) group based on one
standard deviation below the subgroup mean for any cognitive
test. For participants to be classified as CN or MCI they
were required to be objectively stable in their classification
at both waves (at least 4.5 years). The procedure resulted in
n = 25 MCI participants, who we then matched (age, sex) with
CN adults and supplemented with randomly selected additional
participants (n = 35). Overall, this approach emphasizes objective
and stable classification, reducing the risk of false assignments
and enhancing homogeneity of the groups (Dolcos et al.,
2012; Bondi et al., 2014; Dixon et al., 2014). AD patients
were recruited from the Geriatric and Cognitive Neurology
clinics at the Glenrose Hospital in Edmonton, Alberta. The
clinical diagnosis of AD was based on the Diagnostic and
Statistical Manual of Mental Disorders (4th Edition) criteria
for Dementia of the Alzheimer Type. Clinical assessments were
performed as part of routine clinical evaluation, which included
caregiver report of cognitive decline and impaired functional
status, mental status evaluation of the patient (including the
MMSE and Montreal Cognitive Assessment) and a physical and
neurological examination. All patients had routine laboratory
assessment for causes of dementia, including blood work and
brain imaging according to Canadian Consensus Guidelines
(Gauthier et al., 2012). Imaging excluded significant vascular
pathology; however, cerebrospinal or other amyloid biomarkers
were not available. AD patients did not have vascular dementia
based on a modified ischemic score >4. Medical comorbidity
was recorded using the modified Cumulative Illness Rating
Scale.

Salivary Samples
Salivary samples were collected and prepared according to the
manufacturer’s protocol. Participants were instructed not to
eat one hour before testing and light washing was permitted
prior to saliva collection. One saliva sample was collected
per participant. The time of day for saliva collection varied
throughout across participants. At a regular point in the data
collection for each participant, the saliva collection task was
announced, instructions were delivered, and the device was
displayed and described. As the overall procedure was not
time-limited, there was sufficient time for full samples from
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all individuals. We used the Oragener • DNA Self-Collection
Kit OG-500 (DNA Genotek Inc., Ottawa, ON, Canada). Whole
saliva was collected, placed inside the kit, and shaken. The kit
contained anOragene DNA-preserving solution. The ingredients
of Oragene solution include ethyl alcohol (>24%) and Tris-HCl
buffer (pH 8). As provided by established procedures, samples
stored at room temperature were analyzed for DNA extraction,
genotyping and the metabolomics analyses. Our previous pilot
study included an analysis of five different saliva samples
from CN adults collected at varying times of the day and
stored at different temperatures to examine performance of the
metabolomics profiling method. We observed that metabolites
detected for each individual sample significantly discriminated
the individuals despite small metabolite variations that may have
been present for samples collected at different times of the day.
In addition, there were relatively minor metabolite variations
across a range of storage temperatures (room temperature,
−20◦C, −80◦C; Zheng et al., 2012). All saliva samples were
then preserved in −80◦C for long-term storage and follow-up
studies.

Alzheimer’s Predictors From Six Risk
Domains
In this section, we describe the procedures for obtaining the
risk and biomarker data. These included two AD biomarker
clusters using salivary samples: (1) salivary metabolites; and
(2) genetic polymorphisms. The remaining domains were:
(3) functional health; (4) lifestyle activity; (5) cognition; and
(6) bio-demographic. We recruited diagnosed AD patients with
mild form of dementia and limited available time for the
testing session than the other two groups. Thus, we reduced
the cognitive and physical load of our testing sessions for them.
The total number of predictors differed between the clinical
status discrimination analyses because the AD group was not
tested on PP, BMI and lifestyle activities.

Metabolomics Procedure and Metabolite Panel
Development
The metabolomics analyses leading to the present biomarker
panels were performed in a previous study (Huan et al., 2018).
In the study establishing the present biomarker panels, we
applied a salivary metabolomics workflow with a differential
chemical isotope labeling based liquid chromatography-mass
spectrometry (LC-MS) platform using dansylation derivatization
for an in-depth profiling of the amine/phenol submetabolome
(Huan et al., 2018). This was adapted and extended from earlier
pilot work on saliva metabolome profiling (Zheng et al., 2012).
Five microliters saliva sample was aliquoted out from each
individual sample and labeled with 12C-DnsCl. A pooled sample
was prepared by mixing small aliquots of individual samples and
then labeled with 13C-DnsCl. The 12C-labeled individual sample
was then mixed with 13C-labeled pooled sample in a 1:1 amount
ratio after the total concentration of the labeled metabolites was
determined by LC-ultraviolet. The 12C-/13C- ion pairs belonging
to the labeled amine/phenol submetabolome were extracted from
raw LC-MS data by a peak pair picking program, IsoMS (Zhou
et al., 2014). Missing values in the ion pair list was retrieved using

Zero-fill (Huan and Li, 2015a) by searching and filling in the
missing values from the raw MS data. Accurate intensity ratios
of the ion pairs were reconstructed by their chromatographic
peak ratios using IsoMS-Quant (Huan and Li, 2015b). After the
LC-MS data processing, multivariate statistical analysis of the
LC-MS data was conducted using SIMCA-P + 12.0 (Umetrics,
Umeå, Sweden).

The metabolite biomarker panels were determined as follows
(Huan et al., 2018). Pairwise statistical comparisons used
orthogonal partial least squares-discriminant analysis (OPLS-
DA) and volcano plot analyses. The diagnostic power of the
commonmetabolites that were highly ranked with both statistical
tools was then evaluated by receiver operating characteristic
(ROC) analysis and linear SVMmodel usingMetaboAnalyst (Xia
et al., 2012). For positive or definitive metabolite identification,
the peak pairs were matched against a Dns-standards library
(Huan et al., 2015) by retention time and accurate mass. In
addition, putative metabolite identification was performed based
on accuratemassmatch of the peak pairs found to themetabolites
in the Human Metabolome Database (Wishart et al., 2013) and
the Evidence-based Metabolome Library using MyCompoundID
(Li et al., 2013), with a mass tolerance of 5 ppm.

As a final step in the discovery phase, a machine learning
linear SVM tool in MetaboAnalyst (Xia et al., 2012) was
used to develop a diagnostic model for each of the three
pairwise comparisons with: (1) 63 metabolites discriminating
AD vs. CN; (2) 47 metabolites discriminating AD vs. MCI;
and (3) two metabolites discriminating MCI vs. CN. In a
follow-up validation phase, the diagnostic performance was
further evaluated in a small (n = 27) but independent data
set drawn from the same population. Specifically, validation
was tested with similarly classified or diagnosed CN (age
68–75 years, 50% female), MCI; age 67–75 years, 50% female),
and AD; age 53–91 years, 71.4% female) groups (Huan et al.,
2018). The final diagnostic model best discriminated: (a) AD
from CN with the AD metabolite panel (Methylguanosine,
Histidinyl-Phenylalanine, Choline-cytidine); (b) AD from
MCI with the AD/MCI metabolite (Amino-dihydroxybenzene,
Glucosylgalactosyl hydroxylysine − H2O, Aminobutyric acid
+ H2); and (c) MCI from CN with the MCI metabolite panel
(Glucosylgalactosyl hydroxylysine−H2O, Glutamine-carinitine;
Huan et al., 2018). The additive score is comprised of the sum
of all the values for each metabolite in the three diagnostic
models and was used as the final metabolite panel in the present
clinical status prediction analyses. Higher score indicated higher
metabolite concentration in the diseased group.

Genetic Markers
DNA was manually extracted from 0.8 ml of saliva sample
mix using the manufacturer’s protocol with adjusted reagent
volumes. Genotyping was carried out by using a PCR-RFLP
strategy to analyze the allele status for APOE (rs7412, rs429358),
CR1 (rs6656401), CLU (rs11136000) and PICALM (rs3851179).
Genotyping was successful for the targeted SNPs for all present
participants (McFall et al., 2015a). We included all three allelic
combinations coded from 1 (lowest risk) to 3 (highest risk) for
CR1 (G/G = 1, G/A = 2, A/A = 3), CLU (T/T = 1, T/C = 2,
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C/C = 3), and PICALM (C/C = 1, C/T = 2, T/T = 3). For
APOE, the study sample did not include any ε2/ε4 carriers and,
therefore, the remaining five allelic combinations were coded
from 1 (lowest risk) to 5 (highest risk; ε2/ε2 = 1, ε2/ε3 = 2,
ε3/ε3 = 3, ε3/ε4 = 4, ε4/ε4 = 5).

Functional Health
In this category we included PP, BMI and gait (timed walk)
as predictors. PP was calculated with systolic minus diastolic
blood pressure (McFall et al., 2016). BMI was obtained from
measurements of weight in kilograms and height in centimeters.
BMI was calculated by taking the weight in kilograms divided by
the square of one’s height in meters (kg/m2; MacDonald et al.,
2011; Besser et al., 2014). A timed walking test was used to
measure gait speed for all participants. The CN and MCI groups
began the walking task from a standing position, a standard
procedure for individuals with nomobility or dementia concerns.
Specifically, the CN and MCI groups were measured by asking
participants to walk a distance of 3 m, turn around, and walk
back (MacDonald et al., 2017). AD patients began the task from a
sitting position in an arm chair (i.e., the Timed Up and Go Test,
a standard task in dementia research). Participants were seated in
an armchair, and asked to get up and walk 3m, turn around, walk
and sit back in the chair. The time taken to complete this task was
measured with a stopwatch in seconds. PP, BMI and timed walk
were included as continuous variables.

Lifestyle Activity
The commonly used VLS Activity Lifestyle Questionnaire has
67 items measuring seven types of lifestyle engagement (Hultsch
et al., 1999; Dolcos et al., 2012; Small et al., 2012) From the
full inventory, we extracted items (n = 50) associated with
the key dementia-related lifestyle aspects (cognitive, physical,
and social). We evaluated two types of cognitive activities:
(1) integrative information processing measured (n = 12) such
as playing a musical instrument or household repairs, and
(2) novel information processing (n = 27) such as completing
jigsaw puzzles or reading the newspaper (Runge et al., 2014;
Sapkota et al., 2017). Physical activity (n = 4) included jogging
or gardening (Thibeau et al., 2017). Social activity (n = 7)
included volunteering or visiting friends (Brown et al., 2016). The
frequency of participation is rated on a 9-point scale with never
(0), less than once a year (1), about once a year (2), 2 or 3 times
a year (3), about once a month (4), 2 or 3 times a month (5),
about once a week (6), 2 or 3 times a week (7), and daily (8).
All the items were summed for each domain with higher scores
representing greater frequency of activity (e.g., Small et al., 2012;
Runge et al., 2014; Sapkota et al., 2017; Thibeau et al., 2017).

Cognition
The cognitive performance domain was represented by four
standardized tests covering key aspects of performance known
to be associated with differential normal and impaired aging,
as well as dementia. First, to represent memory we used the
standard VLS Word Recall task (Dixon and de Frias, 2004).
From a pool of six equivalent lists, two different but comparable
lists of 30 English words (i.e., six taxonomic categories with

five words each) were used. Participants were given 2 min to
study the list and 5 min to write down their answers. The
total numbers of words correctly recalled from each list was
averaged and used as the final score (Josefsson et al., 2012).
Second, to measure EF (inhibition) we used the Stroop test
(Scarpina and Tagini, 2017). This test consists of the standard
three parts (Parts A, B and C), with the measures based on
latencies. The score is the standardized Stroop interference index
([Part C− Part A]/ Part A), with a lower index reflecting better
performance (MacLeod, 1991; de Frias et al., 2009; Diamond,
2013). Third, to measure speed we used the SRT task (Dixon
et al., 2007). In this computer-based nonverbal response time
task participants press a key on the response console with the
index finger of their dominant hand at every occurrence of the
target stimulus as quickly as possible. Response latencies were
recorded to a precision of ±1 ms as the final score (McFall
et al., 2015a). Fourth, for global cognition, we used examined the
MMSE (Folstein et al., 1975), which measures performance on a
scale of 0–30.

Bio-Demographic
The VLS personal data inventory was used to determine type and
level of demographic risk (Anstey et al., 2013a; Sachdev et al.,
2016). We examined education (total number of school years;
Amieva et al., 2014; Cadar et al., 2016), age (in years; Small et al.,
2011; Papenberg et al., 2015), and sex (male vs. female; Altmann
et al., 2014; Li and Singh, 2014; McDermott et al., 2017).

Statistical Analyses
RFA is a machine learning technology that applies a
nonparametric approach to assess a large number of predictors
in both complex and small data sets (Strobl et al., 2009; Kuhn
and Johnson, 2013). These applications include biomarker
predictions related to AD (Kaup et al., 2015; McDermott et al.,
2017). We used RFA from the Party package (Hothorn et al.,
2005) in RStudio version 1.0.136 (2017). The analysis combines
regression trees based on a random selection of participants
and variables. The regression trees are all combined and
then used to rank variables according to their importance in
predicting an outcome. The RFA party package accounts for
any potential correlated predictor variables (Strobl et al., 2009).
Any missing values were imputed using the missForest package
(Stekhoven and Bühlmann, 2012). All the forests in our analyses
examined 5,000 trees and a random sample of 10 predictors
was tested at each potential split. The analyses ranked relative
predictive importance based on standard statistical operations
and procedural recommendations (Strobl et al., 2009). The
metric for these rankings is termed ‘‘variable importance,’’ which
specifies how important each factor is in discriminating two
groups relative to all other factors in the model. Goodness of
model fit for each RFA analyses was examined with area under
the ROC curve (C-statistics). The C-statistic ranges from 0.50 to
1.00 can be interpreted as equivalent to the Area under the Curve
in a ROC analysis where higher values are associated with better
predictive models. Any variables with negative, zero, or small
positive values are determined as not important predictors; these
are represented to the left of the vertical dashed line. Variables
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FIGURE 1 | Results of random forest analyses (RFA) for three pairwise comparisons. The three panels of the figure display strongest predictors for discriminating
clinical status: (A) Alzheimer’s disease (AD) vs. Cognitively Normal (CN); (B) AD vs. Mild Cognitive Impairment (MCI); (C) MCI vs. CN. Dashed black line is the cut off
for variable importance in discriminating clinical status relative to other factors in the model. APOE, Apolipoprotein E (rs7412, rs429358); CR1, Complement
receptor 1 (rs6656401); CLU, Clusterin (rs11136000); PICALM, Phosphatidylinositol-binding clathrin assembly protein (rs3851179); BMI, Body Mass Index; SRT,
Simple Reaction Time; MMSE, Mini-Mental State Exam.

right of the vertical dashed line with high positive values are
considered to be important predictors (Strobl et al., 2009).

RFA was used to determine the most important predictors for
discrimination in three pairwise groups (AD vs. MCI, AD vs.
CN, MCI vs. CN). First, we tested which of the 13 risk factors
were the most important predictors for discriminating clinical
status for: (1) AD vs. CN and (2) AD vs. MCI. Second, we tested
which of the 19 risk factors were the most important predictors
for discriminating clinical status for (3) MCI vs. CN.

RESULTS

Across the three multi-modal prediction analyses, we observed
significant discrimination for the pairwise comparisons of
the three clinical groups with predictors from the six AD
biomarker risk domains (see Figure 1). First, for the AD vs.
CN analysis, three important discriminative predictors were
identified (C-statistic: 1.00). As shown in Figure 1A, the top
predictors included two cognitive measures (speed and memory)
and the AD metabolite panel. Specifically: (1) poorer memory
performance; (2) slower speed performance; and (3) higher
levels (greater risk) of the AD metabolite panel discriminated
AD from CN group at a high level of importance. Second, for
the AD vs. MCI analysis the same two cognitive predictors
and the AD/MCI metabolite panel were identified as important
predictors (C-statistic: 0.99). As can be seen in Figure 1B, A
different order of importance was observed: (1) slower speed
performance; (2) poorer memory performance; and (3) higher
levels (greater risk) of the AD/MCI metabolite panel were
the most important factors discriminating the AD and MCI
groups. Third, as shown in Figure 1C, in the MCI vs.
CN analysis, seven of the 19 predictors were identified as
important in discriminating the groups (C-statistic = 0.94).
Notably, the seven predictors represented five (of the six)
risk domains (see Figure 1C). Specifically, the most important

predictors for discriminating MCI from CN were: (1) higher PP;
(2) higher levels of theMCI metabolite panel; (3) poorer memory
performance; (4) lower frequency of novel cognitive activity;
(5) elevatedAPOE risk; (6) decreased social activity; and (7) lower
MMSE score.

DISCUSSION

We examined and compared neurodegenerative disease
status predictions by selected modifiable and non-modifiable
AD risk factors representing six prominent modalities. The
relative prediction patterns were examined for the pairwise
discrimination of the three groups (CN, MCI and AD). An
important aim was to test the extent to which recently discovered
salivary metabolomics biomarker panels (Huan et al., 2018)
would perform in the competitive context of other biomarkers
and risk factors of AD. Given the dynamic, insidious and
multi-factorial nature of AD, it is likely that multiple modalities
of risk biomarkers may contribute to the diagnosis of the disease.
A corresponding emerging interest is in determining viable
combinations of predictors for use in timely (early) detection
and targeted (precise) intervention. Our results supported
both the multi-modal predictor expectation and the potential
valuable role that salivary-based biomarkers discovered through
metabolomics analyses may play in identifying important
components of AD biomarker batteries.

In our earlier metabolomics analyses, we detected salivary
metabolite panels that were most accurate in discriminating the
three groups (Huan et al., 2018). In this study, we examined
how these panels performed in discriminating these groups
in the competitive context of other known AD biomarkers
or risk factors. In each of the three pairwise comparisons,
the RFA results showed that the relevant metabolite panel
was among the top important predictors. In fact, the AD
and AD/MCI metabolite panels and the same two cognitive
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performance measures—i.e., speed and memory—in a different
order discriminated AD from CN and AD from MCI. For the
AD-CN comparison, the important predictors were memory,
followed by speed and the AD metabolite panel. The AD
metabolite panel represents pathways involved in AD protein
regulation (Huan et al., 2018). For the AD-MCI comparison,
speed and memory were among the most important predictors,
and the associated AD/MCI metabolite panel also contributed
at an important level. Dipeptides identified in both the AD
metabolite panel and AD/MCI metabolite panel may reinforce
the role of protein dysregulation in AD as a result of degraded
proteins from amyloid or tau (Huan et al., 2018). Memory
decline and impairment is a cardinal marker of preclinical
dementia and is described as an oft-reported clinical symptom of
aging and impairment (McKhann et al., 2011). Poorer memory
performance in AD is consistent with key memory-related
structural changes observed in the aging and impaired brain
(Bartsch and Wulff, 2015). Specifically, hippocampal atrophy
rates are comparatively greater in MCI than CN older adults
and whole brain atrophy rates are greater in AD patients than
MCI (Henneman et al., 2009). Slower speed performance has
shown to be an early marker of lower and steeper cognitive
decline (McFall et al., 2015a) and may be associated with
poorer executive functioning and memory performance as well
as increased dementia risk (Bäckman et al., 2005). Slower speed
performance is also positively correlated with white matter tracts
especially in the parietal and temporal cortices, and the left
middle frontal gyrus (Turken et al., 2008).

Much attention in recent years has been on the detection of
early signs—and their biomarker predictors—of transitions from
CN to mildly impaired aging (Albert et al., 2011; Brainerd et al.,
2013). Recently, this transition has also been investigated with
unbiased metabolomics procedures (Zheng et al., 2012; Figueira
et al., 2016; Liang et al., 2016; Huan et al., 2018). Two related
challenges are that: (1) neither group is diagnosable with AD and
(2) the exact probabilities of individual future conversion to AD
are unknown.Moreover, both groups are likely to be in fluctuant,
even overlapping, states of brain and cognitive aging—as
indicated by the phenomenon of reversion (Manly et al., 2008;
Koepsell andMonsell, 2012). Reviews of this challenge have led to
the recommendation that multiple biomarkers and longitudinal
data are advisable for differential classification. In the present
study, these two groups were exactingly and objectively classified
based on longitudinal data. Specifically, both groups were
comprised of participants who were independently classified in
status on two separate waves (about 4 years apart), underscoring
the validity of the CN classification and the chronicity of
the cognitively impaired classification. Our results reflect the
challenge and relevance of considering multiple modalities
of risk, and the apparent validity of carefully characterized
groups. The RFA results showed that seven factors (representing
five modalities) were found to be important predictors of
impairment. The important predictors in order of significance
were PP, MCI metabolite panel, memory, novel activities, APOE,
social activities and MMSE. Elevated PP has been linked to
cognitive impairment in MCI potentially in association with
large artery stiffness (Yaneva-Sirakova et al., 2012; McFall et al.,

2016). Our previously discovered MCI metabolite panel was the
second important predictor of MCI status. This panel could be
used in future targeted studies focusing on the differences and
early markers of early memory impairment, as distinguished
from normal memory decline. Notably, we employed a broad
performance-based classification scheme that complements the
standard clinical approach to MCI classification (Petersen et al.,
2014). Two aspects of lifestyle activities—specifically, lower
frequency of novel cognitive activities and decreased social
engagement—predicted MCI group membership, in the context
of the CN benchmark. The discriminative associations for these
markers were in the expected direction, indicating that poorer
lifestyle activities predicted probability of cognitive impairment
(Verghese et al., 2006; Hughes et al., 2013). As previously
reported in the literature (Brainerd et al., 2011; Dixon et al.,
2014), AD genetic risk, as represented by APOE ε4+ genotypes
predicted membership in the cognitive impairment group, in the
context of the CN benchmark. Finally, poorer global cognition
in the MCI group, an indication of future risk of dementia
(O’Bryant et al., 2008), suggests that the MCI group maybe on an
accelerated path to dementia onset compared to the CN group.

Overall, the results are consistent with the general perspective
that risk markers from multiple modalities contribute to the
prediction, classification or diagnosis of cognitive statuses such as
MCI and AD. The results are also consistent with our expectation
that new metabolite panels, derived from salivary metabolomics
analyses, can be confirmed as among the better predictors of
clinical status—but not the only predictor, especially for the
crucial discrimination of CN and the impairment group. Along
with notable strengths, we acknowledge several limitations. First,
as a function of leveraging our earlier metabolomics study,
our present sample sizes are relatively small. Although not
perfect, this fact is statistically accommodated in the machine
learning prediction analyses we used. Specifically, RFA are
well suited to deal with small sample sizes because a large
number of trees can be used in RFA models (Strobl et al.,
2009). Larger number of trees allows for a large variety of
predictor variable combinations to account for small sample
sizes. Moreover, RFA outperforms other non-machine learning
techniques (i.e., regression, and factor analysis) in that it
accommodates: (1) small samples size in highly complex datasets
(Maroco et al., 2011); (2) highly correlated datasets; and (3) large
number of regression trees with specified set of predictors.
The latter compensates for power issues as frequently observed
in other statistical models with small sample sizes. We take
the average of all 5,000 trees to employ a bagged variable
importance measure—a procedure that leads to more stability
and reduces the risk of over-fitting of the data. Nevertheless,
some over-fitting of prediction models may occur, so further
validation research is recommended.We specifically recommend
follow-up validation studies, appropriate statistical evaluation,
and larger sample sizes. Second, we deliberately incorporated a
large number of predictors frommultiple modalities—and all are
established in a variety of independent research projects—but
not all possible and potentially relevant predictors were included.
For example, future research should include other standard
AD biomarkers, such as cerebrospinal fluid β-amyloid (1–42),
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total tau, and phospho-tau-181 (Humpel, 2011), as well as
other AD-specific neuroimaging biomarkers (e.g., hippocampal
volume). Third, in order to more broadly generalize our
results, we recommend studies recruit samples that are more
demographically diverse, include alternative biospecimens or
validate with autopsy confirmed AD cases. As noted, the
metabolite panels used here were established in previous
metabolomics research using the same groups. Future validation
work would also benefit from targeting and testing these panels
in different populations.

We tested a multi-modal array of risk biomarkers for their
relative predictive power in discriminating three clinical status
groups. This provides empirical evidence confirming the view
that such multi-modal approaches can be valuable in research on
neurodegenerative disease. In addition, the results also confirm
that metabolomics procedures can produce biomarker panels
that have relevance in the competitive context of other known
risk factors for AD. Future work should examine such novel
metabolite panels in the context of additional AD biomarkers.
The results also show that modifiable risk factors can be
important predictors of clinical status, even in the context of
biomarkers from metabolomics and genomic approaches. At
present, they appear to be especially relevant for the crucial
discrimination of normal and impaired groups. The overall
results lead to indications of potential use for validation
and translation of non-invasive metabolite panels in pertinent
combinations with established multi-modal biomarkers for early
dementia risk detection and intervention programs. Early and
precise risk detection can lead to personalized risk management
and other intervention strategies for older adults at elevated risk
for AD (Barnes and Yaffe, 2011; Anstey et al., 2014; Olanrewaju
et al., 2015).
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