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Analysis and quantification of brain structural changes, using Magnetic Resonance

Imaging (MRI), are increasingly used to define novel biomarkers of brain pathologies,

such as Alzheimer’s disease (AD). Several studies have suggested that brain topological

organization can reveal early signs of AD. Here, we propose a novel brain model which

captures both intra- and inter-subject information within a multiplex network approach.

This model localizes brain atrophy effects and summarizes them with a diagnostic score.

On an independent test set, our multiplex-based score segregates (i) normal controls

(NC) from AD patients with a 0.86 ± 0.01 accuracy and (ii) NC from mild cognitive

impairment (MCI) subjects that will convert to AD (cMCI) with an accuracy of 0.84±0.01.

The model shows that illness effects are maximally detected by parceling the brain

in equal volumes of 3,000 mm3 (“patches”), without any a priori segmentation based

on anatomical features. The multiplex approach shows great sensitivity in detecting

anomalous changes in the brain; the robustness of the obtained results is assessed

using both voxel-based morphometry and FreeSurfer morphological features. Because

of its generality this method can provide a reliable tool for clinical trials and a disease

signature of many neurodegenerative pathologies.

Keywords: multiplex networks, machine learning, diagnosis support system, Alzheimer’s disease, mild cognitive

impairment, magnetic resonance imaging (MRI), brain Connectivity

1. INTRODUCTION

Alzheimer’s disease (AD) is a progressive, neurodegenerative disease accounting for most cases
of dementia after the age of 65. It is expected that over 115 million people will develop AD by
2050 (Alzheimer’s Association, 2018). Illness related brain changes can be detected in vivo with
Magnetic Resonance Imaging (MRI) and neuroimaging has been playing an increasingly important
role for the diagnosis of neurodegenerative disorders (Bron et al., 2015; Wei et al., 2016; Lebedeva
et al., 2017) to the extent that it has been incorporated in the diagnostic criteria for AD (McKhann
et al., 2011). It is now accepted that the neurodegenerative cascade in AD begins in the brain years,
decades even, before the clinical and radiological manifestations of the illness. The dementia is
preceded by a prodromal phase of mild cognitive impairment (Albert et al., 2011), and this, in turn,
by a pre-clinical phase (Sperling et al., 2011) of variable duration. Understanding the biological
changes, occurring in these early phases, is of paramount importance, as it would open a window
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of opportunity for future disease-modifying treatments. While
it is clear that neurodegeneration in AD occurs in a rather
stereotyped fashion in the majority of cases (West et al.,
1994; Perl, 2010; Landin-Romero et al., 2017), it is not known
exactly what drives the propagation of the disease within an
individual, and what is behind the variations in the patterns of
atrophy between individuals. To which extent neurodegeneration
propagates through anatomical contiguity is yet to be clarified.

MRI can provide significant information on topological
organization of the brain (Yao et al., 2010; Bullmore and Bassett,
2011; Alexander-Bloch et al., 2012; Tijms et al., 2013b), thus
graph theory has been widely used to study AD which is known
to involve both a structural and a functional disruption of brain
connectivity (He et al., 2008; Stam et al., 2009; Ciftçi, 2011;
de Haan et al., 2012). These studies reported altered local and
global graph properties, supporting the clinical relevance of
brain networks, especially within group-wise association studies
(Crossley et al., 2014; Daianu et al., 2015).

Up to now, graph models of the brain have been based on
two distinct approaches (Suk et al., 2014): (i) voxel-wise and (ii)
region of interest analyses. We propose here a novel approach
based on parceling MRI brain scans in rectangular boxes, that
we call “patches,” of fixed dimensions representing the nodes of
a network. Then, we measure pairwise similarity measurements
between the nodes to define network connections. Therefore, our
approach does not inherit the intrinsic computational burden
and lack of statistical power affecting voxel wise descriptions
(Davatzikos, 2004). Besides, as it is based on unsupervised
segmentations of the brain, it avoids a priori assumptions
about localization of disease effects and typical bias deriving
from segmentation errors (Amoroso et al., 2015). In addition,
as brain disease has often a diffuse effect, affecting multiple
voxels, but not necessarily corresponding to entire anatomical
structures, the proposed approach has the potential to better suit
the description of pathological changes in the brain, reflecting
biological variability.

Specifically for network science, recent studies have
investigated the limitations of traditional approaches to describe
real systems (Mucha et al., 2010; Lee et al., 2012; Boccaletti
et al., 2014) and have pointed out that context information
plays a fundamental role. Analogously, we introduce here the
novel perspective of multiplex networks (from now onward
also multiplexes). Multiplexes are multi-layer systems with a
fixed number of nodes that can be linked in different interacting
layers, to investigate inter-subject characterization, rather than
group-wise differences. In this study, multiplex-based measures
are investigated to detect subtle brain atrophy effects, taking
into account inter-subject variability; then, proper measures are
used to feed random forest classifiers and reveal the emergence
of statistically significant AD-related patterns altering the
topological organization of the brain.

2. MATERIALS AND METHODS

2.1. Subjects
In this study we used a training setDtrain composed of 67 T1MRI
scans. The sample, described in Boccardi et al. (2015), includes 29

normal controls (NC) and 38 AD subjects from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). We also employed an
independent test set of 148 subjectsDtest , composed by 52 NC, 48
AD and 48 subjects with mild cognitive impairment converting
to AD (cMCI). Conversions to AD occurred in a range of
[30, 108] months following the baseline diagnosis. Dtest subjects
were randomly chosen within the whole ADNI in order to match
the demographic characteristics of training subjects. The training
sample (67) and the test sample (148) are of sufficient size for
the construction of robust classificationmodels (Mukherjee et al.,
2003; Beleites et al., 2013). All 215 participants underwent whole-
brain MRI at 34 different sites. Both 1.5 and 3.0 T scans were
included in Dtrain and Dtest . Indeed, 1.5 and 3 T scans do not
significantly differ in their power to detect neurodegenerative
changes as shown in Ho et al. (2010)

ADNI images consisted of MPRAGE MRI brain scans, which
were normalized with the MNI152 brain template of size of
197 × 233 × 189 mm3 and resolution of 1 × 1 × 1 mm3; as
a consequence in the following paragraphs voxels and mm3 will
be interchangeably used. Clinical and demographic information,
including theMiniMental State Examination (MMSE) score, age,
years of education and gender for the Dtrain and Dtest is detailed
in Table 1. Except for MMSE scores, there were no significant
differences among the three groups.

The study encompassed three principal phases: image
processing, multiplex network analysis and information content
assessment. The first phase is devoted to data normalization, it
consists of processing steps which mitigate data heterogeneity;
secondly, a network model is assigned to each subject and the
comprehensive multiplex model describing the whole cohort is
built; finally, quantitative measures are extracted from the model
and are used to train a classifier. The overall processing pipeline
is schematically represented in Figure 1 and will be explained in
detail in the following sections.

2.2. Image Processing
The nodes of the networks describing each subject should share
the same anatomical content in order to be compared. Thus, the
proposed approach requires that the same anatomical regions
should roughly overlap in order to be robust to subtle local
differences, due for example to subject morphological variability,
or small registration failures.

Accordingly, intra-cranial regions were extracted and MRI
scan intensity differences, yielded by bias field, were normalized
with the Oxford FMRIB library FSL (Jenkinson et al., 2012).
Then, spatial normalization was performed to co-register the
different images into the common coordinate space provided
by the MNI152 template. An affine registration was performed
with the FSL Linear Registration Tool (FLIRT) with a standard
parameter configuration.

Finally, we divided the brain of each subject into the two
hemispheres by themedial longitudinal fissure. Starting from this
sagittal plane, it was possible to uniformly cover each hemisphere
with an equal number of rectangular (l1 × l2 × l3) boxes, from
now onward referred to as “patches,” covering the whole brain,
see Figure 2. It is worth noting that, once the MRI scans and the
template had been co-registered, they shared the same reference
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TABLE 1 | Group size and gender information are reported for each class.

Dtrain Dtest Total

Disease status AD (38) NC (29) AD (48) NC (52) cMCI (48) 215

Female/male 18/20 13/16 22/26 25/27 21/27 99/116

Age (years) 73.55 ± 8.00 74.97 ± 6.30 78.41 ± 6.02 74.77 ± 6.01 76.12 ± 5.89 75.56 ± 6.44

Education (years) 15.29 ± 3.43 16.93 ± 2.78 15.42 ± 3.13 16.37 ± 2.98 15.33 ± 3.03 15.87 ± 3.07

MMSE 22.68 ± 2.27 29.07 ± 0.92 24.32 ± 1.89 28.97 ± 0.81 26.78 ± 1.77 26.36 ± 1.53

n sites 23 19 26 29 18 34

The table also provides age, years of education and MMSE (mean and standard deviation). The disease status reported is referred at the baseline visit. According to t-test statistics,

MMSE scores resulted significantly different with a p-value p < 0.01 for all comparisons except those between Dtrain and Dtest normal controls and between Dtrain and Dtest AD

patients.

FIGURE 1 | A schematic overview of the proposed framework is presented. In particular: (i) an image pre-processing phase, consisting of intensity and spatial

normalization, is necessary to acquire a rough inter-subject correspondence; (ii) then each subject is employed to build a multiplex network (in the dotted box); (iii)

finally, machine learning classification is used to assess the multiplex feature information content.

space and therefore the anatomical content of each patch was
almost the same.

The size D of the patches was chosen considering that too
small patches could be considerably affected by registration noise,
while a size too large, maymake it impossible to distinguish subtle
disease effects, often diffused to different parts of a region, due
to natural inter-subject variability. To investigate how the size
of patches affected the quality of the analysis, the overall patch
volume D was varied from a minimum of 1,000 to a maximum
of 4,000 voxels. The l1, l2, and l3 values were chosen in order to
obtain patches whose dimensions were divisor of the image size
and divided regularly the image. Then, only the patches whose
voxels overlapped the template brain mask more than 10% were
considered.

The patches were considered nodes of a network whose
connections represented the grade of similarity between them.

We, therefore, used different similarity metrics and a multiplex
network framework, in order to extract inter- and intra-subject
characteristics.

2.3. Multiplex Network Construction
Graph theory provides tools to concisely quantify the
properties of complex networks that describe interrelationships
(represented by edges) between the objects of interest
(represented by nodes). In this work, for each image and,
thus, for each subject, we built an N node undirected weighted
network with nodes defined by brain MRI patches and
edges defined by pairwise Pearson’s correlation among them.
Therefore, multiplex network GGG = {G1,G2, ...,Gα , ...,GM} was,
in this case, a collection of single subject weighted networks
Gα = (N, Eα ,Wα) (see Figure 3 for a pictorial representation)
sharing a common number of nodes N, while the set of links Eα
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FIGURE 2 | The figure qualitatively shows how MRI brain scans are

segmented in rectangular patches of dimensions l1 × l2 × l3. Firstly, the brains

normalized to MNI152 template are divided in left and right hemispheres using

the medial longitudinal fissure, then the patch dimensions are set and finally

the brain is segmented. Only patches overlapping the brain for at least the

10% of their content are kept, others are discarded.

FIGURE 3 | At the top: the multiplex network with M layers and N nodes. At

the bottom: the representation of multi-links for the different pairs of network

nodes. Within each layer different nodes can be connected with a link and a

specific weight. This context information is then used to detect different

patterns.

changed depending on the layer (subject) α. Each network Gα

can also be represented by the corresponding adjacency matrix
Aα = aα

ij , a useful notation to investigate the network properties.

Hence, the proposed model is a multiplex composed of M =

67 weighted undirected networks: each representing an MRI
brain scan, and including N nodes or patches. For each layer,
interrelationships were described by Wα = {wα

ij } in which

wij were given in terms of Pearson’s correlation. In particular,

given patches si and sj of dimension D, the Pearson’s correlation
coefficient rij is defined with i, j = (1, ...,N):

ri,j =

∑D
k= 1(s

k
i − s̄i)(s

k
j − s̄j)

√

∑D
k= 1(s

k
i − s̄i)2

√

∑D
k= 1(s

k
j − s̄j)2

(1)

The numerator is the sum over the product of the voxels
intensities ski and skj at each voxel position k after subtraction of

the patch average values, and the denominator is the product of
the standard deviations of si and sj gray-level distributions.

Pearson’s correlation was chosen to model the effects of
atrophy, as it is fast to implement and compute, simple
to understand and interpret, and it does not require any
scaling or centering of the patches as it is intrinsically
normalized. In addition, correlation is a similarity criterion
that associates corresponding voxels within patches, therefore
taking into account spatial relationships between voxels.
To investigate the importance of preserving spatial voxel
correspondence when building themultiplex, a preliminary study
about similarity metrics had been previously performed (see
Supplementary Material), which demonstrated that Pearson’s
correlation was the optimal choice.

Pearson’s correlation admits negative values, thus in principle
it could be adopted for a directed weighted network description.
In the case discussed here, it is worth noting that negative
correlations can be found, for example, between patches in which
gray matter and white matter undergo a left-right inversion.
As a result, distinguishing positive and negative correlations
would have included in the multiplex model a left-right bias. As
asymmetry is a common characteristic of atrophy in AD, it was
decided to consider undirected networks (see Figure 4).

Network edges can be weighted or unweighted. Unweighted
network topology is easier to study and interpret, and has
computational advantages. On the one hand, even if in several
cases the decision to binarize a weighted network with a
suitable threshold could be appropriate, this would seem a
forced decision in our case, with the patch similarity being an
intrinsically continuous measure. On the other hand, weighted
networks can include weak relationships that might be spurious
and introduce noise into the graph. Therefore, we decided to
threshold the networks by setting to 0 all connections whose
absolute correlation was less than moderate (|r| < 0.3), in order
to exclude noisy interrelationships in the model, and reducing
as much as possible the loss of important links. For higher
correlations, weights were kept in the model, thus resulting in a
weighted undirected network representation for each subject:

wij =

{

0, if
∣

∣rij
∣

∣ ≤ 0.3

rij, otherwise
(2)

An investigation on how the threshold affects the multiplex
network ability to detect diseased patterns is reported in the
following section 3.1.

In a multiplex it is possible to introduce several topological
characteristics that are usually adopted to describe a complex
network (Menichetti et al., 2014; Amoroso et al., 2018). In our
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FIGURE 4 | (A) Brain morphological changes occur in localized regions and affect the spatial distribution of gray level intensities. For example, atrophy increases the

cerebrospinal fluid (CSF) volume at the expenses of gray matter (GM) in panel. (B) Pearson’s correlation of these two patches is computed against: (1) a patch with a

symmetric distribution of GM and CSF; (2) an anti-symmetric patch mimicking left-right inversion; (3) a pure GM patch; (4) a pure CSF patch. (C) In atrophic brains

(red) connections (1) and (2) disappear (dotted lines) while they remain strong connections in normal brains (blue).

approach we employed the following indicators: the strength sαi
and the inverse participation ratio Yα

i of a node i in layer α:

sαi =

N
∑

j= 1

wα
ij (3)

Yα
i =

N
∑

j= 1

(

wα
ij

sαi

)2

(4)

Strength measurements denote which nodes are more relevant
within the network describing a single layer (i.e., a subject) of the
multiplex. Inverse participation ratio attains the heterogeneity of
the weight distribution within each layer.

Along with these two measurements we also evaluated the
conditional means of strength s(k)α and inverse participation
Y(k)α against the nodes with degree k:

s(k)α =
1

Nk

N
∑

i= 1

sαi δ(kα
i , k) (5)

Y(k)α =
1

Nk

N
∑

i= 1

Yα
i δ(kα

i , k) (6)

Summation is extended over the Nk nodes having degree k; as
summation includes a Kronecker δ function, the only non-null
terms, for both strength and inverse participation, are referred to
nodes i of the layer α whose degree is k. These quantities help to
understand how weights are distributed within each layer, thus,
for example, distinguishing whether, on average, the weights of
central nodes and less connected nodes are identically distributed

or not. Several studies have already pointed out, especially with
group-wise single layer approaches (Tijms et al., 2013a), how
these features can describe significant differences among healthy
and diseased subjects.

However, it is reasonable to assume that further evidence
of significant differences between subjects, can arise from the
context information provided by the multiplex framework.
Accordingly, this information content was exploited by
considering the aggregate adjacency matrix Amulti = amulti

ij

where:

amulti
ij = {1 if ∃α|wα

ij > 0 ∧ 0 otherwise} (7)

The matrix Amulti naturally allowed us to re-introduce the
previous measurements within a global perspective. In fact, it
was possible to compute for each node an aggregated degree and
then use it to weight the previously defined strength and inverse
participation. Analogously, we used Amulti to define the aggregate
degree for each node and then re-computing the conditional
means. In this way we introduced in the description of each node
the information produced by the whole multiplex.

In conclusion each network was described by 8N features (4N
single layer and 4N multiplex features), resulting in a M × 8N
feature representation which from now on we will call Ftrain. It
is worthwhile to note that this characterization was independent
from the clinical status of the subjects as the multiplex had
been built blindly to diagnosis. This base of knowledge was then
investigated with supervised machine learning models to extract
specific disease effect patterns.
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FIGURE 5 | A flowchart of the feature selection methodology: the features, stored in a matrix, are used to train a random forest model, this model provides a feature

important estimation; the procedure is cross-validated with a 5-fold for 1,000 times, at each round taking into account the selected feature. Finally, a statistical test of

hypothesis establishes which features have been selected a significant number of times.

2.4. Assessment and Validation
The multiplex characterization of the images yielded a simple
matrix representation, which could be used to feed machine
learning models, and unveil discriminating anatomical patterns.

The number of features f , involved in this approach, could
easily reach values ranging from ∼ 103 to ∼ 104 outnumbering
the number of the available training samples. Thus, to prevent
over-training issues, arising from the curse of dimensionality and
assess the multiplex framework, a feature selection was necessary.
A flowchart of the whole feature selection method is represented
in Figure 5.

A 5-fold cross-validation feature importance selection was
performed within a wrapper-based strategy. We randomly
divided 1,000 times Ftrain in a training and a validation test.
For each cross-validation round, we built a multiplex model on
training subjects, then we computed the important features. In
particular, we measured the total decrease in node impurities,
in terms of Gini index, from splitting on the variable, averaged
over all trees. The selected features were stored for later use and
used to train a second random forest classifier which was used
to predict the diagnosis of the validation subjects. An evaluation
of the informative content of this representation is presented in
section 3.2. In both cases random forests were grown with 500
trees, a number large enough for the out-of-bag error to reach the
typical training plateau. At each split

√

f features were randomly
sampled.

As previously mentioned, for each cross-validation round
different features were selected, thus a quantitative criterion
was necessary to determine the most important features,
independently from training set. This problem was solved by
taking into account the overall occurrence rate of each feature
and interpreting it as a success rate. As a consequence a binomial
distribution was observed and an experimental p-value could be
computed to test the randomness hypothesis. We tested it with
a p < 0.01 to select a more exiguous number of features, then
we established which ones had shown a significant probability

of occurrence. Once the best features had been selected, we
used them to train a new ensemble model on Dtrain and tested
it on Dtest to assess the method robustness and evaluate the
informative content carried by multiplex features.

For test subjects, single layer features were straightforwardly
computed. Features accounting the whole multiplex structure
were in turn computed adding the test subject to the training
multiplex but keeping fixed Ftrain. The reason for this choice can
be justified considering the perturbation induced by the addition
of one layer is small.

It is worth noting that features like strength and inverse
participation have a direct interpretation, being directly related to
a single patch of the brain network whilst conditional means, by
definition, are related to several nodes sharing a common degree
k. For classification purposes this is not an issue, being based on
computed features; on the contrary this is relevant in order to
provide an anatomical interpretation and a diagnostic value of
the features selected.

2.5. Anatomical Interpretation
Since the identification of the nodes is based on a purely
mathematical approach, it seemed important to investigate the
relationship between network features and anatomical areas of
interest for the disease.

Nodes, whose features were significantly related to AD, were
localized on the reference template and the corresponding atlas.
We adopted Harvard-Oxford cortical and sub-cortical structural
atlases (Desikan et al., 2006). For conditional mean features,
which intrinsically encode the information contained in different
nodes, we identified nodes significantly related to AD. Next, for
each one, we recorded subject by subject the patches having the
degree k used to compute that specific conditional mean feature.
Then, we computed an occurrence rate taking into account how
many times a patch had been used to compute that conditional
mean. At this point, patches significantly correlated to AD were
identified by interpreting the occurrence as a success rate, and
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FIGURE 6 | The figure shows the accuracy as a function of the threshold that

changes from 0 to 0.8. The best accuracy is obtained in correspondence of a

threshold value of 0.3.

testing the hypothesis of randomness according to a binomial
distribution with p < 0.01. This methodology allowed us to
detect a restricted number of anatomical districts associated to
AD, as shown in section 3.3.

3. RESULTS

3.1. Threshold Assessment
Since this approach could in principle heavily depend on the
threshold value adopted to discard negligible correlations, the
threshold values ranging from 0 to 0.8 were explored with a 0.1
step. Then, for each threshold value a different multiplex was
constructed. The patch dimension adopted was 3,000 mm3. The
training classification performance was measured in terms of
accuracy, see Figure 6.

The classification accuracy reached its maximum value with a
0.3 threshold value and it remained stable over 0.85 for a large
range of correlations [0.2, 0.5]. With lower or higher threshold
performances showed a significant decrease, especially above the
0.8 threshold; in which case more of the 50% of the networks
resulted empty.

3.2. Scale Selection and Informative
Content
Firstly, we investigated on training the optimal number of nodes
N to be adopted and, secondly, whether the features thus arising
could be used to distinguish NC and AD subjects on the available
datasets. This is because the number of nodes N of the multiplex,
as well as the correlation measure among the different patches,
depends on the patch size. As there was no a priori reason to
choose the patch size, we examined to which extent the size of
the patch affected the classification accuracy in discriminating
healthy controls and AD subjects from the training data subset
(see Figure 7).

From this analysis we found that the optimal size for the
patch was of 10 × 15 × 20 mm3 equal to an overall volume
of 3,000 mm3. Accuracy increased with the patch size until the
range [2250, 3200] mm3 was reached. At this scale, discarding

FIGURE 7 | The figure represents the accuracy for the NC-AD classification as

a function of the patch size. The existence of a robust plateau, in

correspondence of [2, 250, 3, 200] voxels, is highlighted in the circle. These

results suggest the existence of an optimal dimensional scale for multiplex

describing AD atrophy patterns.

the patches overlapping the template brain with less than 10%
of voxels, 549 patches were obtained for each image. The
corresponding accuracy value was on average 0.88 with a 0.01
standard error and a sensitivity and a specificity respectively of
0.90±0.01 and 0.88±0.02.We compared this performance using
180 structural morphological features, obtained by FreeSurfer
(6.0 version) (Fischl, 2012), with the same classification strategy,
including a first random forest wrapper for feature selection
and a second random forest classifier for prediction. In this
case classification performance was on average significantly
lower 0.83 ± 0.01 confirming the effectiveness of the multiplex
characterization.

3.3. Anatomical Characterization
Once the optimal dimension of multiplex network had been fixed
we selected the most representative features according to their
relative importance. As explained in section 2.4 we selected those
features whose contribution to the classification was considerably
distant from the null hypothesis of a random behavior, see
Figure 8 for a typical example.

The whole base of knowledge consisted of 32 significant
patches, 18 (∼ 56%) in the left hemisphere and 14 in the right,
including 27 different cortical and sub-cortical regions listed in
the following Figure 9 in order of significance. As a region can be
included in different patches (provided at least one of its voxels
belongs to the considered patch), only most significant p-value
entries are reported.

In Figure 10 some representative brain axial planes are shown,
as well as the Harvard-Oxford atlas we used for this assessment.
In the left hemisphere, patches corresponding to amygdala,
hippocampus, para-hippocampal gyrus, pallidum and putamen
showed the strongest association to AD (p = 0.0001). For
cingulate and para-cingulate giri, pre-cuneus, cuneus, and
occipital cortex p = 0.001. Other significant patches (p = 0.002)
were located in middle frontal gyrus and pre-frontal gyrus,
nucleus accumbens, brain stem and thalamus.
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FIGURE 8 | The figure shows (left) the p-values assigned to each feature, each feature representing a network property, for example the strength of a node. The

same analysis was then performed for the related nodes. Typical examples of strength features for nodes significantly correlated (top) or not correlated (bottom) to

AD are also shown (right).

FIGURE 9 | Regions related to AD in order of significance. Accumbens (Ac), Amygdala (A), Brain-Stem (BS), Caudate (Ca), Cingulate Gyrus (cG) anterior division (ad), Cuneal Cortex
(cC), Frontal Operculum and Orbital Cortex (fopC) and (foC), Frontal Pole (fP), Hippocampus (H), Inferior Frontal Gyrus (ifG) pars opercularis and pars triangularis (po) and (pt), Inferior Temporal
Gyrus (itG) anterior division and temporoccipital part (tp), Insular Cortex (iC), Intracalcarine Cortex (icC), Lateral Occipital Cortex (loC) superior division (sd), Lateral Ventrical (lV), Lingual Gyrus (lG),
Middle Frontal and Temporal Gyrus (mfG) and (mtG), Occipital Pole (oP), Pallidum (Pa), Paracingulate and Parahippocampal Gyrus (paG) and (phG), Planum Polare and Temporale (PP) and (PT).
Postcentral and Precentral Gyrus (poG) and (prG), Precuneous Coretx (pC), Putamen (Pu), Subcallosal Cortex (sC), Superior Frontal Gyrus (sfG), Superior Parietal Lobule (spL), Superior Temporal
Gyrus (stG), Supracalcarine Cortex (scC), Supramarginal Gyrus (sG), Temporal Fusiform and Temporal Occipital Fusiform Cortex (tfC) and (tofC), Temporal Pole (tP), Thalamus (Th). In
parentheses: anterior, posterior and superior division (ad,pd,sd) and temporooccipital part (tp).

On the right, p = 0.0001 for orbito-frontal cortex, insular
cortex, prarahippocampal gyrus, planum polare and planum
temporale; p = 0.001 for the parahippocampal-amygdalar
complex, occipital pole, pre- and post-central gyri, supramarginal
gyrus, middle and superior temporal gyri; p = 0.002 for inferior,
middle and superior frontal gyri, frontal pole, and paracingulate
gyrus.

It is interesting to note that frontal lobe involvement was more
prominent on the right.

3.4. Multiplex Networks vs Voxel Based
Morphometry
In order to establish if this new approach may offer any
advantages over existing widely used methods, we analyzed
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FIGURE 10 | This figure shows six axial planes (left) with the significant patches outlined in green (p < 0.01), and on the right, the Harvard-Oxford Atlas used for the

patch anatomical localization.

FIGURE 11 | A voxel based morphometry analysis shows bilateral areas of significantly reduced gray matter density in patients with AD, in medial temporal lobe

structures, such as hippocampus and amygdala, more prominent on the left as expected.

the same data set with Voxel Based Morphometry (VBM)
(Ashburner and Friston, 2000).

We followed the standard prescription for VBM with the
publicly available SPM 12 suite1. Firstly, a segmentation of brain
tissues was performed, followed by non-linear normalization
with the SPM tool DARTEL to create a study specific template.
Secondly, we performed a smoothing with an isotropic Gaussian
filter with a full width at half maximum of 8 mm. Lastly, a two-
sample analysis was performed with a t statistics to investigate
significant group-wise differences in atrophy between NC and
AD on training subjects. Significant voxels, with 5% family-wise
correction, are represented below in Figure 11.

The VBM analysis showed significant reduction in graymatter
density in bilateral peri-hippocampal regions, more prominent of
the left.

3.5. Left/right Characterization
Since the VBM analysis confirmed that left-sided changes were
more prominent, two dedicated tests were carried out to further
explore the lateralization. Firstly, we used the Dtrain to compute

1http://www.fil.ion.ucl.ac.uk/spm/software/spm12/

the multiplex features, then we selected only those inherent to the
left (right) hemisphere and trained the classification models. The
feature selection and the cross-validation procedures described
in section 2.4 were perfectly replicated as the goal of this test
was to quantify the information content of features related to
left (right) hemisphere regions. We found that left patches were
able to discriminate NC from AD patients with an accuracy of
0.87±0.01 while right hemisphere features were able to reach the
accuracy value 0.85±0.01. Left hemisphere remained responsible
for a greater part of the overall information of the multiplex
framework, which was 0.88± 0.01.

It must be taken into account that each patch, summarizes a
network of interrelationships with other patches independently
from its spatial collocation. As an example, the strength of a
node denotes the sum of its connections, the fact that a node
of the left hemisphere is significantly related to AD does not
prevent its strength to be the result of its correlation with the right
hemisphere.

As a consequence, a second test was performed. We
considered the multiplexes of left and right hemispheres
separately. This was done dividing each brain scan in two
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FIGURE 12 | Accuracy varying with the number of permuted voxel within a patch. Classification performance decreased as the number of shuffled voxels was

increased. Noticeably, a drastic drop was observed when the shuffle reached values of about 2, 500 ∼ 3,000 voxels.

different images containing the two hemispheres and then
using only one half to build the multiplex. Accordingly, the
multiplex features computed in this case could be genuinely
considered as related to only one hemisphere. Even in this case
we performed feature-selection and cross-validation analyses
reproducing the whole brain procedure. Classification accuracy
for NC-AD when using left multiplex was 0.83 ± 0.01, for right
we found 0.81 ± 0.01, thus confirming the greater involvement
of the left hemisphere but also signaling a definite deterioration
of the information content if compared with the whole brain
multiplex.

3.6. Robustness and Generalization
To investigate if classification performance was related to the
random permutation of voxels inside a patch, we firstly shuffled
a varying number of voxel within each patch, while keeping
the patch decomposition stable, thus affecting the Pearson’s
correlation pairwise measurement. Then we measured the
classification accuracy. The training results are presented in
Figure 12.

The test was repeated 100 times increasing the size of the
shuffle by 500 voxels at the time. It could be noticed that for
small variations, under 1,000 voxels, performance did not suffer
a significant deterioration; but with 2, 500 voxel permutation
a drastic drop of the performance was observed, a value
comparable with the dimensional scale determined in section 3.2.

To further assess the method robustness we also performed
a classical non-parametric statistical permutation test. This
consisted in the permutation of the clinical labels of each subject
belonging to Dtrain. We performed 1,000 random permutation
and observed (see Figure 13) a consistent decrease of the

classification performance suggesting that the selected features
do characterize the disease.

Training set randomization effectively established that the
multiplex framework was able to model a significant structure
in the Dtrain data between the multiplex features and the
clinical label. Moreover, given the normality of the performance
distribution obtained by permuting the labels, it was possible
to assign a p-value to the performance obtained without
permutations. The result showed that the multiplex model was
able to identify a significant (p < 0.001) class structure within
the Dtrain data. Otherwise, it would not have been possible to
reject the null hypothesis underlying this test, i.e., that labels and
features were independent, so that in fact no difference really
existed between the classes.

As a further assessment we performed a binary classification
on the Dtest for the NC-AD and NC-cMCI classes. The analysis
was repeated using 100 bootstrapped Dtest sets to provide a
measurement of the performance uncertainty. We found in
terms of accuracy, respectively 0.86 ± 0.01 and 0.84 ± 0.01. The
respective specificity were 0.74 ± 0.01 and 0.72 ± 0.01, while
sensitivity reached higher values for both cases: 0.96 ± 0.01 and
0.94±0.01. Remarkably, theNC-cMCI classification performance
compared well with NC-AD classification confirming themethod
reliability and its informative content.

The small, but significant, performance deterioration (training
accuracy was 0.88 ± 0.01, see section 3.2) could be expected,
mainly because even if the test perturbation of the training
multiplex was considered small, it should not be completely
neglected. The implementation of larger training sets could in
principle mitigate this effect. A summary of the classification
performances obtained for the different groups are shown in
Table 2.
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FIGURE 13 | The accuracy distribution for the binary problem NC-AD on the Dtrain with a random permutation of the subject labels. The average value (continuous

line) and the relative uncertainty (dotted lines) of best training performances obtained without permutation are also represented for direct comparison.

TABLE 2 | Summary of the classification performances in terms of accuracy,

sensitivity specificity and relative standard errors for the different groups: NC-AD

used for the training, NC-AD and NC-cMCI considered for the validation.

Groups Accuracy Sensitivity Specificity

Dtrain(NC− AD) 0.88± 0.01 0.90± 0.01 0.88± 0.02

Dtest (NC− AD) 0.86± 0.01 0.96± 0.01 0.74± 0.01

Dtest (NC− cMCI) 0.84± 0.01 0.94± 0.01 0.72± 0.01

It is worth noting that these performances were obtained using
a subset of 70 features including both single-layer and multiplex
features.

4. DISCUSSION

The proposed approach aims at modeling brain atrophy in
AD through inter-subject multiplex networks whose nodes are
represented by brain patches and edges by pairwise Pearson’s
correlations. Metrics preserving the spatial information as
Pearson’s correlation and Mutual Information yield accurate
results, with the first to be preferred for interpretability and
performance consideration. To discard negligible correlations
and improve the method sensitivity (as a result of a higher
signal to noise ratio) we removed edges with weight below
a threshold value of 0.3. Applying this threshold the method
appeared robust and the classification performance remained
stable over a broad range of correlations ([0.2, 0.5]). Outside
this range a performance drop was observed. This is because
lower threshold values introduced noisy correlations within the
model, thus concealing the effective network information, whilst

greater threshold values were too penalizing as informative links
were neglected. However, in this study and other similar works
(De Vico Fallani et al., 2017), determining the optimal threshold
remains an open issue and somehow it limits the robustness of
the results.

The method proved to have high sensitivity and high
discriminatory power, being therefore suitable both for
descriptive and classificatory purposes. As to sensitivity, an
optimal volume size for the detection of AD effects, maximizing
the informative content of the multiplex, was identified as
ranging from 2, 250 to 3, 200 mm3. This range can be easily
interpreted considering that brain differences may be missed
on smaller scales, due for example to misregistration errors;
dimensional scales too large, on the contrary, may not capture
subtle differences affecting small portions of the brain.

The high sensitivity of the method in the detection of illness
related brain changes was demonstrated by the number of
regions that were identified as significantly associated with
AD. The detected regions comprised hippocampus and para-
hippocampal-amygdalar complex, pallidum and putamen,
cingulate and paracingulate giri, pre-cuneus, cuneus, and
occipital cortex, middle frontal gyrus, pre-central gyrus,
accumbens, sub-callosal cortex and brain stem.

While the prominent role in AD pathology of medial temporal
lobe structures is widely recognized, the involvement of several
other cortical and subcortical areas may be less obvious.

The cingulate cortex is a key component of the default mode
network (Buckner et al., 2008), and its early involvement in
AD pathology, has been amply demonstrated by functional and
structural studies (Minoshima et al., 1997; Yokoi et al., 2018).
The same is true for posterior areas, such as cuneus and pre-
cuneus, also known to be affected by the illness in early stages
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(Baron et al., 2001; Bailly et al., 2015). As to the involvement
of subcortical gray matter in AD, this has also been recognized,
and shown to correlate with cognitive impairment (de Jong
et al., 2008). Volume loss of the nucleus accumbens was found
to increase the risk of progression from MCI to AD (Yi et al.,
2015).

The brain stem is a key area in the early pathophysiology
of Parkinson’s disease, another common neurodegenerative
disorder, and alterations of the brain stem in AD have been
shown both in vivo (Braun and Van Eldik, 2018), and post-
mortem (Simic et al., 2009).

It was striking how VBM on the same data set was able
to detect only atrophy of the perihippocampal regions. The
method here described seems more sensitive than standard
VBM (Good et al., 2002), while studies adopting advanced VBM
methodologies have also shown better results (Karas et al., 2003).

The whole base of knowledge consisted of 32 regions
significant patches, but only 22 concerned single-layer measures;
the multiplex model thus allowed a consistent increment (+46%)
in the detection of significant brain regions.

The results also confirmed asymmetry in the spatial
distribution of significant patches, mostly located in the left
hemisphere, in keeping with several other studies (Fennema-
Notestine et al., 2009; Derflinger et al., 2011; Long et al.,
2018). This asymmetry has a direct effect on the informative
content.

As to the application of this methodology to disease
classification studies, the method is based on the assumption that
the introduction of a test subject in the multiplex is not able to
significantly perturb the multiplex itself, so that trained models
can be easily used for prediction. In fact, on Dtest there is not
a great deterioration of the classification performance and the
reliability of the framework remains optimal for classification
purposes. The framework is robust and accurate, its informative
content does not show extreme variations with random shuffling
of the voxels inside the patches.

Classification performances are accurate and comparable with
recent classification-focused studies (Bron et al., 2015; Moradi
et al., 2015; Salvatore et al., 2015; Feng et al., 2018). Even
though providing a diagnosis support system is not the main
goal of this work, results are encouraging in this sense. Indeed,
multiplex model features are able to efficiently capture inter-
subject variability underlining disease pattern. An even more
refined classification could have been achieved including, as
suggested by our previous works, structural features (Amoroso
et al., 2014) or longitudinal information (Chincarini et al.,
2016).

The method was robust and able to provide a sensitive and
informative base of knowledge. This was in particular true when
the results were compared with the classification performance
using FreeSurfer features. While the present study has been
focused of the application of multiplex to disease classification,
the method has great versatility and lends itself to a variety of
purposes, including the identification of “disease signature” for
more anatomically heterogeneous forms of neurodegenerative
disorder, such as tauophathies or synucleinopathies, where the
model could be enriched with additional clinical or genetic data.

5. CONCLUSION

In this paper we propose a novel approach based on multiplex
networks to characterize brain structural variations related to
AD. We investigated the information content provided by
multiplex networks and showed that they produce an accurate
modeling of the disease.

We demonstrated how this framework is able to provide
a robust method for AD characterization: (i) it shows the
existence of an optimal scale for the description of disease
effects of [2,250, 3,200] voxels. (ii) Starting from a robust
unsupervised brain parcellation, it correctly identifies cerebral
region significantly related to AD. It also confirms that AD
pathology is more prominent in the left hemisphere. (iii)
Multiplex networks are a robust and effective method to describe
disease patterns. In fact, after a training phase that gives in
cross-validation an accuracy of 0.88 ± 0.01, the multiplex
base of knowledge, on the independent dataset Dtest , is able
to accurately distinguish between NC and AD subjects with
an accuracy of 0.86 ± 0.01 and can be suitably employed
also for NC and cMCI classification with an accuracy of
0.84± 0.01.

The information content provided by multiplex
characterization was able to efficiently detect disease patterns.
Also the method is very suitable to application to longitudinal
studies, ideally in association with functional imaging, to improve
our understanding of the different patterns of neurodegeneration
in different diseases. The impact of variables such as the degree
of atrophy, disease duration, site or scanner type could also be
investigated in further studies.
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