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Neurodegenerative dementia often has multiple types of underlying pathology,
for example, beta-amyloid, misfolded tau, chronic neuroinflammation and
neurodegeneration may coexist in Alzheimer’s disease. However, the relationship
between them is often unclear, in other words, whether one pathology is upstream or
downstream of others can be very difficult to investigate directly. This is partly because
the underlying pathology in dementia may precede detectable symptoms by several
years if not decades. The time scale associated with disease progression in dementia
generally exceeds that in conventional longitudinal imaging studies in humans, so
it is difficult to directly observe the temporal ordering of different pathologies. Also,
animal studies are not always transferable to patients due to obvious differences
between the two systems. To investigate the disease progression and relationships
among underlying pathological changes, we propose a novel computational modeling
approach for multimodal MRI and PET inspired by reaction rate equation in chemical
kinetics. We also discuss the possibility and prerequisites to use cross-sectional data to
generate preliminary hypothesis for future longitudinal studies. It has been shown that
the rate of change in some biomarkers can be approximated by the average trajectory
across patients at different stages of disease severity in cross-sectional studies. The
relationship modeled in our approach is akin to that in the control theory, and can
be assessed by demonstrating that the presence of one disease related biomarker
predicts dynamics in another. We argue that the proposed framework has important
implications for trials targeting different pathologies in dementia.
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INTRODUCTION

Previous studies have shown that beta-amyloid, tau, neuroinflammation and neurodegeneration
all play a significant role in the etiology of Alzheimer’s disease (AD), but little is known
about their relationships (Edison et al., 2008; Lehmann et al., 2013). In particular, whether
one type of pathology is the upstream or downstream event to others has significant
impact on future trials appropriately targeting them at the right point in the disease
course (Jack et al., 2013). In addition, systematically determining potential treatment
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targets in diseases with multiple interacting pathologies has
strategic importance for effective treatments. In the case of
AD, beta amyloid has been regarded as an early event in the
disease progression therefore making it one of the potential
targets (Jack et al., 2013). However, the failures of several
recent trials of anti-amyloid therapy (Le Couteur et al., 2016)
may arguably be caused by the drugs were given too late in
the disease course to be effective. The co-existence of other
interacting pathologies might also reduce the efficacy of those
anti-amyloid drugs. So, investigating the relationship between
multiple pathologies and their associated imaging biomarkers
in dementia and determining alternative or complementary
treatment targets are necessary.

The relationship among more than one type of pathology
has primarily studied in animal models of AD, however, due
to the differences in techniques, the findings from those animal
research were largely inconsistent (Yoshiyama et al., 2007). In one
study, activated microglia was found to facilitate the propagation
of misfolded tau in mouse brains (Wes et al., 2014), and after
depletion of microglia in the mouse brain, the spread of tau
from the entorhinal cortex to the dentate gyrus was significantly
decrease (Asai et al., 2015). This evidence points to a causal effect
of neuroinflammation on the phosphorylation or propagation of
tau as microglia activations seems both sufficient and necessary
for tau phosphorylation and its trans-synaptic propagation.
Although some studies showing microglia activation preceded
tangle formation in P301S transgenic mice with overexpressed
mutant human tau, opposite pattern was found in Cx3cr1 mice
with tau deficiency that shows tau phosphorylation without
significant microglia activation and reduced neuroinflammation
(Yoshiyama et al., 2007). In addition, the obvious differences
between humans and animals limit the ability to translate
findings from the modal systems to human patients. To see how
different types of pathology interact in humans, it has required a
multimodal imaging study with PET and MRI in the same cohort
of participants to reveal the potential influences among them.
Recently such data is emerging, but the analysis and the inference
frameworks still lag behind in characterizing multimodal and
longitudinal imaging data in patients with dementia.

In neurodegenerative dementia such as AD, the development
of underlying pathology takes several years if not decades before
any detectable symptoms occur (Jack et al., 2013), so it is
challenging to study in humans using conventional longitudinal
design. This is because it is costly and difficult to follow large
cohort of healthy participants free from AD pathologies over
many decades with only very small proportion of them eventually
develops dementia. For imaging studies, the MR scanner will also
unavoidably change over time, making the data less comparable
at different time points. As a result, existing longitudinal human
imaging data only tracks a relatively short period (e.g., several
years) within the evolution of the disease in patients with
dementia (Ishiki et al., 2015). In addition, different biomarkers
may have different sensitivity to the underlying pathology.
So comparing biomarkers obtained from multimodal imaging
is nontrivial. With the absence of suitable longitudinal data
tracking the long-term evolution of dementia in humans and the
inconsistent evidence from animal models, studying interaction

among factors of dementia may sometimes rely on cross-sectional
data and by modeling the relationship within clinical populations
representing different severities and stages of disease progression.
Thus, ideal analysis methods for longitudinal data must also
consider cross-sectional data to be widely applicable in dementia
research.

Here, we proposed a novel computational modeling approach
based on reaction rate equation modeling in chemical kinetics
to infer relationship between more than one types of imaging
biomarker in dementia. The specific type of relationship in this
model was defined in a control theory sense (Friston et al.,
2016) meaning whether the presence of one disease related
pathological process (e.g., tau) in the past predicts to the
dynamics in another (e.g., beta-amyloid, microglia activation,
and neurodegeneration) expressed using differential equations
(Yang et al., 2011; Villemagne et al., 2013; Young et al., 2014;
Budgeon et al., 2017; Lturria-Medina et al., 2017; Oxtoby et al.,
2018).

THE LONGITUDINAL MODEL

With the advances of imaging technology, many types of
pathology can be measured in vivo using multimodal MRI and
multi-tracer PET within the same cohort (Passamonti et al.,
2016, 2018; Su et al., 2016). For example PET data is often in
the form of binding potential or SUVR that are proxies for the
concentration of a substance, e.g., some neurotoxic proteins. MRI
data is often in the form of gray matter volume as well as cortical
thickness. For simplicity, we will illustrate the approach by the
interaction between two substances measured from PET imaging,
each associated with a specific pathology. However, this model
can easily be extended to MRI and between PET and MRI.

Specifically, if one substance BP1 (related to one pathology)
is the upstream species of another substance BP2 (related to a
different pathology) in a biochemical reaction, we can express this
as Equation 1 (which is called balance equation).

aBP1 + bi6Bi → mBP2 + nj6Cj (1)

Where Bi and Cj represent a set of unknown substances
involved in this process and a, bi, m and nj represent a set of
unknown coefficients. Also, i and j are indices of these unknown
substances of which the number of them are also unknown.
Here, we do not assume this process is a single step reaction nor
substance represented by BP1 directly turns into BP2. It can be
seen that Equation 1 describes a specific form of relationship, i.e.,
BP1 is an up-stream event of BP2 instead of the vice versa. This
model is difficult to estimate because it contains too many free
parameters that we cannot evaluate empirically in patients. It will
be discussed later that Equation 1 remains useful to conceptualize
the relationship between multiple types of pathology in the
disease.

To reduce the number of free parameters in the model, we will
use chemical kinetics to calculate the speed of the reaction. Here,
we do not need to estimate the concentration of all products in Cj
if we can instead measure the speed at which BP2 is produced
because it will be perfectly correlated with the speed at which
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the reaction happens. In chemical kinetics, the speed at which
a reaction happens is expressed using the reaction rate equation
(Equation 2).

d[BP2]

dt
= −

d[BP1]

dt
= k[BP1]

x5[Bi]
y (2)

Where k is a reaction rate constant, x and y are unknown
reaction orders, and the concentrations [BP1] and [BP2] can
be measured by PET from human participants, example of
which are [18F]AV1451 for tau, [11C]PiB for beta-amyloid
and [11C]PK11195 for activated microglia. [A] denotes the
concentration of substance A while [A]0 represents the initial
value of the concentration at a predefined baseline time point.
In most diseases, the initial concentration of disease related
substance [BP1]0 is significantly lower compared with other
substances [Bi]0 that were already in the brains of healthy subjects
(i.e., [Bi]0 > > [BP1]0), we can apply the pseudo 1st order
approximation in chemical kinetics and simplify Equation 2 to
Equation 3 that only contains the concentration [BP1]. It should
be noted that the validity of this assumption is also depending
on the selection of the initial state. For AD, the MCI stage is
a relatively reasonable and clinical defined initial state for the
disease process, however, as new method for the early detection of
AD emerges, a more accurate initial state could be defined in the
future. Thus, for the longitudinal model, an ideal baseline state is
at the very early point of the diseases. As previously mentioned,
longitudinal data with such suitable baseline is still lacking.

d[BP2]

dt
= k[BP1]

x5[Bi]
y
0 = k′[BP1]

x (3)

Where k′ is a constant because we assume that the initial
concentrations of [Bi]0 are also constants. Finally, we apply
natural logarithm on both sides of the non-linear Equation 3,
which is more difficult to model and evaluate, resulting an
asymmetric linear model (Equation 4), which can be statistically
tested using linear regression as we explained in subsequent
sections.

ln(
d[BP2]

dt
) = ln(k′[BP1]

x) = ln(k′)+ x ln([BP1]) (4)

THE CROSS-SECTIONAL MODEL

As previously discussed, the progression of dementia often takes
years or decades, thus conventional longitudinal data are either
unavailable or unable to capture the full dynamic changes and
temporal ordering in underlying pathologies. Thus, short-term
follow-up data was often used to fit the common biomarker
trajectory building up a complete picture of the population time
course over a longer term (Budgeon et al., 2017). Although
the longitudinal model is still more powerful and likely to be
more accurate in revealing relationship between biomarkers, the
method proposed here should be considered with respect to
cross-sectional data when longitudinal data is not available see
similar approached used by Young et al. (2014). This allows us
to generate hypothesis from existing cross-sectional studies, and
then to test it with longitudinal data in the future.

In some cases, the average rate of change in tau pathology
over time has been shown to be consistent with their rate of
change across individual subjects with different disease severity
or disease progression score (Ishiki et al., 2015). In the cross-
sectional model under the above condition, we replace the total
derivative with respect to time in Equation 4 by partial derivative
with respect to an appropriate measurement of disease severity or
cognitive functioning (denoted by τ); see Equation 5.

ln(
∂[BP2]

∂τ
) = ln(k′)+ x ln([BP1]) (5)

In this model, we approximate the rates of longitudinal change
in regional PET binding and GM density for a cohort of patients
by the slope parameters with respect for the disease severity score
or cognition derived from a multiple linear regression model.
Here, we assumed that the pathological changed linearly with the
disease severity of cognitive measure. This assumption although
not true in the absolute sense, it avoids over-fitting the noise
when the sample size is limited, for example in most PET studies.
In order to control other known confounding factors, one can
include subject’s age, sex, and years of education as covariates in
the regression analysis.

STATISTICAL ANALYSIS

A critical step for computational modeling is empirical
validation, in other words, whether the proposed model explains
human data. So, one should fit the reaction rate model to the
imaging data, either longitudinal or cross-sectional. As the model
is a linear equation, the “goodness of fit” can be statistically
evaluated by linear correlation. In other words, if we hypothesize
that one type of pathology is the upstream event of another
under the assumption and formulation of this model, baseline
level of the former should be correlated with the rate of changes
in the latter either over time for longitudinal data or across
different degrees of dementia severities for cross-sectional data.
This approach can be extended in several ways. In addition,
we can also apply the modeling to the clinical and cognitive
data. Although they cannot be directly formulated within the
context of chemical reactions, the quantitative method does allow
inference to be drawn between these metrics and brain imaging
or other biomarkers.

The statistical tests for longitudinal and cross-sectional data
may be different. In the longitudinal case, the dynamic model can
be fitted to each individual subject’s time course data, hence the
group statistics can be computed using a random effect model
across multiple subjects after the model fitting at the individual
level for each brain area. However, in the case of cross-sectional
data or longitudinal data with short-term follow-up, the rate of
biomarker changes can only be estimated for the cohort as a
whole. Thus, the test for the fitness of the model cannot be done
using the methods for longitudinal data. Instead, it can be done
across different brain regions using repeated measure statistics,
and the inference can only be drawn for the whole brain. In
addition, for the cross-sectional model, including cognitive or
clinical data is more difficult than the longitudinal design because
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the rates of the biomarker changes are estimated for the group
rather than for the individuals.

Another challenging issue in computational modeling is
model comparison. Different methods have been proposed to
account for this issue, such as Bayesian model selection, which
gained increasing popularity in imaging analysis and generative
modeling in computational neuroscience (Wasserman, 2000).
These sophisticated methods deal with difference in model
complexity, i.e., the sampler model is the superior model
compared with a more complex model if both models can explain
the data equally well. This can be understood by the intuitive
Occam’s Razor principle, i.e., preferring the most parsimonious
model explaining the same variance. However, in our formalism,
all models have not only the same number of parameters but also
the same analytical form (Equation 4 or 5). As the complexities
between alternative models are identical, model comparison is
trivial and can be done by simply comparing the goodness of fit.

DISCUSSION

It is widely accepted that longitudinal imaging is very important
for the understanding of disease progression, staging pathology,
differential diagnosis, and determining prognosis during clinical
trials. Multimodal imaging including structural MRI, DTI,
functional MRI and multiple tracers PET has also gained the
attention because it allows complex etiologies behind dementing
diseases to be studied (Mak et al., 2014). However, the
mainstream analysis methods are still limited in their capacity to
handle longitudinal data and to systematically relate or combine
data from multiple imaging modalities. Moreover, mechanistic
interference on the interactions among different pathologies and
their associated biomarkers cannot be reliably drawn for the
following reasons. First, the majority of imaging data on dementia
is either cross-sectional or only tracks the disease progression
for a few years and often during the relatively late stages, e.g.,
after significant cognitive impairments and brain damages have
occurred. Such short-term follow-up data may be difficult to
reliably capture critical events during the disease course, in
particular during the pre-symptomatic stages. Second, existing
imaging data is often acquired from single site with relatively
small heterogeneous samples. The individual differences among
patients are often dramatic because the variation in clinical
diagnosis criteria and age as well as the possibility of mixed
pathologies or even misdiagnosis between dementia sub-types.

To analyze and model longitudinal and multimodal imaging
data with these limitations, several methods have been proposed.
For example, imaging biomarkers of pathology measured
at different time points from different individuals can be
mapped onto a hypothetical time axis representing ‘time-to-
dementia’ (Bateman et al., 2012). This approach allows us
to normalize different biomarkers from the heterogeneous
sample to a single continuous dimension so that temporal
ordering can be inferred. Other approaches use data-driven
methods to model biomarkers from different data points as
discrete events in the disease course. The temporal ordering
of events can then be inferred based on the co-occurrence

between each pair of different events and Markov chain
Monte Carlo methods (Young et al., 2014; Oxtoby et al.,
2018).

One advantage of our approach is that the hypothesis
about the relationship between different imaging biomarkers
are expressed explicitly as chemical reactions, i.e., using the
balance equation (Equation 1). Hence, underlying assumptions
have to be made explicit, an advantage of most computational
models. In this formalism, it is apparent that the temporal
ordering between different biomarkers cannot be inferred from
the quantity difference between each modeled substance alone.
For example, a greater concentration or binding potential in BP1
than in BP2 does not always imply that pathology related to BP1
is the upstream event of BP2. This is because that the coefficients
such as a and m in Equation 1 are unknown, so it is possible that
a small quantity of one substance at upstream results in a larger
quantity of another downstream, i.e., when a > m in Equation 1.
This may give the false inference that the downstream event
related to BP2 is preceding the upstream event related to BP1. By
the same token, the temporal ordering of the biomarkers cannot
be solely determined from the spatial extent which is another
common way to measure quantity in neuroimaging.

Finally, we argue that this dynamic perspective in modeling
biomarkers may be extended in order to be applied to not
only neurodegenerative diseases but also neurodevelopmental
conditions such ADHD and autism spectrum disorders as well
as normal development and aging. However, the limitation of
our methods is that it still assumes stationarity, i.e., the rate of
change in biomarkers (i.e., the 2nd order derivatives) does not
change over time. Future developments are needed to capture the
nonlinearity of the disease progression and heterogeneity of the
samples. Last but not least, this highly novel approach requires
extensive empirical validations using suitable longitudinal and
cross-sectional data from different diseases and ideally from
cohorts of different age ranges.
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