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Resting-state fMRI studies demonstrated temporally synchronous fluctuations in brain
activity among ensembles of brain regions, suggesting the existence of intrinsic
functional networks. A spatial match between some of the resting-state networks
and regional brain activation during cognitive tasks has been noted, suggesting that
resting-state networks support particular cognitive abilities. However, the spatial match
and predictive value of any resting-state network and regional brain activation during
episodic memory is only poorly understood. In order to address this research gap,
we obtained fMRI acquired both during rest and a face-name association task in
38 healthy elderly subjects. In separate independent component analyses, networks
of correlated brain activity during rest or the episodic memory task were identified.
For the independent components identified for task-based fMRI, the design matrix
of successful encoding or retrieval trials was regressed against the time course of
each of the component to identify significantly activated networks. Spatial regression
was used to assess the match of resting-state networks against those related to
successful memory encoding or retrieval. We found that resting-state networks covering
the medial temporal, middle temporal, and frontal areas showed increased activity
during successful encoding. Resting-state networks located within posterior brain
regions showed increased activity during successful recognition. However, the level of
resting-state network connectivity was not predictive of the task-related activity in these
networks. These results suggest that a circumscribed number of functional networks
detectable during rest become engaged during successful episodic memory. However,
higher intrinsic connectivity at rest may not translate into higher network expression
during episodic memory.
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INTRODUCTION

Functional connectivity (FC) designates the correlation of
brain activity between different brain regions. Functional MRI
(rstMRI) of BOLD signal changes obtained during resting-
state, i.e., when a subject is not engaged by a particular
cognitive stimulation, demonstrated FC between different brain
regions. Regions that show high FC between each other are
thought to form functional networks, where rstMRI studies have
identified several large-scale resting-state networks in the brain
(Damoiseaux et al., 2006). Since rsfMRI is obtained without
overt cognitive performance, the role of resting-state networks in
cognitive processes is still an open question (Shirer et al., 2012;
Elton and Gao, 2015). Meta-analysis of a large number fMRI
studies showed task-related co-activation patterns mapped onto
major resting-state networks (Smith et al., 2009; Di et al., 2013),
suggesting that regions intrinsically connected during resting-
state become simultaneously activated during tasks. Several
studies assessing FC during both resting-state and task-related
fMRI in young healthy subjects have largely confirmed such a
hypothesis for a variety of cognitive tasks (Greicius et al., 2003;
Calhoun et al., 2008; Andrews-Hanna et al., 2010; Cole et al.,
2014). In fact, rsfMRI activity levels in the brain were found
together with morphological brain differences to be predictive
of the spatial pattern of brain activation during perception
and higher cognitive abilities such as language and working
memory (Tavor et al, 2016). These studies suggest a spatial
match between resting-state networks and those patterns of
task related brain activation. Most previous combined resting-
state and task-related fMRI studies focused on tasks based on
visual or auditory perception (Arfanakis et al., 2000; Bartels
and Zeki, 2005; Fair et al.,, 2007; Cole et al., 2014; Elton and
Gao, 2015; Tavor et al.,, 2016), motor function (Arfanakis et al.,
2000; Jiang et al., 2004; Morgan and Price, 2004; Cole et al,
2014; Ganger et al., 2015; Tavor et al., 2016), attention (Calhoun
et al., 2008; Hellyer et al., 2014; Tomasi et al., 2014), language
(Arfanakis et al., 2000; Fair et al., 2007; Hampson et al., 2010; Cole
et al., 2014; Elton and Gao, 2015), or working memory function
(Fransson, 2006; Cole et al., 2014; Elton and Gao, 2015; Tavor
et al., 2016). Strikingly there is a dearth of studies testing the
match between episodic memory related networks and resting-
state networks. Huijbers et al. (2013) assessed in which resting-
state networks activation peaks obtained during an episodic
memory task fall, but did not attempt to test which resting-
state networks showed task-related connectivity. A possible
explanation for the lack of studies is the fact that none of the
canonical set of large-scale resting-state networks corresponds
to known patterns of episodic memory processes (Smith et al.,
2009). From a clinical point of view, the establishment of a match
between resting-state and episodic memory related network
connectivity is of great importance to assess network failure
underlying memory impairment in aging and neurodegenerative
disease including Alzheimer’s disease (Meskaldji et al., 2016;
Zhang et al., 2016). In order to address this research gap, we
assessed fMRI during both rsfMRI and an episodic memory task
including face-name association learning in cognitively healthy
elderly subjects. Specifically, using independent component

analysis (ICA) (Calhoun et al., 2001), we assessed the association
between functional networks related to successful encoding or
recognition and resting-state networks. In addition to testing
the spatial match between task-related networks and resting-
state networks, we assessed whether resting-state component
values are predictive of the level of the task-related network
expression during successful encoding or successful recognition.
We hypothesized that especially medial temporal components
show a match between resting-state and memory task-related
networks. Secondly, we hypothesized that the level of resting-
state networks is predictive of the level of task-related network
connectivity in medial temporal lobe components.

MATERIALS AND METHODS

Participants

A total of 38 elderly cognitively healthy participants (HC) were
included. All subjects were recruited at the Memory Clinic
of the Institute for Stroke and Dementia Research (Klinikum
der Universitit Miinchen, Germany). Inclusion criteria were:
Age > 60 years, cognitive performance within 1.5 SD of
age- and education-adjusted norms of all neuropsychological
tests included in the Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD)-Plus battery (Schmid et al,
2014). Exclusion criteria were: Presence of depressive symptoms,
evidence of other acute or past neurological/psychiatric
disorders, history of drug or alcohol abuse, diabetes mellitus,
premorbid IQ < 85, and MRI contraindications such as presence
of ferromagnetic implants, pacemakers, or cochlear implants.
The cognitively normal subjects were either relatives of patients,
were recruited during information events at nursing homes
and open day events of the institute, or came in response to
news articles or because of subjective cognitive complaints.
Subjective cognitive decline (SCD) was defined by a participant’s
complaints about worsening of cognitive abilities such as
memory that started to occur at any time during the last
5 years. The presence of SCD and the neuropsychological
profile is presented in Table 1. The participants’ assessment was
completed in two visits: on the first day, the subjects underwent
a neuropsychological and physical examination, followed by
a structural MRI (T1 MPRAGE, FLAIR, DTI) and a rsfMRI.
On the second day, the participants performed a face-name

TABLE 1 | Participants’ characteristics indicated as the mean and standard
deviation (in bracket) for continuous variables.

Cognitively normal
elderly subjects (n = 38)

Age 72.5 (5.78)
Years of education 13.61 (3.04)
Subject cognitive decline (yes/no) 11/27

MMSE 29.34 (0.91)
CERAD word list — delayed free recall 8.21 (1.36)
Verbal fluency animals 24.5(5.13)
Boston naming test 14.47 (0.72)
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association task fMRI. In some subjects (n = 8), the rsfMRI was
acquired 1-12 weeks after the task-fMRI due to inconvenience
of prolonged data acquisition on day 1. The study was approved
by the ethics committee of the Ludwig Maximilian University,
Munich. All participants provided written informed consent.

MRI Parameters

All MRI scans were obtained on a Siemens Verio 3T MRI scanner.
The functional task was acquired with a 12 channel head coil
and a T2*-weighted echo-planar imaging (EPI) pulse sequence
with 3 mm X 3.4 mm x 3.4 mm slices [inter-slice gap = 1 mm;
echo time (TE) = 30 ms, repetition time (TR) = 2000 ms; flip
angle = 90°; parallel acquisition (GRAPPA) with acceleration
factor 2; field of view (FOV) = 220 mm x 220 mm; 64 x 64
data acquisition matrix]. A high-resolution MPRAGE T1-
weighted sequence with 1 mm slices in the sagittal plain
[interval time (TI) = 900 ms; TE = 2.52 ms; TR = 1750 ms;
Flip angel = 90°; phasing encoding anterior to posterior;
FOV = 256 mm X 256 mm; matrix = 246 x 256; single
acquisition] was used for the structural image. Field maps were
acquired to enable the post hoc correction of susceptibility
artifacts (same parameters as the EPI, TE = 4.92/7.38 ms,
TR = 488 ms, and flip angle = 60°). For the resting-state fMRI,
a 32 channel head coil (day 1 visit) was used, with the acquisition
parameters consisting of a T2*-weighted EPI pulse sequence with
3.5 mm voxel resolution. The overall scan comprised 180 volumes
prior to which subjects were instructed to keep their eyes closed.

fMRI Memory Task

The face-name task contained 112 encoding and 112 recognition
trials, divided into 14 blocks of face-name encoding (of 8 trials),
each followed by a recognition block (of 8 trials). A total of
112 different faces were used (!> female, !/2 male) from the
Glasgow Unfamiliar Face Database'. The criteria of selection for
faces were direct gaze, European ethnicity, neutral expression
and no face jewelry or hair accessories to standardize the facial
features across different images. One sixty eight different names
(1/2 female, 12 male) were selected from the Leipzig Corpora
Collection” matched for character length (5 or 6 letters) and
frequency of occurrences. During an encoding trial, a photo
of a face and a first name shown below were presented and
the participant was instructed to learn the name belonging to
the particular person shown. During the subsequent recognition
block, the faces previously seen in the encoding block were
presented again, but this time together with two juxtaposed
names, one correct and one distractor. The participant had to
decide, via left or right button press, which of the two names
had been presented previously with that face. In each recognition
trial, the presented distractor could be either a new name (that
had never been seen before, n = 56 trials) or a name (that
had been associated with another face in the previous encoding
block, n = 56 trials). Each stimulus was presented for 5 s with a
randomized inter-trial-interval of 1500-3000 ms between trials
through vision goggles attached to the head coil, which could be

Uhttp://www.facevar.com/glasgow- unfamiliar-face- database
Zhttp://corpora.informatik.uni-leipzig.de

corrected for individual eyesight differences. The whole task took
about 30 min to complete. The classification of encoding trials
as successful or unsuccessful was determined based on whether
the corresponding face-name pair was correctly recalled. The
ratio of successfully recalled trials relative to the total amount of
trials was computed to quantify a subject’s task performance. All
participants were familiarized with the face-name task by a brief
test trial on a laptop conducted outside the scanner before the
fMRI session commenced.

fMRI Preprocessing

The preprocessing was done using SPM12 (Wellcome Trust
Centre for Neuroimaging, UCL, London, United Kingdom). All
images [T1 and EPI (task and rest) and field map images] were
manually reoriented to the anterior commissure and angled to
the posterior commissure. The T1-weighted MPRAGE scans
were segmented into gray matter (GM), white matter (WM),
and cerebro-spinal fluid (CSF) maps. The diffeomorphic high
dimensional transformations were estimated based on the three
segments using the DARTEL tool implemented in SPM12. The
resulting GM group template was coregistered to the (affine) MNI
template in SPM12 and the two transformation matrices (high-
dimensional and affine) were combined for spatial normalization
into the MNI space.

The task and resting-state EPI images were slice-time
corrected, realigned, and unwrapped applying the field map
to account for scanner inhomogeneity variations. None of the
subjects’ motion parameters were larger than 3 mm translation
or two degrees rotation. Subsequently, for each participant,
the images were coregistered to the individuals T1 image
and normalized to MNI space by applying the transformation
parameters estimated through DARTEL. An 8 mm Full width
half maximum (FWHM) smoothing kernel was applied and the
smoothed images were resampled to 1.5 mm voxel resolution. For
resting-state images only, a linear trend was removed and a band
pass filter was applied to remove frequencies between 0.01 and
0.08 Hz. WM and CSF signal were regressed out of the time series
voxel by voxel.

Task-Related fMRI Activation

A fixed-effects general linear model was used to test increased
activation during correct vs. incorrect trials of encoding or
recognition. We created the regressors with time onsets for
each stimulus presentation and convolved the time series with
a canonical hemodynamic function, including six motions
parameters, temporal, and dispersion derivatives. Six regressors
were included in the model (successful encoding, unsuccessful
encoding, successful recognition, unsuccessful recognition,
encoding instructions, and recognition instructions). The
regression models were computed at subject level for subsequent
group analyses (see Statistics below). The univariate group level
analysis of activation during successful encoding and retrieval
have been reported elsewhere (Franzmeier et al., 2017).

fMRI Based Network Analysis via ICA

We applied group ICA to decompose the fMRI data into a set of
components, where spatial independence between components

Frontiers in Aging Neuroscience | www.frontiersin.org

November 2018 | Volume 10 | Article 362


http://www.facevar.com/glasgow-unfamiliar-face-database
http://corpora.informatik.uni-leipzig.de
https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles

Simon-Vermot et al.

Resting-State vs. Task fMRI Networks

is defined based on maximizing the independence of the voxel-
based BOLD time series between sets of voxels. The GIFT toolbox
(GroupICAT v4.0a’) was used to perform such a group spatial
ICA using the Infomax algorithm (Bell and Sejnowski, 1995),
separately for task fMRI and rsfMRI. The image time courses
were scaled to the same global mean by extracting the mean per
time point from each volume as implemented in GIFT. For the
task fMRI, we used the minimum description length algorithm
(MDL) to estimate the ideal number of spatially independent
components (IC, n = 24) (Li et al., 2007). The ICA was repeated
20 times using ICASSO (Himberg et al., 2004), to verify that
the component estimates were stable. The subject-specific spatial
maps and associated time courses were generated via back-
reconstruction using the GICA3 method (Himberg et al., 2004).
For rstMRI, we applied group ICA, using the same parameters
and number of ICs (n = 24).

Statistical Analysis

In order to assess the spatial match between ICs that were
significantly related to successful encoding and recognition of
face-name pairs and any of the resting-state ICs, we conducted
the statistical analysis in several steps. For ICs derived from
the task-related fMRI scans, regression analyses were conducted
to assess the association between a component’s time course
and the task-design matrix, employing the GIFT toolbox. To
this end, regressors including the temporal onset and duration
of each stimulus were constructed for each of the four trial
types: “successful encoding;” “unsuccessful encoding,” “successful
recognition,” and “unsuccessful recognition.” This resulted for
each participant into 4 trial-type specific beta-coefficients for
each component. Secondly, in order to test which component’s
time course was significantly associated with correct encoding
or correct recognition, we applied a one-sample f-test to the
corresponding beta-weights across subjects. Before computing
the two-sample t-tests, all data were checked for outliers and
removed if the standard deviation was larger than 3. The
normal distribution of the data was tested with the Shapiro
test. The Shapiro test was significant for successful recognition
for the cerebellar-occipital network, suggesting non-normal
distribution. For that network, a Wilcoxon signed rank test
was used. For those components that showed a significant
association of the BOLD signal with stimulus presentation during
either correct encoding or correct recognition, we subsequently
tested via two-sample t-test if the association was higher for
successful vs. unsuccessful condition. The statistical analyses were
conducted with the “stats” package (version 3.2.2) included in
R* (R-Core-Team, 2017). Lastly, in order to spatially match the
thus determined task-related components of either successful
encoding or recognition against the rstMRI components, we
conducted spatial regression analyses between each pair of any
of those task-related and each of the resting-state IC maps.
That is, Pearson product-moment correlations between the
z-score transformed IC maps were conducted. Based on spatial
correlation between a task-related fMRI component and any

3http://mialab.mrn.org/software/gift/
“https://www.R-project.org/

rsfMRI component, the spatial match was determined. The best
match is reported. A unique match was possible in most cases due
to a dramatic drop in the Pearson-moment correlation by >36%
for the second-best matching component. See results for specifics.
Next, for validation purposes, we tested whether any of the
identified components corresponded to previously established
resting-state network templates including 10 canonical ICs from
a low-dimensional ICA and 70 ICs from a high-dimensional ICA
(Smith et al., 2009). The spatial overlap was quantified (1) by
spatial regression, and (2) Dice similarity coefficient based on our
binarized ICs (thresholded at z > 2) and the external resting-
state IC templates (thresholded at z > 3). For each pair of ICs,
the Dice coefficient was computed as the ratio of the number of
voxels within overlapping regions for a given pair of ICs and the
total number of voxels. The dice coeflicient can be interpreted as
following: <0.2 poor, 0.2-0.4 fair, 0.4-0.6 moderate, 0.6-0.8 good,
and >0.8 excellent correspondence. The spatial correlations
and associated Dice coeflicients were computed using our own
MATLAB scripts. Bonferroni correction was applied on the
spatial correlations to correct for multiple testing.

Next, we aimed to examine the value of the expression
of a resting-state IC for predicting the degree of task-related
activity of the spatially corresponding IC. To this end, we
conducted a linear regression analyses according to: Y; ~
X; + Agei + Gender; + . Where Y; is a subject’s beta-value
of a given task-related IC and Xj is a subject’s beta-value of
the spatially matching resting-state IC. Thus, we tested to what
extent the activation of an IC during successful encoding or recall
(Y, ie., the correlation of the i subject’s IC time course with
the trial-type design matrix) is associated with the degree of FC
of the spatially matching resting-state component (X, i.e., the
correlation between the i subject’s IC time course with that of
the average group-level time course of that IC). All the linear
models were computed using the “Im” command implemented
in R (R-Core-Team, 2017). We corrected for type-1 error due to
multiple comparison by applying Bonferroni correction.

RESULTS

Demographics details are displayed in Table 1.

ICA-Based Network Activity During

Successful Encoding and Recognition

Among the 24 estimated ICs, we identified those ICs that showed
significantly higher expression during successful vs. unsuccessful
encoding or recognition trials. For encoding, four ICs showed
higher task-related activity during successful vs. unsuccessful
trials (a) medial orbitofrontal network [t(37) = 2.0, p = 0.026],
(b) visual network [t(37) = 7.91, p < 0.0001], (c) hippocampal
network [£(37) = 3.85, p < 0.001], and (d) lateral temporal-
frontal network [t(37)2.74, p = 0.0047] (Figure 1, left panel).
For recognition, three ICs showed higher task-related BOLD
signal variation during successful vs. unsuccessful trials for: (a)
posterior parietal network [#(37) = 1.84, p = 0.037], (b) occipital
network [#(36) = 1.98, p = 0.025], and (c) cerebellar-occipital
network [Wilcoxon signed rank test: V(36) = 561, p = 0.0006,
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FIGURE 1 | Network activation during successful encoding memory task and corresponding networks during rest. The results are displayed on representative
sections of the 152 MNI template (1 mm resolution) for each functional network (rows A-D) derived from task-related fMRI (left panel) and resting-state fMRI (right
panel). The task-related networks are thresholded at z > 2 and the rsfMRI were thresholded at z > 3. The color bars indicate z-scores. On the coronal and axial
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Figure 2, left panel]. In order to allow for sufficient statistical
power, these tests were not corrected for multiple comparisons.

Spatial Correspondence Between
Task-Related and Resting-State

Networks

For each the four task-related components associated with
successful encoding, spatial regression analysis showed a unique
match to a particular rsfMRI component, including a medial
orbitofrontal component (r = 0.68, p < 0.0001, Figure 1A), visual
component (r = 0.61, p < 0.0001, Figure 1B), the hippocampal
component (r = 0.74, p < 0.0001, Figure 1C), and the lateral

fronto-temporal component (r = 0.39, p < 0.0001, Figure 1D).
For any of these task-related components, the correlation
coefficient of the second-best matching rsftMRI was >36%,
providing a clear unambiguous match between the best matching
components. For the task-related components associated with
successful recognition, spatial regression analysis showed a
unique match to rsfMRI components for the posterior parietal
network (r = 0.64, p < 0.00001, Figure 2A), the occipital network
(r = 0.45, p < 0.0001, Figure 2B), and the cerebellar-occipital
network (r = 0.57, p < 0.0001, Figure 2C). Excluding SCD
subjects from the spatial correlation analysis yielded virtually
the same results (data not shown), suggesting that presence of
SCD did not influence the findings. A unique match between a
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FIGURE 2 | Network activation during successful recognition memory task and corresponding networks during rest. The results are displayed on representative
sections of the 152 MNI template (1 mm resolution) for each functional network (rows A-C) derived from task-related fMRI (left panel) and resting-state fMRI (right
panel). The task-related networks are thresholded at z > 2 and the rsfMRI were thresholded at z > 3. The color bars indicate z-scores. On the coronal and axial

=
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Z-score

Z-score

task-related component and the rsfMRI components was present
for each of these components (drop in correlation value for the
second-best matching rsfMRI component was >40%), except for
the cerebellar-occipital network. For the latter network, second-
best matching components covered also cerebellar-occipital
areas, but reached into more anterior occipital/and subcortical
regions not covered by the task-related component (correlation
coefficient of r = 0.41, Supplementary Figure 1). All presented
p-values are Bonferroni corrected for multiple testing.

To test whether the spatial correlation found between task-
associated networks and resting-state network generalizes to
resting-state networks found in an independent cohort, we
computed the spatial correlation between our task-related ICs
(the four matched successful encoding and three matched
successful recognition related ICs) and each of the ICA-derived
resting-state networks reported previously by another group
(Smith et al., 2009). Smith et al. (2009) reported two template sets
including either n = 10 ICs or n = 70 ICs. For the set of large-scale
networks (n = 10 ICs), spatial regression yielded no significant

spatial similarity with any of the successful-encoding/recognition
related ICs (p > 0.05). However, for the 70 component resting-
state ICA, each of the seven successful-encoding/recognition
related ICs matched a resting-state IC (p < 0.0001, Figure 3 and
Table 2).

Prediction of Network Activity During
Successful Encoding and Recognition
Based on rsfMRI Network Expression

We tested whether a subject’s network activity during successful
performance on the episodic memory task could be predicted
a subject’s the level of expression of the spatially corresponding
resting-state network. No associations were found (p > 0.05).

DISCUSSION

The major findings of the current study were that task-related
activity of (1) networks within the medial and lateral temporal
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FIGURE 3 | Spatial correspondence between each of the successful-encoding/recognition related ICs from the current study and the resting-state ICs from the 70
component ICA previously reported (Smith et al., 2009). The results are displayed on representative sections of the 152 MNI template (1 mm resolution). The
task-related networks are thresholded at z > 2 and binarized. The Smith rsfMRI IC maps were thresholded at z > 3 and binarized.

Resting-state ICs (Smith et al., 2009)

lobe, occipital lobe and medial frontal cortex were associated with
successful memory encoding and (2) networks primarily within
the posterior parietal and occipital brain regions were associated
with successful memory recognition. Each of these networks
showed a spatial match to resting-state networks. However,
higher resting-state connectivity did not predict higher task-
related network activity for these networks. Together these results
suggest that particular resting-state networks become engaged
during successful episodic memory, although the strength
of resting-state connectivity of a functional network is not
predictive of the level expression of that network during episodic
memory.

Our first findings showed that particularly hippocampal,
lateral temporal, and frontal networks were engaged during
successful encoding but posterior parietal networks were engaged
during successful recognition. These results are largely consistent
with those of a recent meta-analysis of brain activation during
episodic-memory task, demonstrating increased activation of
the hippocampus, lateral prefrontal cortex, and lateral temporal
brain areas during encoding, hippocampal, and posterior
parietal activation during recognition memory (Kim, 2015).
Our findings are also consistent with previous findings of
successful encoding-related hippocampus activity during face-
name association learning in young subjects (Sperling et al.,
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TABLE 2 | Dice coefficient and spatial correlation between functional networks
activated during successful episodic memory (encoding or recognition) and the
best matching networks from 70 resting-state maps (Smith et al., 2009).

Task networks Dice Dice Spatial p-Value

coefficient coefficient. correlation

rating coefficient

Successful Encoding
Medial orbitofrontal 0.29588 Fair 0.299 <0.001
Visual 0.68855 Moderate 0.472 <0.001
Hippocampal 1.0913 Excellent 0.538 <0.001
Lateral 0.39746 Fair 0.365 <0.001
fronto-temporal
Successful Recognition
Posterior parietal 0.52081 Moderate 0.398 <0.001
QOccipital 0.44051 Moderate 0.348 <0.001
Cerebellar-occipital 0.82164 Excellent 0.541 <0.001

network

2003; Zeineh et al.,, 2003) and cognitively healthy older subjects
(Pariente et al, 2005). Our findings of posterior parietal
networks being specifically engaged during successful recognition
but not encoding is consistent with the previous proposed
encoding/retrieval flip hypothesis of stronger engagement of the
posterior parietal brain regions during retrieval compared to
encoding (Daselaar et al., 2009). In contrast, we found occipital
networks being associated with both successful encoding and
recognition owing to the visual presentation of the stimuli on
both conditions of the face-name association task. Together, the
current findings of the ICA based analysis of task-related brain
activity recapitulates largely previous fMRI activation studies on
episodic memory.

For our second finding, we identified for each task-related
network a unique match of a resting-state network. Importantly,
in the current study those networks obtained during both task
and rest corresponded to resting-state network components
previously reported in an independent study using high
dimensional ICA (i.e., n = 70 estimated ICs). In contrast, no
significant overlap was found with large-scale networks, although
a partial overlap with the DMN was evident for the medial
temporal network during encoding and the cerebellar-occipital
network during recognition. These findings suggest that smaller
functional clusters rather than the entire large-scale networks are
recruited during successful episodic memory. Our findings of
such a spatially circumscribed successful memory related FC also
explains why the matching of large-scale resting-state networks
to episodic memory related patterns of brain activity among the
canonical set of resting-state networks has been difficult so far
(Smith et al., 2009). Large-scale networks such as the DMN and
fronto-parietal controls networks are not singular networks but
heterogeneous in nature (Cole and Schneider, 2007; Power et al.,
2011), containing several distinct subcomponents where each one
supports different cognitive functions (Cole and Schneider, 2007;
Cole et al,, 2013). Subcomponents may be selectively activated
during memory (Shirer et al., 2012) and couple across different
large-scale networks in a task-dependent manner (Bassett et al.,
2011). For the DMN regions, we found that task-related network

activity during successful retrieval overlapped with DMN only
in posterior parietal regions. This is consistent with previous
findings of the posterior parietal brain regions to be selective for
successful retrieval of more “objective” facts (for meta-analysis
see Spaniol et al., 2009), such as those tapped by the current
recognition task of face-name pairs. In contrast, previous findings
on autobiographical memory, i.e., memory of more personal
events, have been found in both anterior and posterior regions
of the DMN (Spreng and Grady, 2010; Elton and Gao, 2015). The
selective involvement of the anterior medial frontal DMN may
be specifically required for supporting self-referential processes
during autobiographic memory (Andrews-Hanna et al., 2010;
Sestieri et al., 2011). Together the current findings suggest the
involvement of intrinsically wired networks that depart from
large-scale canonical networks and match smaller clusters that are
selectively recruited during successful episodic memory encoding
and retrieval.

For our third result, we did not find the level of connectivity
during resting-state to be predictive of the level of task-related
connectivity. Note that this approach is fundamentally different
from identifying intrinsic networks that may be recruited during
a task (i.e., finding a spatial match). Instead, the strength
of resting-state connectivity is probed as a predictor of task-
related network “activation.” Results from a seminal previous
study suggested that the task-induced activation is the additive
combination of ongoing resting-state network connectivity and
task-specific recruitment of neural activity (Fox et al., 2006). In
fact, during a finger-tapping task that led to unilateral motor
cortex activation, FC of the non-activated contra-lateral motor
cortex explained over 85% of the task-related activity in the
activated side of the motor cortex (Fox et al., 2006). The current
results are not in conflict with these previous results; rather
they suggest that a higher resting-state connectivity per se does
not translate into higher task-related synchronization of brain
activity in that network. A recent study reported resting-state
network connectivity to be predictive of task-related activity
(Tavor et al., 2016). However, it is important to note that only
the spatial extent and distribution of task-related brain activity
was assessed but not the level of task-related connectivity or
activation. Thus, the predictive power reported in that previous
study derives mostly from the spatial match between resting-state
and task-related networks.

For the interpretation of the current results, some caveats
must be taken into consideration. First of all, the sample size
was relatively small and the results need to be replicated in
a larger sample of studies. Still, we showed that the spatial
match between encoding/recognition related ICs and resting-
state IC could be generalized to resting-state ICs derived from
an independent study, which suggests that the ICs were unlikely
to be confounded by group specific characteristics. Secondly, we
assessed task-related network activity by first computing the ICA
and subsequently determining the association between an ICs
time course to the task design. The component values can be
considered a measure of FC of such task-related ICs. However,
alternative measures that assess the change in FC due to task-
stimulation is psycho-physiological interaction (PPI) analysis.
This may be more sensitive to assess task-related FC. However,

Frontiers in Aging Neuroscience | www.frontiersin.org

November 2018 | Volume 10 | Article 362


https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles

Simon-Vermot et al.

Resting-State vs. Task fMRI Networks

the PPI approach has been primarily tailored for the assessment
of FC changes of single (seed) regions. It is thus difficult to apply
to the whole brain for the identification of large-scale network
changes. Recent developments of generalized PPI may, however,
be useful to probe FC changes in the whole brain (McLaren
etal., 2012). Thirdly, it cannot be excluded that ongoing intrinsic
connectivity during a task may have produced the match between
resting-state and task-related networks. As mentioned previously
task-related network activity may be a mixture of task-related
network activation and basic “resting-state” activity of a network
(Fox et al., 2007). The current approach could not disentangle
these two sources entirely. Furthermore, local activity is probably
the results of multiple networks rather than a single network
(Xu et al, 2013). The current approach aimed at pair-wise
matches between resting-state and task-related components,
which may pose a simplification of the additive effects of multiple
networks. Future studies may address these complexities. Fourth,
some participants showed SCD, which may show increased
likelihood to progress to Alzheimer’s dementia (Jessen et al.,
2014).

CONCLUSION

We could show that specific networks are specifically activated
during successful episodic memory and are also present during
resting-state. The level of connectivity within these networks
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