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Brain aging is a multifaceted process that remains poorly understood. Despite significant
advances in technology, progress toward identifying reliable risk factors for suboptimal
brain health requires realistically complex analytic methods to explain relationships
between genetics, biology, and environment. Here we show the utility of a novel
unsupervised machine learning technique – Correlation Explanation (CorEx) – to
discover how individual measures from structural brain imaging, genetics, plasma,
and CSF markers can jointly provide information on risk for Alzheimer’s disease (AD).
We examined 829 participants (Mage: 75.3 ± 6.9 years; 350 women and 479 men)
from the Alzheimer’s Disease Neuroimaging Initiative database to identify multivariate
predictors of cognitive decline and brain atrophy over a 1-year period. Our sample
included 231 cognitively normal individuals, 397 with mild cognitive impairment (MCI),
and 201 with AD as their baseline diagnosis. Analyses revealed latent factors based
on data-driven combinations of plasma markers and brain metrics, that were aligned
with established biological pathways in AD. These factors were able to improve disease
prediction along the trajectory from normal cognition and MCI to AD, with an area under
the receiver operating curve of up to 99%, and prediction accuracy of up to 89.9%
on independent “held out” testing data. Further, the most important latent factors that
predicted AD consisted of a novel set of variables that are essential for cardiovascular,
immune, and bioenergetic functions. Collectively, these results demonstrate the strength
of unsupervised network measures in the detection and prediction of AD.

Keywords: information theory, machine learning, Alzheimer’s disease, plasma biomarkers, neuroimaging

INTRODUCTION

Alzheimer’s disease (AD) affects approximately 10% of the American population over age 65,
and several lines of evidence suggest that there is an extended preclinical phase during which
treatments are most likely to be effective (Brookmeyer et al., 2011; Alzheimer’s Association, 2018).
The growing list of potential biomarkers (from neuroimaging, genetics, proteomics, and cognition)
offers increasing potential for early diagnosis of AD and better prognosis of age-associated diseases.
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The most widely accepted etiological model for AD suggests there
is a temporal order in brain changes that are characteristic of
AD pathology, and map onto the phenotypic profile of amnestic
cognitive decline (Braak and Braak, 1991; Jack et al., 2016).

Accumulation of beta-amyloid “plaques” in the brain
has been traditionally identified as a hallmark of AD that
typically begins decades before the onset of clinical symptoms.
Amyloid accumulation can be measured using positron
emission tomography (PET) with amyloid tracers, or through
cerebrospinal fluid (CSF) levels of Aβ1-42 (Hardy and Allsop,
1991; McKhann et al., 2011; Jack et al., 2016). The relationship
between amyloid aggregation and clinical symptoms is believed
to result from amyloid-induced neuronal injury and subsequent
degeneration through disruption of the tau protein – the key
component of neurofibrillary tangles (Mudher and Lovestone,
2002; Hampel et al., 2010; McKhann et al., 2011). Neuronal
and synaptic loss trigger an atrophic state in the brain that is
mirrored by decline in glucose metabolism in the temporal and
parietal cortices, and increased accumulation of CSF tau and
phosphorylated-tau (Brookmeyer et al., 2007; Mosconi et al.,
2008; Mapstone et al., 2014). These neurologic changes have a
detrimental impact on cognition and daily living and are often
exacerbated among individuals at genetic risk for AD (e.g.,
positive for at least one APOE-ε4 allele) (Corder et al., 1993).
Unfortunately, decades of research focusing on tau and amyloid
as prodromal biomarkers for AD have not yet yielded measures
that correlate well with patient health, suggesting that these
classical disease hallmarks may not be ideal biomarkers of AD.

Machine learning offers a promising alternative to traditional
research methods for improving prediction of disease and
identifying clinically relevant signatures of risk (Jensen and
Bateman, 2011). For example, Ray et al. (2007) used a set
of 18 plasma signaling proteins to discriminate cognitively
normal controls from people with AD and other forms of
dementia with 89% classification accuracy. Similarly, Doecke
et al. (2012) classified AD patients from healthy controls with
85% accuracy using a combination of plasma inflammatory
markers, participant demographics, and clinical information
(Doecke et al., 2012). Although a thorough review is beyond the
scope of this paper, most work using machine learning algorithms
in AD research has focused on cross-sectional measures, despite
increasing motivation to investigate biomarkers that predict
conversion to AD in cognitively normal individuals or those
with mild cognitive impairment (MCI). Pertinent to the present
study, Westman et al. (2012) reported classification accuracy
of only 58.6–66.4% for distinguishing people with stable MCI
from those who progressed to AD over a 12–36-month period
using a combination of structural MRI and CSF measures. That
study used supervised methods, did not explore contributions of
plasma to classification, and sought to classify MCI groups using
an AD vs. control model.

To improve these results and better understand AD
pathogenesis, it is important to determine the best set of variables
(features) for predicting clinical progression, and how these
features interact during specific stages of disease progression.
Machine learning methods can identify predictors of diagnosis
and prognosis, but most methods (‘supervised’ algorithms)

require diagnostic categories to be defined a priori and this is
contrary to what is known about the AD continuum. Systems
biology approaches aim to address this by moving beyond
discrete biomarkers of disease to biological networks that may
better reflect disease complexity (Padmanabhan et al., 2017).
Here, we introduce a novel method – Correlation Explanation
(CorEx) – to overcome several limitations of traditional
machine learning techniques. CorEx uses information theory and
unsupervised learning to identify combinations of biomarkers
across a range of diverse data types that maximize predictive
power for disease progression in AD. Using this approach, we
aim to better understand predictors of decline in AD in a
tractable and principled way. Here we used CorEx to study
the discriminative value of over 400 genetic, plasma proteomic,
CSF, imaging, and demographic measures from 829 participants
from phase 1 of the Alzheimer’s Disease Neuroimaging Initiative
(ADNI-1). We hypothesized that CorEx would discover latent
factors across various data types to enhance predictive accuracy
for individuals at high risk for disease progression. We used
longitudinal information on the diagnosis of each individual to
test models that distinguished (1) stable cognitively normal (CN)
individuals from CN and MCI individuals who progress to AD,
(2) stable MCI, from CN and MCI individuals who progress to
AD, (3) any diagnosis of AD from individuals who do not have
or progress to AD over the time frame of the study. For each of
these prediction problems, we determined the feature relevance.
We hypothesized that using CorEx to boost predictive power, a
latent factor representing the classical hallmarks of AD - namely
APOE4 and CSF Aβ1-42 and tau levels - would be among the
most consistent factors for predicting clinical progression across
analyses. We further hypothesized that predictive latent factors
would correspond to brain atrophy and cognitive decline over
time.

MATERIALS AND METHODS

Participants
Data were collected from 829 individuals (350 women, 479 men)
participating in ADNI-1 – a longitudinal study of biomarkers
of AD. Diagnosis of probable AD was based on the NINCDS-
ADRDA Alzheimer’s Criteria (McKhann et al., 1984). Inclusion
and exclusion criteria may be found in Petersen et al. (2010). All
individuals were free from significant neurologic disease other
than Alzheimer’s disease. Visits occurred once every 6 months
for the first 2 years of the study, and once annually thereafter.
All individuals included here had plasma collected, completed
a cognitive battery of tests, and underwent a brain scan for
their baseline and follow-up visits, where applicable. All ADNI-
1 data are publicly available online1 (Weiner et al., 2017). Study
procedures were conducted according to the Good Clinical
Practice guidelines, the Declaration of Helsinki, and the US
21 CFR Part 50-Protection of Human Subjects, and Part 56-
Institutional Review Boards (IRB). Written informed consent

1http://www.adni-info.org/
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was obtained from all participants. All study procedures were
approved by the local and participating IRBs of the ADNI study.

Biomarker Quantification and Analysis
An extensive panel of 203 laboratory tests was collected for all
participants at the baseline visit. The panel consisted of plasma
protein markers from the Luminex XMAP platform by Rules-
Based Medicine (Myriad RBM, Austin, TX, United States).
Proteins included markers of liver function, cytokines,
lipoproteins, oxidative stress, growth factors, hormone levels,
glucose metabolism, and amyloid and tau levels, among others.
Full protocol details are available through the ADNI website2.
We examined CSF levels from lumbar punctures of tau,
phosphorylated tau 1–81, and amyloid-β-1-42 levels collected at
the baseline visit. Quality control procedures have been described
by the ADNI Biomarker Core (Shaw et al., 2009; Soares et al.,
2012). Genomic analyses were completed according to the ADNI
protocol. Our genetic marker of interest was APOE ε4 carrier
status, coded as the number of ε4 alleles. For clarity below, we
categorize measures into: (1) Demographics (height, weight,
sex, age), (2) Hallmarks of AD pathology (CSF measures and
APOE ε4 count), and (3) Plasma proteomics (all other measures,
including a urine test of kidney functions).

Scan Acquisition and Image Processing
All participants underwent whole-brain magnetic resonance
imaging (MRI) on 1.5 T GE, Siemens, or Philips scanners at
one of 59 sites across North America. A standardized MRI
protocol was used across scanner platforms to ensure cross-site
compatibility (Jack et al., 2008). A typical 1.5 T MR protocol
involved a 3D sagittal MP-RAGE scan with repetition time
(TR): 2400 ms, minimum full TE, inversion time (TI): 1000 ms,
flip angle: 8◦, 24 cm field of view, and a 192 × 192 × 166
acquisition matrix in the x-, y-, and z- dimensions, yielding a
voxel size of 1.25 mm × 1.25 mm × 1.2 mm that was later
reconstructed to 1-mm isotropic voxels. We used standard image
preprocessing to correct for motion, intensity normalization,
affine registration of volumes to MNI space, skull stripping, non-
linear registration using the Gaussian Classifier Atlas (GCA), and
brain parcellation.

Regions of interest (ROIs) included 68 cortical and 8
subcortical structures extracted from baseline images using
FreeSurfer version 5.3 and the Desikan-Killiany atlas3 (Fischl
et al., 2002). Cortical metrics included thickness and surface
area, whereas subcortical structures were measured as regional
volumes. All brain measures were analyzed separately between
hemispheres. To address potential confounds, we regressed out
the effects of age, sex, and education on surface area, thickness,
and volume measures, as well as intra-cranial volume (ICV) on
surface area and volume measures. All subsequent analyses use
these residualized measures.

2https://adni.loni.usc.edu/wp-content/uploads/2010/11/BC_Plasma_Proteomics_
Data_Primer.pdf
3https://surfer.nmr.mgh.harvard.edu/

Tensor-Based Morphometry Measures of
Atrophy
MRI-derived measures of structural brain atrophy were
computed by comparing each subject’s 1-year follow-up MRI
scan to their baseline scan and measuring temporal lobe tissue
loss and ventricular expansion using tensor-based morphometry
(TBM). Registration of preprocessed follow-up scans to baseline
scans was completed with a non-linear inverse-consistent elastic
intensity-based registration algorithm, optimizing a joint cost-
function from the mutual information and elastic deformation of
the images (Hua et al., 2013). Then, representations of the degree
of local contraction or expansion of the 3D registration from the
1-year scan to baseline, also known as the Jacobian determinant
map, was computed at the voxel level. Values in these maps
represent relative tissue volume differences expressed as positive
or negative percentages of their baseline. We used the Jacobian
determinant to assess morphometry in a bilateral temporal lobe
region of interest as in Hua et al. (2013). As above, we extracted
ventricular surfaces for each subject and registered the baseline
and follow-up timepoints to determine ventricular expansion
or contraction between scans (Hua et al., 2011; Gutman et al.,
2013).

Correlation Explanation
Correlation Explanation is an information-theoretic
optimization method that constructs a low-dimensional
hierarchy of latent factors that progressively explain non-linear
dependencies in the observations X1. . .XN as measured by
maximizing the multivariate mutual information - also called
total correlation (TC)4 (Ver Steeg and Galstyan, 2014, 2015).

TC(X1, ..., XN) ≡

n∑
i=1

H(Xi)−H(X1, ..., XN)

The special case of two variables is more commonly known as
mutual information (I) and is defined as the difference between
the sum of the individual entropies (H) and the entropy of the
variables considered together.

I(X1;X2) ≡ H(X1)+H(X2)−H(X1, X1)

The dependence in the data as measured by TC(X) can be
reduced or “explained” by conditioning on constructed factors
Y1. . .YM. The conditional TC goes to zero if all variables are
independent after conditioning on Y. “Explanation” refers to
this latter phenomenon, with the constructed factors containing
all the information about causes of dependence in the data.
In contrast to other cluster-based learning approaches, CorEx
naturally decomposes information in a hierarchical way: lower
layers capture more local relationships, and higher layers reflect
more global interactions a framework in line with the ideas
of network biology. An example construction of the CorEx
framework is presented in Supplementary Figure 1. Additional
details of the optimization parameters and CorEx framework are

4https://github.com/gregversteeg/Bio_CorEx
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in Ver Steeg and Galstyan (2014, 2015) and Pepke and Ver Steeg
(2017).

We used CorEx to discover shared information among
plasma and demographic measures, and the hallmarks of AD
(APOE4 and CSF Aβ1-42 and tau levels) across all participants.
We separately applied CorEx to discover shared information
within residualized brain measures. A total of 25 latent factors
were chosen for each CorEx model. This number of factors
represents the simplest explanation of data with the maximum
multivariate mutual information across factors and optimal total
correlation for the corresponding measures. For clarity, we refer
to these as “CorEx plasma” and “CorEx brain.” Latent factor
constructions resulted in generally non-overlapping groups of
variables that were maximally informative and robust to noise.
Values obtained for each factor represent a decomposition
of common information and correspond to the maximum
likelihood labels for that specific latent factor and particular
participant (Ver Steeg, 2017).

Cognitive Assessment
Cognition was measured using three commonly used
neuropsychological tests that are sensitive to AD – the Mini-
Mental State Examination (MMSE; Folstein et al., 1975), the
Alzheimer’s Disease Assessment Scale-cognitive subscale 13 item
(ADAS-Cog; Mohs, 1996), and the Clinical Dementia Rating
scale Sum of Boxes (CDR-SOB) (Hughes et al., 1982). Total

scores from each test were aggregated into a composite z-score
for each participant at baseline and 1-year follow-up visits. Total
scores on the CDR-SOB and ADAS-Cog were multipled by
−1 prior to z transformation so that lower scores represented
poorer performance across all cognitive tests. We chose this
approach over individual domain scores to capture an index
of cognitive function that would be less prone to bias related
to measurement errors (Ayutyanont et al., 2014; Langbaum
et al., 2015). Similar approaches have been used in prior work
on neurodegenerative diseases (Cutter et al., 1999; Crane et al.,
2012; Donohue et al., 2014). A longitudinal composite score was
created by subtracting the baseline composite from the 1-year
follow-up composite score. This longitudinal composite score
was the primary outcome measure for all cognitive analyses.

Diagnostic Groupings
We identified two stable groups of cognitively normal (CN-s)
and MCI (MCI-s) participants that had at least 1-year follow-
up and a stable diagnosis across all study visits. In ADNI-1,
individuals were followed for repeat assessments for an average
of 1–5 years. We also identified two progressive groups of CN
(CN-p) and MCI (MCI-p) individuals at baseline who completed
at least one subsequent visit and progressed to AD during follow-
up. Individuals in the MCI group who reverted to CN status
were excluded from analyses comparing stable and progressing
individuals. Overall, we identified 22 CN-p and 211 MCI-p

FIGURE 1 | Features and analytic methods included in the current analyses. After constructing latent factors using CorEx within plasma and brain measures
separately, we performed feature selection for each feature type to determine the top 10 features for each outcome measure and each feature type. We combined
these top features across feature types within each corresponding outcome and either (1) performed disease prediction with gradient boosting classification or (2)
used bootstrap stepwise regression to determine the importance of the top features for predicting the continuous outcome measures (i.e., cognition and TBM
atrophy measures).

Frontiers in Aging Neuroscience | www.frontiersin.org 4 November 2018 | Volume 10 | Article 390

https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-10-00390 November 29, 2018 Time: 17:51 # 5

Riedel et al. Peripheral Signatures of Health and Risk for Alzheimer’s

TABLE 1 | Demographics.

Cognitively normal Mild cognitive impairment Alzheimer’s disease

Females Males Females Males Females Males

N 112 119 140 258 98 102

Age (SD) 76.09 (4.72) 75.71 (5.27) 73.68 (7.49) 75.38 (7.29) 75.02 (7.95) 76.05 (7.47)

Education (SD) 15.28 (2.8) 16.79 (2.69) 15.22 (2.99) 15.93 (3.0) 13.82 (2.96) 15.41 (3.33)

APOE4 Count (0/1/2) 83/27/2 87/29/3 62/58/20 123/108/27 37/44/17 30/52/20

MMSE (SD) 29.22 (0.94) 29.01 (1.05) 26.85 (1.78) 27.10 (1.77) 23.24 (2.01) 23.32 (2.09)

Logical Memory (SD) 14.28 (3.33) 13.33 (3.58) 7.05 (3.28) 7.17 (3.09) 4.13 (2.85) 3.81 (2.83)

Forgetting Rate (SD) 32.48 (7.77) 28.40 (8.25) 23.09 (8.74) 19.92 (7.32) 16.98 (7.64) 14.95 (6.83)

Delayed Recall 13.40 (2.06) 12.41 (2.81) 9.71 (4.01) 9.66 (3.42) 7.08 (3.91) 7.26 (4.05)

Learning Over Trials 1.81 (0.49) 2.12 (2.89) 1.51 (0.46) 1.58 (0.53) 1.40 (0.59) 1.46 (0.59)

Trails B 44.72 (1.95) 44.27 (1.56) 77.18 (1.91) 71.06 (1.79) 86.37 (1.85) 88.39 (1.89)

CDR-SOB 0.05 (0.15) 0.0 (0.05) 1.61 (0.80) 1.59 (0.93) 4.57 (1.65) 4.19 (1.58)

ADAS-13 8.63 (4.29) 10.28 (3.99) 18.91 (6.83) 18.45 (5.93) 28.85 (7.52) 29.22 (7.64)

Basic demographic information for the ADNI participants included here, grouped by baseline diagnosis and sex.

patients, compared to 165 CN-s and 147 MCI-s patients after
a mean follow-up of 52.5 months. This difference represents
a 42.8% prevalence rate of AD, corresponding to an annual
conversion rate of 9.8%. Finally, we conducted a broad case-
control analysis that compared those who received a diagnosis of
AD at baseline or follow-up, to those who did not receive an AD
diagnosis at any time point. Average follow-up was 49.5 months
for CN and MCI groups.

Approach
To better reflect the known temporal evolution of AD biomarkers
in relation to each other and their relation to AD progression,
our statistical analyses were designed to address three different
classification tasks: (1) CN-s vs. CN-p/MCI-p, (2) MCI-s vs. CN-
p/MCI-p, (3) non-AD vs. AD. For each group, we performed
feature selection with a subset of participants using CorEx factors
and the original features to determine the top 10 features in
each class of variables (CorEx plasma, CorEx brain, plasma, brain
measures). We then used those features with gradient boosting
for diagnostic prediction, or bootstrap stepwise regression for
cognitive and TBM outcomes. We outline the analytic steps in
Figure 1. To determine the significance of model improvement
using differing combinations of data types, we used the McNemar
test to compare the top two models for predictions within each
diagnostic subgroup.

Feature Importance and Selection
We employed feature selection prior to our disease predictions
to reduce training time and data dimensionality (Bell and Wang,
2000; Guyon and Elisseeff, 2003). For each subgroup analysis
(CN-s vs. progressors (CN-p and MCI-p); MCI-s vs. progressors
(CN-p and MCI-p); non-AD vs. AD), we applied a random split
of the data according to diagnosis, using 70% for training, and the
remaining 30% for hold-out testing. We then used an ensemble
of machine learning methods to determine feature importance
within each subgroup analysis (Seijo-Pardo et al., 2017). The
ensemble approach used the following methods for binary
predictions: General Linear Model (GLM), Gradient Boosting

Machines (GBM), Treebag, Linear Discriminant Analysis (LDA),
and K-Nearest Neighbors (KNN), while ensemble regression
tasks included GLM, GBM, KNN, ridge regression, and the least
absolute shrinkage and selection operator (LASSO) method. For
each model, a weighted-average mean squared error was used
across methods to estimate prediction error on unseen test data,
and its reported association using results across 10-times repeated
10-fold cross-validation (Pacławski et al., 2015). For all tasks,
variable importance rankings for feature selection were carried
out for each data type separately (CorEx plasma, CorEx brain,
plasma, brain). Within each subgroup analysis, we combined the
top 10 measures for each data type and performed the same
feature importance scheme to determine the relative importance
of these selected features across the joint set of all top measures.
All statistical analyses were performed using R, version 3.4.4 (R
Core Team, 2013).

Disease Prediction
Using the top features across all data types from our feature
selection step, we performed disease conversion prediction using
gradient boosting machine (GBM) learning (Freund et al., 1997;
Friedman, 2001). This technique is based on the principle
that combined learners (decision trees) can outperform single
learners, and thus is aligned with the combinatoric network
approach of CorEx. We used GBM for predicting diagnosis as
it can be more robust to collinearity issues than other common
machine learning models, and therefore suited for prediction
with both CorEx factors and the corresponding original features.
In GBM, trees are grown sequentially to reduce the errors
of the previous trees, but the residuals are resampled, and a
fraction of the data is available at each iteration to reduce
overfitting. Learning is regularized through shrinkage on the
learning rate. For our prediction tasks, data was randomly
stratified by diagnosis with 70% used for training and 30%
used for hold-out testing. Parameters were optimized using a
grid-search under a 10-times repeated 10-fold cross-validation
framework on the training data only. Results on hold-out test
data were used to determine the average accuracies across the
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FIGURE 2 | Hierarchical representation of biomarkers constructed by CorEx. Using CorEx across a panel of >200 markers of plasma, demographic, and CSF
measures, we constructed a hierarchical network based on the joint information shared between measures. We identified 25 latent factors that represent the optimal
total correlation across measures and factors. Latent factors are represented by circular nodes and numbered accordingly. Colors indicate variable type, as defined
in the bottom legend, and gray shaded edges reflect the amount of mutual information shared between connecting nodes, where darker edges indicate more shared
information. The size of each node is a function of the amount of mutual information shared among the connected variables.
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FIGURE 3 | Hierarchical representation of brain measures constructed by CorEx. Using CorEx across a panel of >200 residualized gray matter measures we
constructed a hierarchical network based on the joint information shared between measures. We identified a set of 25 latent factors that represent optimal total
correlation across measures and factors. Latent factors are represented by circular nodes and numbered accordingly. The colors indicate measurement type, defined
in the legend on the bottom right, with thickness measures in blue, cortical volumes in green, and surface area in purple. Gray shaded edges reflect the amount of
mutual information shared between connecting nodes; darker edges indicate more shared information. Only the top measurements are shown for each node.

repeated cross-validations. Given the disproportionate number of
individuals between diagnostic groups, we applied model weights
to balance the groups for disease predictions. Area under the
receiver operating curve (AUC) was calculated to determine the
models’ overall discriminative power on the test data. Within
each diagnostic group prediction, we iteratively applied these
methods to identify which combinations of feature types yielded

the best predictive AUC, and to understand how CorEx features
contributed to the overall results.

To estimate the stability and relative contributions of the
individual variables and CorEx latent factors in predicting
continuous outcome measures, we performed feature selection
and ran 1,000 bootstrap stepwise regressions for temporal lobe
TBM, ventricle TBM, and the longitudinal cognitive composite
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FIGURE 4 | Bootstrap regression results for a longitudinal cognitive composite score. As outlined in the Methods, we created a longitudinal cognitive composite
score broadly encompassing executive function, orientation, attention, verbal, short-term, and working memory. Scores are based on change from baseline to 1-year
follow-up and were significantly associated with progression to AD within the baseline CN and MCI groups (p < 0.001) and of AD longitudinally across all groups
(p < 0.001). To understand the most predictive features of this score, we performed feature selection across feature types and then ran bootstrap stepwise
regressions using 1,000 permutations. The top features are shown on the left; arrows underneath the histograms indicate the direction of effect for each measure.
A prefix of “Raw” and “Brain” are used to denote the original measures, while “CorEx” indicates the transformed factors identified using CorEx. Corresponding
regions included in the CorEx factors are outlined in Figures 2, 3.

score. For cognitive predictions we included all data types as
input features (CorEx plasma, CorEx brain, plasma, brain).
To identify peripheral markers specific to brain atrophy, input
features for TBM predictions were limited to CorEx plasma and
original plasma measures.

RESULTS

Demographics for the 829 ADNI phase-1 participants in the
current study are categorized by baseline diagnosis and sex in
Table 1.

CorEx Networks
We used CorEx to learn low-dimensional representations and
reconstruct meaningful biological and hierarchical structures
using data across plasma, CSF, genetic, and demographic
measures, and separately for cortical brain measures. We then
built more robust predictors that we display in the form of
a tree-based network in Figures 2, 3. Measures are labeled

with text and color-coded based on the measurement type,
indicated in the key. Latent factors are illustrated as ‘nodes’ in
the graph (and factors at the first level of the hierarchy (k = 1
as in Supplementary Figure 1) are numbered 0, . . ., 24). Links
reflect learned functional relationships between variables and the
gray shade of an edge reflects the shared mutual information
(darker indicates more shared mutual information). The size
of a latent factor node is based on the amount of multivariate
mutual information among its children nodes. Hierarchical
groups constructed by CorEx were biologically coherent, such as
a cluster of apolipoproteins (factor 15) and the hallmarks of AD
(factor 14).

Predicting Cognitive Decline
We first validated our cognitive composite score using logistic
regression, adjusting for age, sex, education, and APOE4
status and found the composite score significantly predicted
progression to AD with both broad and specific group
classification (non-AD vs. AD, p < 0.001; baseline CN and
MCI groups, p < 0.001). Bootstrapped stepwise regressions
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FIGURE 5 | Bootstrap regression results for atrophy measures using tensor-based morphometry in the temporal lobes (top) and ventricles (bottom). As outlined in
the Methods, we computed tensor-based morphometry (TBM) measures of atrophy between baseline scanning and 1-year follow-up. To understand the most
predictive features of these atrophy measures, we performed feature selection using CorEx plasma and the original plasma measures, and then ran bootstrap
stepwise regressions using 1,000 permutations for each TBM measure. The top features are shown on the left; arrows indicate the direction of effect for each
measure. A prefix of “Raw” and “Brain” are used to denote the original measures, while “CorEx” indicates the transformed factors identified using CorEx.
Corresponding regions included in the CorEx factors are outlined in Figures 2, 3.
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FIGURE 6 | Feature selection results for longitudinal prediction of AD. Using our ensemble feature selection technique outlined in the Methods section, we identified
the top 10 features within each feature type (CorEx plasma, CorEx brain, plasma, brain) across each of our three diagnostic groups used for prediction: (A) CN-s vs.
CN-p/MCI-p, (B) MCI-s vs. CN-p/MCI-p, (C) non-AD vs. AD. We then combined the top 10 features across feature types and within diagnostic groups to identify the
relative importance of these 40 features for each diagnostic group. A prefix of “Raw” and “Brain” are used to denote the original measures, while “CorEx” indicates
the transformed factors identified using CorEx. Latent factors are defined in Figure 2 for CorEx plasma measures, and Figure 3 for CorEx brain measures.

showed that the CorEx latent factor representing AD hallmarks
(factor 14) was the strongest predictor of our longitudinal
cognitive composite, with a negative direction of effect. Other
important features included CD5 Molecule Like (CD5L), and the
CorEx latent brain factor (factor 6) that includes thickness and
volume measures of the limbic lobe (amygdala, hippocampus,
and entorhinal cortex). Several CorEx latent plasma factors (e.g.,
factor 10, 12, 14, 16) showed greater predictability than the
individual measures, as indicated by the number of times the
features were selected across bootstrap samples (Figure 4).

Predicting Brain Atrophy
Most of the CorEx factors that were maintained following
feature selection were the same for the TBM measures of

brain change over time (Figure 5). Latent factors 4, 7, 12,
and 14 were the strongest predictors for both temporal lobe
and ventricle TBM measures. However, CorEx latent factors
5 and 17 were maintained only for the ventricles, and CorEx
latent factors 1, 16, and 24, were maintained only for the
temporal lobe. All measures included in these factors included
proteins involved in the immune response, such as cell
surface markers CD40, complement C3, monocyte chemotactic
protein 3, and macrophage colony stimulating factor. There
was overlap among some but not all of the top CorEx
latent factors and the original features they represent. The
CorEx latent factor including the classic AD hallmarks (factor
14) was the single most predictive measure for both TBM
measures. Latent factor 15 – a cluster of apolipoproteins and
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cholesterol measures - was also highly predictive for temporal
lobe TBM, even though the individual measures were not.
Chromogranin A was a strong individual predictor of temporal
lobe TBM, but a weaker predictor for the ventricles. Finally,
of the features selected with the bootstrap stepwise regression
at least 50% of the time, CorEx plasma factors comprised
60 and 80% of the predictors for ventricle and temporal
lobe TBM, respectively; corresponding to greater predictive

performance overall for the CorEx factors than for the original
measures.

Predicting Longitudinal Diagnosis
Feature selection results showing the relative importance of the
top CorEx factors and the individual features for predicting
longitudinal progression are presented in Figure 6. Using
our ensemble feature selection technique, the top features

FIGURE 7 | Receiver operating characteristic plots for the average testing sets across diagnostic groups and feature types. We show the area under the ROC curve
(AUC) averaged across testing repeats for (A) CN-s vs. CN-p/MCI-p, (B) MCI-s vs. CN-p/MCI-p, (C) non-AD vs. AD. We denote the progressing groups by “CN-p”
or “MCI-p”. We included individual groups of measures (plasma, hallmarks of AD, demographics, and gray matter measures) and CorEx features in the prediction
and explored different combinations of these feature groups to understand the benefit of including CorEx factors. Across diagnostic groups we largely see improved
AUC with inclusion of CorEx factors. CorEx factors are outlined in Figures 2, 3.
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performed well across diagnostic subgroup analyses, with an
accuracy ranging from 71.9–88.2% (Table 2). Receiver operating
characteristic (ROC) curves (Figure 7) show how the testing
performance was affected by different combinations of feature
types.

Results were generally improved by combining all data
types, particularly for AUC metrics. We were able to predict
stable cognitively normal (CN) individuals from CN and MCI
individuals who progress to AD (CN-s vs. CN-p/MCI-p) with
up to 88.4% test accuracy and 99% AUC. McNemar’s test
identified significant differences in performance using individual
plasma measures compared to latent factors of CorEx plasma
measures (p < 4.3 × 10−14), while the combined feature-set was
significantly different compared to using only plasma measures
(p < 1.5 × 10−10), indicating optimal performance for the
combined features overall. Here, CorEx plasma measures were
the top individual feature type for discriminating AD from CN-
p/MCI-p, with significant differences in performance compared
to the original plasma measures (p < 0.0001) and test accuracy of
71.9% (96% AUC). Significant differences in model performance
using the combined feature types was observed compared to
CorEx plasma features alone (p < 6.3 × 10−6), indicating
improved prediction with the combined features overall. Finally,
significant differences were observed using individual structural
brain measures compared to the CorEx brain measures for
discriminating non-AD and AD groups (p < 1.8 × 10−9), while
the combined set of features performed the best overall compared
to using structural brain measures alone (p < 5.6× 10−15).

The CorEx plasma factor of AD hallmarks (factor 14)
was consistently more predictive across all analyses than any
individual classical AD hallmark. In the CN-s vs. CN-p/MCI-p
analysis, the relative importance of CorEx plasma factor 14 was
nearly twice that of Aβ1-42 and CSF tau CSF, and this difference
was larger for the MCI-s vs. CN-p/MCI-p and the AD vs. non-AD
analyses. However, this factor was not the most important factor
overall in the CN-s vs. CN-p/MCI-p analysis. Interestingly, CSF
total tau was more important than phosphorylated tau in each of
these analyses. Not all of the important individual features were
contained within the most important CorEx plasma factors, such
as apolipoprotein AII for the CN-s vs. CN-p/MCI-p analyses.
Likewise, some of the top individual features were not captured
within CorEx factors overall, such as CD5L, cortisol, and leptin,
supporting the importance of combining original analytes and
CorEx factors due to their somewhat independent contributions
to predicting AD.

DISCUSSION

Crosstalk between the brain and periphery is crucial for shaping
neuronal survival and function, yet the etiological relevance of bi-
directional interactions between neuroendocrine, neuroimmune,
and bioenergetic systems, and amyloid and tau pathways for AD
progression is unknown (Engelhart et al., 2004; Blennow, 2010;
Chakrabarty et al., 2015; Zheng et al., 2015; Alam et al., 2016;
Gonzalez et al., 2017). Here we used a novel method, CorEx,
to further understand this crosstalk and discover biologically

relevant relationships among the hallmarks of AD, plasma
markers, demographics, and MRI-derived brain measures. The
latent factor representing the key hallmarks of AD such as
CSF Aβ-1-42 and tau measures and APOE (factor 14) was
consistently identified as a top predictor across analyses and
diagnostic groups. Many features that formed a CorEx latent
factor are consistent with mechanisms known to be involved
in the etiology and pathological expression of AD. Specifically,
CorEx discovered plasma factors of apolipoproteins involved
in established biological pathways (factor 15), and two latent
factors of white blood cell count measures that were connected
within the CorEx network (factors 12 and 18). Importantly, these
three factors were among the strongest predictors of disease
progression and brain atrophy indexed through TBM.

Most CorEx latent factors of the brain depicted regions
with functions that are known to overlap – such as bilateral
measures for a particular region (e.g., factors 22 and 24; bilateral
cerebellar cortex and pallidum, respectively), or distributed
bilateral measures across the limbic lobe, encompassing both
thickness and volumetric measurements (e.g., factor 6; amygdala,
entorhinal cortex, hippocampus). Most other factors contained
only one measurement type (surface area, volume, or thickness),
or a combination of surface area and volume. Thickness measures
were less likely to be combined with surface area or volume
measures within a factor, in line with prior studies showing that
cortical thickness exhibits roughly linear decreases with age in
most brain regions, whereas cortical volume and surface area
show overlapping curvilinear trajectories (Sanabria-Diaz et al.,
2010; Rimol et al., 2012; Storsve et al., 2014).

Although the brain measures grouped within a factor were
generally as expected from systems biology, certain plasma
measures were not. For instance, we would not have expected
that apolipoprotein H or clusterin would be grouped in a
separate factor from other apolipoproteins, given their shared
role in lipid transport, or that the ratio of apolipoprotein B
to apolipoprotein A1 would be separate either, and that this
ratio would be within a factor consisting primarily of immune
markers such as monocytes and immunoglobulin E. However,
in line with this, prior studies have shown that regulatory
T cells promote the clearance of apolipoprotein B-containing
lipoproteins via increasing the expression of sortilin-1 and lipid-
modifying enzymes by the liver, pointing to the interplay between
the immune system, lipid metabolism, and the liver, which
may synergistically mediate risk for AD (Getz and Reardon,
2014). Here we found apolipoprotein B to be predictive of
expansion of the ventricles, while Factor VII in the same CorEx
factor was predictive of the longitudinal cognitive composite
measure.

As shown in Figure 6, the most important features
in predicting progression to AD varied depending on the
comparison group (i.e., stable cognitively normal, stable MCI,
or more generally individuals who do not progress to AD).
Volume of the left hippocampus – and the latent factor
containing medial temporal and amygdala structures (factor
6) were highly important for predicting clinical progression
from cognitively normal status (CN-s vs. CN-p/MCI-p), and
those with MCI (MCI-s vs. CN-p/MCI-p). Conversely, latent
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factors of plasma markers were generally the strongest predictors
of progression to AD in CN/MCI participants (CN-s vs.
CN-p/MCI-p), suggesting that they may be sensitive markers
of early disease progression. This supports the utility of
plasma measures as an early biomarker tool, and corroborates
the crosstalk between the peripheral and central nervous
system in mediating risk for disease. Although previously
associated with AD, certain plasma markers were not retained
as latent factors following feature selection for any of our
analyses (e.g., latent plasma factor 6 and 9), which includes
measures of bilirubin and blood pressure related measures
respectively, and factor 11 which includes very-low-density
lipoproteins, triglycerides, and adiponectin. These findings
may suggest that these particular markers are only nominally
associated with AD, and that compared to other measures
included here, they may not provide additional predictive
power.

The most important CorEx factor predicting our cognitive
composite were volume and thickness measures of the medial
temporal lobe (factor 6), which are among the earliest regions to
exhibit neuronal degeneration, neurofibrillary tangle deposition,
and accumulation of amyloid in AD (Braak and Braak, 1991;
Scheff and Price, 2003). The most important plasma measures
for our cognitive composite were the latent factor representing
the hallmarks of AD, and CD5L, a soluble immune effector
expressed primarily by mature macrophages that is involved
in fatty acid metabolism and lipid biosynthesis (Sanjurjo
et al., 2015). Importantly, CD5L is involved in regulating
the inflammatory response to pathogens and in developing
and maintening the lymphoid compartment and may have
additional relevance to AD through its regulatory roles of
apoptosis and autophagy (Miyazaki et al., 1999; Nixon and Yang,
2011). Additionally, although identified in a small sample of
78 subjects, plasma levels of this protein have been associated
with neocortical amyloid burden (Ashton et al., 2015). Given
the established association between Th17 cells and CD5L, and
the interaction between Th17 cells and neurodegeneration,
these results suggest follow-up studies elucidating the specific
role for CD5L in AD is warranted (Zhang et al., 2013;
Wang et al., 2015).

CorEx discovered latent factors that showed greater predictive
accuracy for AD progression than the individual hallmarks of
AD, but no individual plasma marker showed greater importance
than the latent factor representing the established AD hallmarks.
This points to the importance of considering plasma markers
jointly. Other factors were consistently important for predicting
clinical progression across all of our analyses, such as chemokines
and white blood cell markers of the innate and adaptive
immune system (factors 12 and 13). An impaired immune
response to toxic amyloidogenic substances may make it easier
for amyloid to accumulate in the brain (Richartz-Salzburger
et al., 2007). Likewise, amyloid precursor protein (APP) mRNA
expression is increased in peripheral lymphocytes in AD, and
alterations in APP expression leading to amyloid deposition
may also cause changes in peripheral immune cells, creating
a feedback loop that ultimately may lead to cognitive decline
and neurodegeneration (Jiang et al., 2003). A subsequent decline

in lymphocyte levels and lymphocyte percentages may indicate
immune dysregulation or immunosenescence in AD. Similarly,
neutrophils defend tissue against invading pathogens during
sterile inflammation and increases in neutrophil levels are also
associated with blood brain barrier disruptions and chronic
inflammation in AD (Phillipson and Kubes, 2011; Kolaczkowska
and Kubes, 2013; Zenaro et al., 2015). Moreover, a set of
dietary, immune, and inflammatory markers (factors 16 and
24) were more important predictors of early diagnosis than
the hallmarks of AD (CN-s vs. CN-p/MCI-p). These factors
included variables known to be modifiable by dietary and lifestyle
changes, such as vitamin B12 levels and C-reactive protein
(CRP). Factor 16 also included amyloid P component (AP),
an important component of all amyloid deposits including
those typically found in the brains of patients with AD
(Yasojima et al., 2000). These relationships are also supported
by prior literature. For instance, one Finnish-community
dwelling longitudinal study found that serum levels of B12
were protective against AD in cognitively normal individuals,
and that there were potential interactions with homocysteine
serum levels, another modifiable marker (Hooshmand et al.,
2010). Likewise, CRP is predictive of later cognitive decline
in mid-life (Laurin et al., 2009). Moreover, CRP and AP are
both acute phase proteins of the innate immune response
and colocalize in neurons in individuals with AD (Steel and
Whitehead, 1994). As part of the innate immune response,
CRP and AP activate the classical complement pathway in an
antibody independent fashion, and indeed factor 16 includes
complement C3, further supporting the network approach
achieved with CorEx. Activation of complement is important
for opsonizing targets for phagocytosis and the subsequent
destruction of pathogens, such as amyloid beta plaques (Hicks
et al., 1992; Wolbink et al., 1996). The autodestructive association
of CRP and AP with activated complement fragments attached
to host tissue has been seen in degenerative conditions, such as
atherosclerosis and AD (Lagrand et al., 1997; Torzewski et al.,
1998; McGeer et al., 2001).

A few aspects of the data on individual predictors deserve
comment. Firstly, our data are based on a variable length of
follow-up (roughly 1–5 years), which optimizes the available
study information. A homogeneous follow-up interval would
not have been ideal as it would have reduced the number of
available participants progressing to AD and predictions based
on a smaller sample size may generalize poorly. Secondly, the
cross-sectional design of the plasma markers is an important
limitation and we could not follow up on the potential cyclical
or prandial changes of some of these measures, so we are
unable to make conclusions about the specific trajectory of
these measures. It will also be important to replicate these
findings in future cohorts. We did not specifically evaluate
other diseases of old age which may be associated with altered
plasma markers. However, all individuals were neurologically
normal aside from Alzheimer’s disease, and conditions such as
cardiovascular disease and diabetes are typically defined using
measures included in our analysis. Additionally, sex was used as
a demographic variable included in the plasma measures when
constructing the CorEx plasma latent factors. As sex mediates
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multiple pathways involved in AD risk, such as APOE, some
of these factors may have been grouped differently if we had
constructed the factors separately for women and men (Riedel
et al., 2016; Fisher et al., 2018). Indeed, the CorEx factor 0 –
which includes sex – was among the most important features
for predicting longitudinal diagnosis of AD (non-AD vs. AD),
though body weight and hormone levels also contained in this
factor may be driving this association. Finally, although there is a
disparate number of women and men with MCI within ADNI, we
did not find CorEx factor 0 to be predictive of progression within
this group. Future work will seek to address potential confounds
and determine sex-specific risk profiles.

SUMMARY

We tested CorEx, a novel model-free data-driven approach to
combine relevant groups of >400 potential biomarkers from
brain imaging, genetics, plasma, and demographic information.
We discovered a small set of tractable relationships in 829
participants across the trajectory from normal cognition to
MCI and AD. While the relationships between some of
the measures have been previously documented and several
measures were known to be associated with AD, the clustering
achieved with CorEx provides more direct evidence for a
network of related measures and how these measures jointly
predict disease progression, brain atrophy, and cognitive
decline. These results also demonstrate the power of CorEx
to identify clusters of variables that involve synergistic and
coherent sets of the original features, revealing stronger
combinations of variables that may be only weakly predictive
when examined as individual predictors. Our results point to
the consistent importance of amyloid and tau across the disease
trajectory, but also to the timepoint specific contributions of
the immune and inflammatory systems, and to the role of
cardiovascular health, hormone levels and lipid and glucose
metabolism.
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