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Background: The hippocampus is an important limbic structure closely related to
memory function. However, few studies have focused on the association between
hippocampal subfields and age-related memory decline. We investigated the volume
alterations of hippocampal subfields at different ages and assessed the correlations
with Immediate and Delayed recall abilities.

Materials and Methods: A total of 275 participants aged 20–89 years were classified
into 4 groups: Young, 20–35 years; Middle-early, 36–50 years; Middle-late, 51–
65 years; Old, 66–89 years. All data were acquired from the Dallas Lifespan Brain
Study (DLBS). The volumes of hippocampal subfields were obtained using Freesurfer
software. Analysis of covariance (ANCOVA) was performed to analyze alterations of
subfield volumes among the 4 groups, and multiple comparisons between groups were
performed using the Bonferroni method. Spearman correlation with false discovery rate
correction was used to investigate the relationship between memory recall scores and
hippocampal subfield volumes.

Results: Apart from no significant difference in the left parasubiculum (P = 0.269)
and a slight difference in the right parasubiculum (P = 0.022), the volumes of other
hippocampal subfields were significantly different across the adult lifespan (P < 0.001).
The hippocampal fissure volume was increased in the Old group, while volumes for
other subfields decreased. In addition, Immediate recall scores were associated with
volumes of the bilateral molecular layer, granule cell layer of the dentate gyrus (GC-DG),
cornus ammonis (CA) 1, CA2/3, CA4, left fimbria and hippocampal amygdala transition
area (HATA), and right fissure (P < 0.05). Delayed recall scores were associated with
the bilateral molecular layer, GC-DG, CA2/3 and CA4; left tail, presubiculum, CA1,
subiculum, fimbria and HATA (P < 0.05).
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Conclusion: The parasubiculum volume was not significantly different across the
adult lifespan, while atrophy in dementia patients in some studies. Based on these
findings, we speculate that volume changes in this region might be considered as a
biomarker for dementia disorders. Additionally, several hippocampal subfield volumes
were significantly associated with memory scores, further highlighting the key role of the
hippocampus in age-related memory decline. These regions could be used to assess
the risk of memory decline across the adult lifespan.

Keywords: hippocampal subfields, lifespan, immediate recall, delayed recall, memory decline

INTRODUCTION

The hippocampus is an important limbic structure (Richter-
Levin, 2004) with a critical role in memory and is particularly
vulnerable to aging (Eichenbaum, 2004; Mueller et al., 2011;
Malykhin et al., 2017; Zammit et al., 2017). It is regarded as an
amalgamated structure (Van, 2004), but few studies have focused
on volume changes in hippocampal subfields with normal aging
and their relationships with age-related memory decline.

The mammalian hippocampus consists of several subfields
with different memory functions (Hunsaker et al., 2008; Yassa and
Stark, 2011; Engvig et al., 2012; Reagh et al., 2014). For example,
Hunsaker et al. (2008) found that CA1 and CA3 both contribute
to episodic memory processing by training memory ability in
rats. Another study reported that rats with dentate gyrus (DG)
lesions were unable to distinguish between training and testing
environments (Yassa and Stark, 2011).

Numerous human studies have reported the functions
of hippocampal subfields in various disorders. For example,
histological studies suggest that AD variably affects different
hippocampal subfields. Especially in the early stage, tangle
accumulation and neuron loss are more prominent in the
CA1 and subiculum (Rössler et al., 2002; Schönheit et al.,
2004). Mueller et al. (2012) suggested that auditory Immediate
recall was associated with the CA3 and DG, while auditory
Delayed recall and auditory Delayed recognition were related
to the CA1 in subjects with temporal lobe epilepsy with
hippocampal sclerosis. In those without hippocampal sclerosis,
to a lesser degree, auditory Immediate recall was associated
with the CA3 and DG, whereas auditory Delayed recall and
recognition were more closely related to the fusiform gyrus.
In a recent study, the CA1 was implicated in Immediate
and Delayed recall of verbal memory in patients with left
hippocampal sclerosis, while for patients with right hippocampal
sclerosis, the CA1 and epilepsy duration were related to
visual memory (Comper et al., 2017). Carlesimo et al.
(2015) found no significant correlation between hippocampal
subfield volumes and Immediate and Delayed recall scores
in healthy participants. They reported that AD patients

Abbreviations: AD, Alzheimer’s disease; ANCOVA, analysis of covariance;
ANOVA, analysis of variance; CA, cornus ammonis; DG, dentate gyrus; DLB,
dementia with Lewy bodies; DLBS, Dallas Lifespan Brain Study; eTIV, estimated
total intracranial volume; FDR, false discovery rate; GC-DG, granule cell layer of
the dentate gyrus; HATA, hippocampal amygdala transition area; MMSE, Mini-
Mental State Examination; MRI, magnetic resonance imaging; PD, Parkinson’s
disease.

had significant correlations with both types of memory
performance and the CA2-3, CA4-DG, and subiculum. The
presubiculum was only associated with Delayed recall. Finally,
they found that patients with mild cognitive impairment
showed significant correlations between Immediate recall and
presubiculum and subiculum volumes. These preliminary studies
suggest that a detailed volumetric study of hippocampal subfields
may help elucidate the regions involved in specific memory
functions.

Extensive studies have reported that the volumes of
hippocampal subfields non-linearly decreased with aging.
Moreover, hippocampal changes in different subfields are
inconsistent (Malykhin et al., 2017; Zheng et al., 2018).
Daugherty et al. (2016) observed that the volumes of CA1-2
and CA3-DG significantly decreased with increasing age.
However, Malykhin et al. (2017) found no significant difference
in CA1-3, but did report marked changes in the subiculum
and DG. Others reported volume atrophy in the hippocampus
of patients with AD (Wisse et al., 2014; Kälin et al., 2017;
Platero et al., 2018). For instance, Wisse et al. (2014) found
that AD patients exhibited smaller volumes in the subiculum,
CA1, CA3 and DG/CA4. DLB has pathologic overlap with
AD (Mckeith et al., 2005). The results of a study of a mouse
model expressing mutant β-synuclein (linked to DLB) suggested
that the pseudo-immaturity of DG granule cells may be a
shared endophenotype in patients with neurodegenerative
disorders (Hagihara et al., 2018). Several groups have found
that hippocampal atrophy is less severe in DLB than AD
(Firbank et al., 2010; Elder et al., 2017; Pang et al., 2018). For
instance, Firbank et al. (2010) found that the CA1 and subiculum
exhibited less atrophy in DLB patients compared to AD patients.
These observations underscore the importance of identifying
biomarkers to distinguish between normal and pathological
aging.

Researchers have investigated the relationships between
hippocampal subfields and memory in case control studies,
but few have focused on age-related memory decline (Mueller
et al., 2012; Comper et al., 2017). Thus, the association
between age-related memory decline and hippocampal
subfield volumes in normal humans remains unclear. In
this study, an automatic method in Freesurfer software
was used to segment the hippocampus into 13 subfields
in each hemisphere on 275 normal adults (age 20–89)
imaged at the same scanning center. The main purpose
was to investigate volume changes in hippocampal subfields
across the adult lifespan and examine their associations with
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memory recall decline based on immediate and delayed recall
scores.

MATERIALS AND METHODS

Participants
T1-weighted MRI data of 315 healthy adults, aged 20–89 years,
were selected from the DLBS1. Subjects with incomplete
cognitive information were excluded. Finally, total 275 subjects
(54.85 ± 20.61 years; 174 females, 101 males) were included in
the present study. The population were classified into 4 groups:
Young group, 20–35 years; Middle-early, 36–50 years; Middle-
late, 51–65 years; Old group, 66–89 years. Participants were
recruited through flyers and media advertisements. Participants
were right-handed and native English speakers with no history
of neurological disease. The participants were well-educated
and with high scores on the Mini-Mental State Examination
(MMSE > 26). Immediate and Delayed recall abilities were
measured with Hopkins Verbal Learning Scoring (Brandt,
1991), and a 20-min delay was used for Delayed recall score
measurement. This experiment was approved by the Institutional
Review Board of the University of Texas Southwestern Medical
Center and the University of Texas at Dallas. All participants
provided written informed consent.

sMRI Data Acquisition
All participants underwent T1-weighted imaging on a
Philips Achieva 3T scanner (Amsterdam, Netherlands). The
parameters were as follows: slice thickness = 1 mm, repetition
time = 8.135 ms, echo time = 3.7 ms, matrix = 256 × 256, field of
view = 204 × 256. The direction was anterior-posterior.

Imaging Processing
All T1-weighted images were processed using publicly
available Freesurfer software2. We conducted the main
recon stream (“recon-all”) in Freesurfer 6.0 for volumetric
segmentation, including motion correction, skull stripped,
intensity normalization, automated Talairach transformation,
gray/white matter tessellation, and topology correction (Fischl
et al., 2001; Segonne et al., 2007). Subcortical structures were
segmented with a non-linear warping atlas (Macdonald, 1997;
Fischl et al., 2016), and total hippocampal volumes were
obtained. Subsequently, a probabilistic atlas and a modified
version of Van Leemput’s algorithm were applied to segment
the hippocampus (Van Leemput et al., 2009; Iglesias et al., 2015;
Saygin et al., 2017) into 13 subfields in each hemisphere: the CA1,
CA2/3, CA4, molecular layer, alveus, GC-DG, HATA, subiculum,
presubiculum, parasubiculum, fimbria, hippocampal tail and
fissure, as shown in Figure 1. The CA2 and CA3 were combined
because of unclear contrast, and the alveus volume was removed
due to the thin shape and unreliable segmentation (Iglesias et al.,
2015).

1http://fcon_1000.projects.nitrc.org/indi/indiPRIME.html
2http://surfer.nmr.mgh.harvard.edu

Statistical Analysis
Statistical analysis was performed using IBM SPSS software
(version 22.0, Armonk, NY, United States) and MATLAB
(MathWorks Inc., Natick, MA, United States). Chi-square tests
were used to evaluate the differences in gender distribution
among groups. One-way ANOVA was performed to assess group
differences in education years, while ANCOVA was performed
for the differences in MMSE scores, Immediate and Delayed
recall scores among the 4 groups, with gender and education
years as covariates. For hippocampal subfield volume differences,
we considered gender, education years and eTIV as covariates for
ANCOVA was performed. Regarding the indexes with significant
differences among the 4 groups, multiple comparison between
groups was performed using the Bonferroni method. Spearman
correlation analyses were applied in MATLAB using a home-
written program to verify the correlations between memory recall
scores and hippocampal subfields, and correlation coefficients (R)
were calculated. Gender, education years, and eTIV were also
regarded as covariates for the correlations between memory recall
scores and hippocampal subfields. Spearman correlation results
were corrected by FDR correction in MATLAB. The significance
level of all results was set at P < 0.05.

RESULTS

Differences in Demographics and Recall
Scores
The demographic characteristics and Immediate recall and
Delayed recall scores for 275 subjects are shown in Table 1
as means and standard deviations. MMSE scores, although
still within the normal range, significantly declined with age
(P < 0.001). There were significant differences in MMSE scores
(P < 0.001), Immediate recall scores (P < 0.001) and Delayed
recall scores (P = 0.003). Furthermore, the pairwise comparisons
demonstrated apparent declines in MMSE and Immediate recall
scores in the Old group (P < 0.05) compared with other groups,
as well as lower Delayed recall scores (P < 0.05) compared with
the Young and Middle-late groups, as shown in Supplementary
Table 1. No significant difference was observed for gender
distribution (P = 0.462) or education years (P = 0.338) among
the 4 groups.

Age Effects on Hippocampal Subfield
Volume
Hippocampal subfield volumes change with aging. Table 2
summarizes the statistical analysis for the volume of the
hippocampal subfields. Besides no significant difference in the left
parasubiculum (P = 0.269) and a slight difference in the right
parasubiculum (P = 0.022), other subfields were significantly
different among the 4 groups (P < 0.001). Supplementary
Table 2 lists the statistical results of pairwise comparisons
in subfields with significant differences among the 4 groups.
Histograms in Figure 2 demonstrate pairwise comparisons on
hippocampal subfield volumes. Most were significantly decreased
in the Old group compared with the other 3 groups, including
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FIGURE 1 | Hippocampal segmentation. (A) T1 images of hippocampal subfields in the sagittal, coronal, and axial planes. (B) Magnified views.

TABLE 1 | Demographic information of the 4 groups.

Young (N = 71) Middle-early (N = 49) Middle-late (N = 54) Old (N = 101) χ2&/Fa Pa Fb Pb

Age 27.85 ± 4.82 43.61 ± 4.67 58.57 ± 4.60 77.16 ± 6.67 n.d. n.d. n.d. n.d.

Gender(F/M) 45/26 29/20 39/15 61/40 2.574& 0.462 n.d. n.d.

Education 16.38 ± 2.29 16.07 ± 2.16 16.70 ± 1.95 16.06 ± 2.46 1.128 0.338 n.d. n.d.

MMSE 28.73 ± 1.17 28.69 ± 1.18 28.50 ± 1.10 27.63 ± 1.25 16.046 <0.001∗∗ 15.499 <0.001∗∗

Immediate recall 7.93 ± 1.80 7.35 ± 2.02 7.39 ± 1.97 6.47 ± 1.60 9.753 <0.001∗∗ 9.340 <0.001∗∗

Delayed recall 6.21 ± 2.70 5.47 ± 3.00 6.02 ± 2.45 4.72 ± 2.34 5.591 0.001∗ 4.818 0.003∗

Data expressed as mean ± SD. N, the number of participants. MMSE, Mini-Mental State Exam; n.d., not done.∗P < 0.05, ∗∗P < 0.001. &Chi-square test. aANOVA test,
no covariates. bANCOVA test, controlling for gender and education years.

the bilateral hippocampal tail, subiculum, CA1, molecular layer,
GC-DG, CA2/3, CA4, fimbria, HATA, and right presubiculum
(P < 0.05). The left presubiculum volume was only significantly
different between the Old and Young groups (P < 0.001).
A significant decline of right fimbria volume was also observed
in the Middle-late group relative to the Young group (P = 0.015).
Interestingly, the hippocampal fissure volume was increased in
the Old group relative to other groups for the left hemisphere
(P < 0.05), as well as relative to the Young and Middle-early
groups for the right (P < 0.05). In addition, although there were
slight differences among the 4 groups in right parasubiculum, no
significance was found between groups (P > 0.05).

Associations Between Memory Recall
Scores and Hippocampal Subfields
Table 3 lists the Spearman correlation analysis results. There were
significant correlations between bilateral whole hippocampal

volume and Immediate and Delayed recall scores (P < 0.05).
Furthermore, the results showed that regarding Immediate
recall scores, there were positive correlations with the bilateral
molecular layer, GC-DG, CA1, CA2/3 and CA4, left fimbria
and HATA (P < 0.05). In addition, a negative association was
observed for the right fissure (R = −0.1411, P = 0.0358). Delayed
recall scores were strongly and positively associated with the
bilateral GC-DG, molecular layer, CA2/3 and CA4, left tail,
presubiculum, subiculum, CA1, fimbria and HATA (P < 0.05).
In addition, we found that 10 subfields on the left were related to
Delayed recall scores, compared to 4 on the right.

DISCUSSION

In this study, we measured hippocampal subfield volume
changes and their correlations with Immediate recall and
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TABLE 2 | Statistical analysis of hippocampal subfields volumes in all study subjects.

L R

Fa Pa Fb Pb Fa Pa Fb Pb

Whole hippocampus 25.877 <0.001∗∗ 40.846 <0.001∗∗ 26.959 <0.001∗∗ 41.898 <0.001∗∗

Hippocampal_tail 24.855 <0.001∗∗ 27.915 <0.001∗∗ 23.659 <0.001∗∗ 30.256 <0.001∗∗

Subiculum 8.825 <0.001∗∗ 14.900 <0.001∗∗ 13.373 <0.001∗∗ 20.950 <0.001∗∗

CA1 18.727 <0.001∗∗ 29.399 <0.001∗∗ 17.917 <0.001∗∗ 27.387 <0.001∗∗

Fissure 8.215 <0.001∗∗ 6.645 <0.001∗∗ 6.647 <0.001∗∗ 6.145 <0.001∗∗

Presubiculum 6.716 <0.001∗∗ 10.139 <0.001∗∗ 17.953 <0.001∗∗ 22.937 <0.001∗∗

Parasubiculum 1.115 0.344 1.317 0.269 2.525 0.058 3.252 0.022∗

Molecular_layer 25.938 <0.001∗∗ 40.162 <0.001∗∗ 29.673 <0.001∗∗ 43.105 <0.001∗∗

GC-DG 30.065 <0.001∗∗ 46.173 <0.001∗∗ 22.503 <0.001∗∗ 35.153 <0.001∗∗

CA2/3 12.748 <0.001∗∗ 20.989 <0.001∗∗ 12.259 <0.001∗∗ 20.493 <0.001∗∗

CA4 21.250 <0.001∗∗ 33.208 <0.001∗∗ 15.714 <0.001∗∗ 25.648 <0.001∗∗

Fimbria 19.177 <0.001∗∗ 23.116 <0.001∗∗ 21.427 <0.001∗∗ 24.581 <0.001∗∗

HATA 28.240 <0.001∗∗ 36.114 <0.001∗∗ 13.406 <0.001∗∗ 19.637 <0.001∗∗

L, left hemisphere; R, right hemisphere. ∗P < 0.05, ∗∗P < 0.001. aANOVA test, no covariates. bANCOVA test, controlling for gender, education years and eTIV.

FIGURE 2 | Mean volumes of hippocampal subfields in the Young, Middle-early, Middle-late, and Old groups. L, left hemisphere; R, right hemisphere; The Y-axis
indicates the mean volume of hippocampal subfields in each group. ∗P < 0.05, ∗∗P < 0.001; 95% confidence intervals.

Delayed recall scores across the adult lifespan. Nearly all
volumes showed significant declines in the Old group
except the left parasubiculum, while there was a significant
increase in the fissure volume. Several hippocampal subfields
were significantly related to Immediate and Delayed recall
scores. Moreover, we also observed a stronger relationship
between delayed recall scores and left hippocampus
volumes.

Age Effects on Hippocampal Subfield
Volumes
Differences in segmentation methods impact the number
and volume of hippocampal subfields reported. A popular
segmentation method yields the CA1-4, DG, and subiculum
(Perrotin et al., 2015; Riggins et al., 2018), as well as the
presubiculum in some studies (de Flores et al., 2014; Carlesimo
et al., 2015). We performed the more detailed segmentation
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TABLE 3 | Correlation analysis between hippocampal subfield volumes and
Immediate recall and Delayed recall scores.

Immediate recall Delayed recall

R P R P

Left_whole 0.1797 0.0104∗ 0.1925 0.0104∗

Left_tail 0.1198 0.0663 0.1585 0.0210∗

Left_subiculum 0.1259 0.058 0.1648 0.0170∗

Left_CA1 0.1803 0.0104∗ 0.1737 0.0113∗

Left_fissure −0.0576 0.3838 −0.0594 0.3769

Left_presubiculum 0.1127 0.0825 0.1353 0.0432∗

Left_parasubiculum 0.0140 0.8334 0.0246 0.7124

Left_molecular layer 0.1899 0.0104∗ 0.2024 0.0104∗

Left_GC-DG 0.1804 0.0104∗ 0.1960 0.0104∗

Left_CA2/3 0.1316 0.0488∗ 0.1566 0.0222∗

Left_CA4 0.1543 0.0237∗ 0.1758 0.0107∗

Left_fimbria 0.1800 0.0104∗ 0.1356 0.0432∗

Left_HATA 0.1992 0.0104∗ 0.1811 0.0104∗

Right_whole 0.1634 0.0174∗ 0.1469 0.0308∗

Right_tail 0.0951 0.1431 0.1253 0.0580

Right_subiculum 0.0856 0.1895 0.0952 0.1431

Right_CA1 0.1415 0.0358∗ 0.1029 0.1151

Right_fissure −0.1411 0.0358∗
−0.0561 0.3838

Right_presubiculum 0.1290 0.0528 0.1233 0.0595

Right_parasubiculum −0.0339 0.6106 0.0051 0.9324

Right_molecular layer 0.1904 0.0104∗ 0.1514 0.0260∗

Right_GC-DG 0.1968 0.0104∗ 0.1788 0.0104∗

Right_CA2/3 0.1762 0.0107∗ 0.1436 0.0344∗

Right_CA4 0.1862 0.0104∗ 0.1809 0.0104∗

Right_fimbria 0.1239 0.0595 0.0560 0.3838

Right_HATA 0.1188 0.0673 0.0647 0.3362

R, correlation coefficient. ∗P < 0.05.

proposed by Iglesias et al. (2015) that includes the CA1,
CA2/3, CA4, molecular layer, alveus, GC-DG, HATA, subiculum,
presubiculum, parasubiculum, fimbria, tail, and fissure.

Previous studies reported that the effects of age impact several
specific subfields rather than the entire hippocampus (de Flores
et al., 2014; Wisse et al., 2014; Malykhin et al., 2017). de Flores
et al. (2014) manually segmented the hippocampus into the
CA1, subiculum, and other regions. They observed that CA1
volume non-linearly decreased with aging and dropped at about
50 years, and subiculum volume linearly decreased with aging;
no other subfields exhibited volume decreases. Malykhin et al.
(2017) subsequently described negative correlations between the
total subiculum and DG volumes with aging, whereas there was
no significance for the total CA1-3. We observed significant
differences in volumes of the CA1, CA2/3, CA4, GC-DG, and
subiculum. One possible reason for the differences is that de
Flores et al. (2014) combined the CA2/3/4 and DG into a single
region of interest (ROI) called “others,” while Malykhin et al.
(2017) combined CA1, 2 and 3 into a single ROI called “CA1-
3.” Different subfield combinations may obscure age-related
changes of single subfields. Additionally, animal studies revealed
that fimbria lesions may impair object discrimination (Wible
et al., 1992; Antoniadis and Mcdonald, 2006). Extrapolating these

animal studies to humans, the reduction of fimbria volume in
this study might be considered as an early biomarker for visual
dysfunction.

Using the same segmentation method, significant non-linear
age-related declines in CA2/3, CA4 and GC-DG volumes, and
a significant linear increase in fissure volume were recently
reported (Zheng et al., 2018). They found no significant difference
in parasubiculum volume. These are similar to our results, but
Zheng and colleagues found no significant volume differences in
the hippocampal tail, presubiculum, subiculum, CA1, molecular
layer, fimbria, or HATA. However, according to their raw plots
and change trends, a non-linear decline trend was evident. The
main reason underlying the discrepant results might be the
dataset; they included 54 subjects, while we assessed 275.

Decreased hippocampal subfield volumes have been widely
reported in dementia disorders such as AD and DLB (Delli Pizzi
et al., 2016; Mak et al., 2016, 2017). One group found that the
volumes of the CA1, CA2-3, CA4, DG, and total subiculum
(subiculum, presubiculum, and parasubiculum) are decreased
in AD (Mak et al., 2017). In the present study, the volumes
of all subfields except the parasubiculum were decreased in
the Old group, which is similar to observations in subjects
with dementia disorders. This suggests that these subfields
may not be useful biomarkers to investigate normal aging and
dementia. According to our results, only the parasubiculum
did not show significant atrophy in the Old group, indicating
its use as a dementia biomarker. This is supported by prior
studies implicating the parasubiculum involved in dementia,
as well as its important role in the medial temporal memory
system (Caballerobleda and Witter, 1993; Glasgow and Chapman,
2007; Ding, 2013). In an immunohistochemistry study of an AD
mouse model, Weidensteiner and his colleagues identified plaque
depositions in the subiculum/parasubiculum (Weidensteiner
et al., 2009). Earlier research reports described severe pathology
in the parasubiculum of subjects with Creutzfeldt-Jakob disease
(Guentchev et al., 1997; Kaneko et al., 1999). In addition,
Fukutani et al. (1995) reported that compared to healthy
subjects, AD patients had fewer unaffected neurons and
more intra and extracellular neurofibrillary tangles in the
parasubiculum, entorhinal cortex, prosubiculum and CA1. Other
studies reported similar results noting severely affected neurons
in the parasubiculum of AD brains (Chanpalay et al., 1986;
Yamaguchi et al., 1988; Kalus et al., 1989; Fukutani et al., 2000).
Iglesias et al. (2016) described parasubiculum atrophy in AD
patients. Regarding AD progression, Dong et al. (2018) reported
that parasubiculum volume is significantly correlated with
neuropsychological test scores in patients with amnestic mild
cognitive impairment. Based on these findings, we hypothesize
that the parasubiculum may be a potential biomarker for
dementia disorders. Further research is necessary to replicate
these findings in other samples and advance our understanding.

Associations Between Memory and
Hippocampal Subfields
Hippocampal subfield volumes are closely correlated with
memory ability (Daugherty et al., 2017). The strong association
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between the CA1 and memory performance was previously
reported (Adamowicz et al., 2017). Furthermore, neuronal
density in the CA1 was significantly associated with preoperative
Immediate and Delayed recall scores in patients undergoing
temporal lobectomy (Baxendale et al., 1998). Another study
reported that the CA1 is involved in t Immediate and Delayed
recall in patients with left hippocampal sclerosis (Comper et al.,
2017). Notably, we obtained similar results in healthy subjects.
Other studies reached different conclusions. Animal literature
supports a role of the CA1 in intermediate and long-term
memory but not short-term memory (Remondes and Schuman,
2004; Vago et al., 2007). One group compared healthy and
cognitively impaired elderly subjects and concluded that the
CA1 is associated with Delayed recall Discriminability but not
Immediate or Short Free Recall Discriminability, while, the
CA3 and DG are associated with Immediate and Short Free
Recall Discriminability (Mueller et al., 2011). In our study, the
CA1, CA2/3 and GC-DG were related to both Immediate and
Delayed recall scores. There are two possible explanations for
this discrepancy. Firstly, their study only included 50 subjects.
Secondly, some of their subjects with cognitive impairment might
have been affected by AD, which could affect structure-memory
associations. In accordance with our results, Finke et al. (2016)
found that the decreased Delayed recall scores were accompanied
by atrophy of the CA2/3 and CA4/DG in encephalitis patients
with leucine-rich, glioma-inactivated 1 antibodies.

Another study suggested that conversion of patients with PD
from no cognitive impairment to mild cognitive impairment
was related to the baseline volumes of the GC-DG, left
parasubiculum, left HATA, and right CA4. The authors
postulated that parasubiculum and HATA atrophy might affect
the integrity of hippocampal-amygdala network that underlies
information processed (Foo et al., 2017). Their results indicate
that these subfields might be critical to cognition. Additionally,
preliminary animal studies reported that the parasubiculum may
be more involved in online spatial information processing rather
than long-term information storage (Kesner and Giles, 1998; Liu
et al., 2004; Tang et al., 2016). However, we did not find significant
correlations between recall scores and parasubiculum volume.
This discrepancy may be due to variable ways of measuring
cognition or subject differences.

Lim et al. (2013) found that lower volumes of the subiculum
and presubiculum predicted poorer Delayed verbal recall ability
in PD patients. Subsequently, Stav and colleagues reached a
similar conclusion in AD patients (Stav et al., 2016). These studies
indicate that the subiculum and presubiculum might be related
to Delayed verbal recall ability, which is consistent with our
results, although we only observed a slight association for the
presubiculum.

The molecular layer including neurons of the subiculum and
CA fields lies above the subiculum and underneath the fissure.
Few studies have reported correlations between molecular layer
volume and Immediate and Delayed recall abilities. Cantero
et al. (2016) found that lower volumes of the DG and molecular
layer were associated with Delayed memory. A recent study
concluded that molecular layer volume was positively associated
with general cognition from childhood to adulthood (Tamnes

et al., 2018). Therefore, we considered that the current study
might reach more accurate conclusions about the impacts of
molecular layer volume on memory function. One group found
that the number of synapses in molecular layer was highly
correlated with Delayed recall and Delayed recognition abilities,
but there was no association with Immediate recall ability (Scheff
et al., 2006). In our study, we observed that molecular layer
volume was correlated with both Immediate and Delayed recall
abilities. We plan to perform molecular biology experiments to
explore the relationship between this brain region and memory.

We found that Immediate and Delayed recall scores were
associated with the volume of left fimbria, a white matter
structure that extends from the alveus and eventually forms
the fornix. Consistent with our results, rats with fimbria-fornix
lesions exhibited short-term memory impairment (Winters and
Dunnett, 2004; Addy et al., 2005). Moreover, Tomaiuolo et al.
(2004) observed that Immediate and Delayed recall scores were
both associated with fornix volume.

Our results should be considered in the context of several
limitations. First, there is a gender distribution imbalance, with
data from 101 males and 174 females. In addition, our subjects
were aged 20–89 years and lack of development children; and
this should be addressed in further studies. Second, vascular
risk increases with aging, and the effect of blood pressure on
hippocampus volume is not negligible (Shing et al., 2011). All
data included in this study were acquired from DLBS dataset,
so we were unable to obtain more clinical information, which
may have influenced our results. Third, this was a cross-sectional
study; longitudinal assessments will be necessary to confirm our
findings. Moreover, there are some limitations regarding the
segmentation method. Since the atlas was developing using data
from elderly subjects, there may be slight hippocampal atrophy.
Finally, although the MRI scans were ultra-high resolution MRI,
there were some unclear boundaries between subfields, such as
CA fields or the interface between CA4/GC-DG.

CONCLUSION

We explored hippocampal subfield volumes alterations in
subjects of different ages and correlated these changes
with Immediate recall and Delayed recall scores. Multiple
hippocampal subfields were smaller in the Old group, in addition
to parasubiculum, which is reportedly atrophied in some
dementia disorders. We therefore speculate that a significant
decline in parasubiculum volume maybe a potential biomarker
for dementia disorders, but further investigation is needed to
support this hypothesis. Taken together, our results indicate
that subfield volume changes are related to age-related memory
decline and might be regarded as biomarkers in postponing
memory decline across the adult lifespan.
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