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There is an increasing interest in identifying non-invasive biomarkers of disease severity
and prognosis in idiopathic Parkinson’s disease (PD). Dopamine-transporter SPECT
(DAT-SPECT), diffusion tensor imaging (DTI), and structural magnetic resonance imaging
(sMRI) provide unique information about the brain’s neurotransmitter and microstructural
properties. In this study, we evaluate the relative and combined capability of these
imaging modalities to predict symptom severity and clinical progression in de novo PD
patients. To this end, we used MRI, SPECT, and clinical data of de novo drug-naïve
PD patients (n = 205, mean age 61 ± 10) and age-, sex-matched healthy controls
(n = 105, mean age 58 ± 12) acquired at baseline. Moreover, we employed clinical data
acquired at 1 year follow-up for PD patients with or without L-Dopa treatment in order
to predict the progression symptoms severity. Voxel-based group comparisons and
covariance analyses were applied to characterize baseline disease-related alterations for
DAT-SPECT, DTI, and sMRI. Cortical and subcortical alterations in de novo PD patients
were found in all evaluated imaging modalities, in line with previously reported midbrain-
striato-cortical network alterations. The combination of these imaging alterations was
reliably linked to clinical severity and disease progression at 1 year follow-up in this
patient population, providing evidence for the potential use of these modalities as
imaging biomarkers for disease severity and prognosis that can be integrated into
clinical trials.

Keywords: Parkinson’s disease, voxel-based morphometry, voxel-based quantification, covariance analysis,
symptoms severity
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INTRODUCTION

Parkinson’s disease (PD) is primarily characterized by progressive
accumulation of aggregated α-synuclein in the brainstem, leading
to a degeneration of dopaminergic neurons in substantia nigra
(Lang and Lozano, 1998; Xu et al., 2002; Braak et al., 2003;
Kraemmer et al., 2014). This presumably toxic accumulation
induces a progressive loss of dopaminergic input to the striatum
and further degeneration of striato-cortical pathways, resulting
in the occurrence of different motor and non-motor symptoms
(Houk and Wise, 1995; Lang and Lozano, 1998; Kraemmer et al.,
2014). Current PD drugs focus on the symptoms treatment,
however, the main goal of pharmaceutical research is to develop
drugs able to slow or even stop the clinical progression.

To improve the monitoring of disease progression and
the evaluation of drug effectiveness, it is essential to identify
biomarkers able to detect the neurodegenerative alterations at
all circuitry levels. Such biomarkers should demonstrate a strong
and reproducible correlation with pathological changes and
symptoms severity in multicenter studies (McGhee et al., 2013).

Several imaging modalities have been suggested for that
purpose in the literature. Dopamine transporter single
photon emission tomography (DAT-SPECT) provides a semi-
quantitative assessment of striatal dopaminergic deafferentation.
It is a well-established diagnostic biomarker of PD, owing to the
strong correlation between the amount of dopamine transporters
in the striatum and the number of dopaminergic neurons in
substantia nigra (Kraemmer et al., 2014). However, DAT-SPECT
does not provide information on non-dopaminergic disease
aspects, and its link to disease progression in de novo PD patients
remains unclear (Kägi et al., 2010). Structural MRI (sMRI) and
diffusion tensor imaging (DTI) are powerful tools to assess whole
brain atrophy patterns and microstructural tissue integrity (Le
Bihan et al., 2001; Ashburner et al., 2003; Burton et al., 2004).
Several sMRI studies reported volumetric changes in PD using
voxel-based morphometry (VBM) analysis (Burton et al., 2004;
Nagano-Saito et al., 2005; Wattendorf et al., 2009). However, only
few studies reported the association between volumetric changes
or cortical thinning and PD symptoms severity, measured by
neuropsychological scores for testing attention and memory, and
olfactory alterations (Junqué et al., 2005; Camicioli et al., 2011;
Melzer et al., 2012; Segura et al., 2014; Campabadal et al., 2017).
Also microstructural brain changes assessed through DTI using
mean diffusivity (MD) and fractional anisotropy (FA) maps were
found in PD throughout different brain regions (Gattellaro et al.,
2009; Peran et al., 2010; Wang et al., 2011; Zhang et al., 2011,
2015; Du et al., 2012; Zhan et al., 2012; Kim et al., 2013; Schwarz
et al., 2013; Tan et al., 2015; Lim et al., 2016; Loane et al., 2016;
Nagae et al., 2016). However, most of these studies measured
structural changes in small, heterogeneous PD patient cohorts
(e.g., highly varying disease duration), resulting in variable
magnitude and directionality of the respective findings (McGhee
et al., 2013; Meijer et al., 2013; Weingarten et al., 2015). Moreover
single DTI measures failed to accurately assess disease severity
and prognosis, hampering their application in standard clinical
practice or as biomarkers in clinical trials (McGhee et al., 2013;
Pyatigorskaya et al., 2014; Atkinson-Clement et al., 2017). In

contrast, in a small proof-of-concept study in PD patients,
multimodal MRI measures based on DTI and R2∗ maps have
been shown to provide complementary information allowing
for a better differentiation of patients and controls (Peran
et al., 2010). However, the relative and combined value of MRI
measures and DAT-SPECT as biomarkers of disease severity and
prognosis remains unknown.

Despite imaging changes in individual brain regions can be
used as diagnostic biomarker, theories on neuro-degenerative
disease increasingly focus on the role of brain network alterations
as potential predictors of early disease severity and prognosis
(Helmich et al., 2010; Woo et al., 2017). In fact previous studies
showed that PD targets regions that, in healthy individuals have
a well-defined correlation patterns (Helmich et al., 2010; Woo
et al., 2017). However, the interaction between changes in the
striatal dopamine and the morphological and microstructural
alterations in the striato-cortical circuits remains unclear.
This interaction can be evaluated using structural covariance
analysis, which examines whether an imaging measure in
one region correlates with the variation of the same, or
other modalities measures in other brain regions (Mechelli
et al., 2005; Schmitt et al., 2009; Alexander-Bloch et al.,
2013a). Complementary to functional MRI (fMRI) and DTI-
based connectomics, population covariance in brain anatomy
represents another source of information about inter-regional
anatomical associations (Alexander-Bloch et al., 2013b). A crucial
difference between fMRI, diffusion MRI networks, and structural
covariance is that the latter estimates inter-regional correlations
based on group of images, while the first two networks can
be constructed from connectivity measures computed for an
individual image (Alexander-Bloch et al., 2013a,b). Another
challenge of the structural covariance networks might be the
biological interpretation of the results (Alexander-Bloch et al.,
2013a). However, recent studies showed that the structural
covariance pattern are influenced by synaptic connectivity
between brain regions, genetic and developmental relationships,
and different degenerative processes (Gong et al., 2012; Chou
et al., 2015; Chang et al., 2017; de Schipper et al., 2017;
Oosterwijk et al., 2018; Yee et al., 2018). Therefore, we applied this
method to investigate structural network alterations using MRI-
based measurements and striatal dopamine transporter uptake
derived from DAT-SPECT.

Here, we evaluated DAT-SPECT, DTI and sMRI as biomarkers
of disease severity and progression in de novo PD patients.
Disease severity was assessed longitudinally through the modified
version of the unified Parkinson’s disease rating scale (MDS-
UPDRS) evaluated at baseline (same time point at which the
imaging data was acquired) and at 1 year follow-up. We
used well-established VBM, voxel-based quantification (VBQ)
(Draganski et al., 2011) and structural covariance analyses
to identify disease-related alterations in a large cohort of de
novo PD patients. We then tested whether combinations of
imaging alterations identified in drug-naïve de novo PD were
associated with current clinical severity measured by baseline
MDS-UPDRS scores. Moreover, we employed those imaging
measure to predict the future disease progression quantified
by the MDS-UPDRS variations between the two time points.
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As the dopaminergic treatments taken by some patients after
the baseline evaluation have substantial effects on the clinical
symptoms measured with MDS-UPDRS, we accounted for those
effects by applying the prediction models separately to the group
of patients receiving medication and to the one without treatment
employing off medication clinical assessment (Mueller et al.,
2018; van Ruitenbeek et al., 2018).

MATERIALS AND METHODS

Subjects
Data of de novo PD patients (N = 205) and healthy controls
(HC) (N = 105) included in this study were obtained from
the Parkinson’s Progression Markers Initiative (PPMI) database1.
PPMI is a large multicenter study and each site independently
received ethics approval of the protocol. This study was
carried out in accordance with Good Clinical Practice (GCP)
regulations and International Conference on Harmonization
(ICH) guidelines. Written informed consent was obtained from
all participants in accordance with the Declaration of Helsinki.

All subjects underwent sMRI, DTI, and DAT-SPECT at
baseline, and had MDS-UPDRS 1, 2, 3, and total, acquired
at baseline (BL) and after 1 year (TP1). De novo PD patients
included in the PPMI database had a diagnosis confirmed
by DAT-SPECT scans and Hoehn and Yahr stage I or II.
The exclusion criteria were diagnosis of dementia, psychiatric
disorders or other neurological disease detectable with MRI at
baseline. At BL all patients were drug-naïve, while at TP1 some
patients started drug treatment with L-Dopa, dopamine agonist,
and other unspecified medications. Only categorical (yes/no)
information was recorded on the respective treatment categories
(L-Dopa, dopamine agonists or other PD medication) without
information about the dosage. In the current study, we included
patients remaining without drug treatment at TP1 (called as PD
no med) and patients taking only L-Dopa treatment at TP1 (called
as PD on med). The PD on med group was composed of patients
having the MDS-UPDRS3 evaluation performed off medication
(patients were asked not to take L-Dopa for 24 h before the
evaluation). From the 205 patients, we identified 56 subjects for
the PD no med group, and 44 subjects for the PD on med group.

Image Acquisition and Processing
Whole-brain MRI was performed using standardized
protocols on different 3T scanners. All acquisition protocols
included a standard T1-weighted MPRAGE sequence
(TI/TR = 900/2,300 ms, TE = 2.98 ms, 1 mm isotropic
resolution), and a 2D single-shot echo-planar DTI sequence for
diffusion weighted images (TR/TE = 900/88 ms, 2 mm isotropic
resolution, diffusion weighting along 64 gradient directions,
b-value = 1000 s/mm2).

DAT-SPECT images were obtained using different camera
systems. Details about SPECT image reconstruction are available
on the PPMI website (see footnote 1) (reconstructed image
matrix 91× 109× 91, 2 mm isotropic resolution).

1www.ppmi-info.org

VBM analysis was performed on the T1-weighted images
using automated tissue classification and enhanced subcortical
tissue probability maps embedded into the unified segmentation
framework of SPM12 (Ashburner and Friston, 2005; Lorio et al.,
2016). Image registration to the MNI space was performed for
each subject applying subject-specific diffeomorphic estimates
obtained using DARTEL (Ashburner, 2007) with default settings
on the gray and white matter tissue maps (respectively, GM
and WM). The warped GM maps were scaled by the Jacobian
determinants of the deformation fields to account for local
compression and expansion due to linear and non-linear
transformation (Ashburner and Friston, 2000), resulting in GM
volume maps. The GM volume maps were then smoothed
using an isotropic Gaussian kernel of 6 mm full width at
half maximum (FWHM).

The DTI maps were calculated from the diffusion weighted
data using a group of libraries called TEEM2. The pre-processing
steps for the estimation of FA and MD maps included correction
for distortions due to eddy currents and head motion (Rohde
et al., 2004; Tao et al., 2009), and affine registration of the
corrected diffusion weighted data to the T1-weighted images
using FLIRT from FSL5.03 (Greve and Fischl, 2009).

For VBQ analysis, FA and MD maps were warped into
MNI space using a non-linear registration approach based on
the subject-specific diffeomorphic estimates (Ashburner, 2007),
derived for the GM and WM maps without scaling by the
Jacobian determinants. In order to enhance the specificity of
the warped FA and MD values for brain tissue classes, we
used the combination of weighting procedure with the GM and
WM probability maps derived from the T1-weighted data, and
Gaussian smoothing with a 6 mm FWHM isotropic smoothing
kernel as described by Draganski et al. (2011). Separate FA and
MD maps were generated for GM and WM sub-spaces.

DAT-SPECT data pre-processing was performed within
SPM12 and included normalization to an average size DAT-
SPECT template with subsequent normalization into the MNI
space performed using the “normalization” function. Then the
images were non-linearly warped from the MNI to the native
space of the T1-weighted data using the spatial transformation
parameters estimated for the GM and WM probability maps.
This allowed the correction for partial volume effects using the
modified Müller-Gartner method (Müller-Gärtner et al., 1992;
Rousset et al., 1998) based on the convolution of the DAT-SPECT
data with the tissue classification maps estimated from T1-
weighted images. The GM SPECT images were then normalized
to MNI space using parameters derived from T1-weighted data
and scaled to the global mean GM signal for each subject. Finally,
the SPECT images were smoothed with an isotropic Gaussian
kernel of 6 mm FWHM.

Statistical Analysis and Voxel-Based
Group Comparison
We used odds ratios and t-test, as implemented in Matlab 2012b,
to assess gender and age differences between PD patients and

2http://teem.sourceforge.net/index.html
3www.fmrib.ox.ac.uk/fsl

Frontiers in Aging Neuroscience | www.frontiersin.org 3 March 2019 | Volume 11 | Article 57

http://www.ppmi-info.org
http://teem.sourceforge.net/index.html
http://www.fmrib.ox.ac.uk/fsl
https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-11-00057 March 13, 2019 Time: 18:15 # 4

Lorio et al. Imaging Biomarkers for PD Progression

HC, and between PD on med and PD no med groups (Table 1).
We compared the values of MDS-UPDRS scales (1, 2, 3, and
total) measured at BL, TP1 and the differences between the
two time points, using two-sample t-tests between the respective
groups (see Table 1). Only MDS-UPDRS 3 values measured off
medication were compared at TP1. Fisher’s exact test was used to
compare the disease dominant side between PD on med and PD
no med subgroups (see Table 1).

To test for local differences in GM volume maps, FA and MD
between PD patients and HC, we used SPM12 to perform a voxel-
wise t-statistic separately for every map and tissue class (GM and
WM), using a flexible factorial design, controlling for sex, age,
total intracranial volume (TIV) and image acquisition site. These
tests were carried out using explicit masks defining GM and WM
voxels. The masks were generated as follows: smoothed (FWHM
of 6 mm isotropic), Jacobian-modulated tissue probability maps
in MNI space were averaged across all subjects for each tissue
class (GM and WM). Then binary masks were generated by
applying a threshold of 20%, voxels for which neither the GM
nor the WM probability exceeded that value were excluded
from the analysis. This approach was used to ensure that each
voxel was analyzed in only one subspace and that non-brain
tissue was excluded.

Similarly, differences in DAT-SPECT were evaluated using
voxel-based comparisons, restricting analyses to GM voxels and
controlling for age and sex. We applied to all voxel-wise statistical
analyses a family-wise error (FWE) corrected cluster threshold
of p < 0.05 combined with a voxel-wise p < 0.001. We further
estimated the effect size (Cohen’s d) of the observed differences.

To test for differential interaction between striatal dopamine
transporter uptake derived from DAT-SPECT and MRI-based
measurements, we performed voxel-wise covariance analyses

(Mechelli et al., 2005) between DAT-SPECT values in the
putamen (region showing strongest differences between PD
patients and HC) and GM volume, FA and MD maps. The
putamen was delineated according to the basal ganglia human
area template (Prodoehl et al., 2008). We computed separate
covariance analyses for each MRI-based measure (GM volume,
FA, MD) and each tissue type (gray and white matter for FA and
MD), controlling for age, sex, TIV, disease dominant side and
image acquisition site. The covariance analyses were carried out
using GM and WM masks obtained as previously described.

An FWE-corrected cluster threshold of p < 0.05 combined
with a voxel-wise p < 0.001 was applied for all analyses. To
quantify the differential inter-modality correlations identified
in the covariance analyses, we computed Spearman correlation
coefficients between the putamen DAT-SPECT signal and
the average value of the age and sex adjusted MRI-based
measures showing significant between-group differences in the
covariance analysis.

Prediction Models: Symptoms Severity
and Disease Progression
To evaluate the combined value of imaging measures as
biomarkers of symptoms severity we used multiple linear
regression models to predict each MDS-UPDRS subscale. The
MDS-UPDRS 1, 2, 3, and total were the dependent variables,
while the models regressors were the mean imaging measures
extracted from regions showing significant differences between
PD patients and HC (group differences: FA in pons nuclei,
prefrontal MD, DAT signal in putamen; covariance differences:
prefrontal GM volume, brainstem MD). For regions identified
in covariance analyses we included in the model an interaction

TABLE 1 | Demographic and clinical data of subjects included in the study.

Demographic HC PD PD no med PD on med PD versus HC p-value PD on med versus PD no
med p-value

Mean ± SD

Number of subjects (m/f) 105 (74/31) 205 (143/62) 56 (34/22) 44 (28/16) 0.999 0.837

Age 58 ± 12 61 ± 10 59 ± 10.2 62.6 ± 10.1 0.207 0.084

MDS-UPDRS1 Baseline 2 ± 1 6 ± 4 5 ± 3 6 ± 4 <10−6 ∗ 0.022∗

Follow-up – – 6 ± 4 7 ± 4 – 0.030 ∗

Change – – 1 ± 2 2 ± 3 – 0.041∗

MDS-UPDRS2 Baseline 0.1 ± 0.03 6 ± 4 6 ± 3 7 ± 4 <10−6 ∗ 0.012∗

Follow-up – – 7 ± 4 8 ± 4 – 0.021∗

Change – – 2 ± 2 3 ± 2 – 0.031∗

MDS-UPDRS3 Baseline 0.6 ± 0.3 21 ± 9 19 ± 10 22 ± 9 <10−6 ∗ 0.121

Follow-up – – 21 ± 11 24 ± 10 – 0.067

Change – – 4 ± 9 5 ± 10 – 0.067

MDS-UPDRS total Baseline 3 ± 1.8 33 ± 13 29 ± 10 34 ± 15 <10−6 ∗ 0.031∗

Follow-up – – 32 ± 15 37 ± 16 – 0.069

Change – – 7 ± 10 8 ± 9 – 0.100

Dominant side (left/right/equilateral) – 78/117/10 20/35/1 20/22/2 – 0.309

HC, healthy controls; PD, Parkinson’s disease patients, PD no med, patients without medications 1 year after baseline; PD on med, patients on L-Dopa treatment 1 year
after the baseline. Bold characters and “∗” indicate a significant group difference (p < 0.05).
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term between the MRI measure and DAT-SPECT. All analyses
were controlled for age, sex, and symptoms dominant side.
The goodness of fit for each model was assessed using the
determination coefficient (R2), while the model overfit was
evaluated by means of the leave-one-out adjusted R2 coefficient.
Additionally, we estimated the Pearson correlation coefficient
between each of the above-mentioned imaging measures and the
MDS-UPDRS 1, 2, 3, and total separately.

To test if the BL imaging measures were prognostic
biomarkers of disease progression, we used multiple linear
regression models for predicting the changes in MDS-UPDRS
scores (1MDS-UPDRS) between TP1 and BL. The 1MDS-
UPDRS 1, 2, 3, and total were the dependent variables, while the
model regressors were the FA values in pons nuclei, prefrontal
MD, DAT signal in putamen, and the interaction between
putamen DAT signal and prefrontal GM volume, brainstem MD,
respectively. The longitudinal prediction models were computed
using data of both PD no med and on med groups. Patients
receiving dopamine agonists at TP1 were not included in this
analysis due to the longer wash out time of those treatments
and their potential effect on the off medication assessment of
symptoms severity.

To account for the effect of L-Dopa treatment on the
prediction models, we performed separate regression analyses for
the PD on med and no med groups. Demographic and clinical
details of the two subgroups are provided in Table 1. Moreover
we computed the Pearson correlation coefficient between each of
the imaging measures and the 1MDS-UPDRS 1, 2, 3, and total
separately for the PD on med and no med groups.

The multiple regression models for each MDS-UPDRS and
1MDS-UPDRS subscales were considered as significant at
p < 0.05. In case of a significant multiple regression model, single
regressors were considered as significant at p < 0.01. The Pearson
correlation coefficients were corrected for multiple comparison
using the false discovery rate (FDR) at q < 0.05.

RESULTS

Demographic and Clinical Variables
Patients and HC were matched for gender and age, as shown
in Table 1. The groups PD on med and PD no med did not

differ with respect to sex, age, and disease dominant side (see
Table 1). All clinical scores were significantly higher for patients
as compared to HC (Table 1). The group PD on med showed
significantly higher MDS-UPDRS 1, 2, and total scores at BL and
TP1, as well as higher 1MDS-UPDRS1 and 1MDS-UPDRS2 in
comparison to the PD no med group (Table 1). No significant
differences were found for the MDS-UPDRS3 at BL, TP1, and
1MDS-UPDRS3 between PD on med and no med groups.

Voxel-Based Group Comparison
In PD patients significantly higher FA values were found in
the brainstem WM corresponding to the pontine tegmentum
(Table 2 and Figure 1a). Increased MD values were found in
patients with respect to HC in the operculum (Table 2 and
Figure 1b). No significant differences between patients and HC
were observed for GM volume.

In the structural covariance analyses, we found significant
differences in the correlation between DAT-SPECT in the
putamen and MD values in the pons nuclei across patients
and HC. The Spearman correlation coefficients showed a
significant positive correlation in PD patients (ρ = 0.25;
p < 0.001), and a significant negative one in HC (ρ = −0.52;
p < 0.001) (Figures 2a,b).

Furthermore, we found significant differences between
patients and HC in the covariance analysis evaluating the
association between DAT-SPECT signal in the putamen and
GM volume in the left prefrontal, premotor cortex and in the
insula. We observed a significant positive correlation (ρ = 0.22;
p < 0.001) for patients, and a significant negative correlation for
controls (ρ = −0.44; p < 0.001) (Figures 2c,d). No significant
differences were found for structural covariance between DAT-
SPECT and FA values across groups.

Prediction Models: Symptoms Severity
and Disease Progression
The linear combinations of DAT-SPECT values in the putamen,
and MRI differences found in the group comparison, significantly
predicted the BL MDS-UPDRS2 and MDS-UPDRS total but
not the other subscales (see Tables 3, 4). The MD values in
the operculum, the DAT-SPECT signal in the putamen and
age were the most significant predictors for the MDS-UPDRS2,
as summarized in Tables 3, 4. The significant predictors for

TABLE 2 | Main differences for group comparisons and covariance analyses done at baseline between healthy controls (HC) and Parkinson’s disease patients (PD).

Analysis Region Coordinates (mm) T-value Cluster size

x y z

FA maps: PD > HC Left pontine tegmentum −8 −21 −21 4.7 163

Right pontine tegmentum 9 −22 −22 4.5 167

MD maps: PD > HC Right operculum 58 9 −2 5 1571

Covariance DAT-MD: PD > HC Pons nuclei 4 −26 −28 4 884

Covariance DAT-GM volume: PD > HC Left prefrontal cortex −44 20 34 4.6 681

Left premotor cortex −8 6 39 4.5 607

Left insula −54 −14 16 4 625

Right insula 58 −12 14 4 686
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FIGURE 1 | Results of group comparisons for diffusion MRI measures. (a) Increased FA values in Parkinson’s disease patients compared to healthy controls at
pFWE < 0.05. (b) Higher MD values for Parkinson’s disease patients with respect to healthy controls at pFWE < 0.05.

FIGURE 2 | Differences between healthy controls (HC) and Parkinson’s disease patients (PD) in voxel-wise correlation of MD maps with DAT-SPECT measured in
putamen (a), and GM volume with mean DAT-SPECT in putamen (c). (b) Scatter plot showing the correlation between the DAT-SPECT measured in the putamen
and the mean MD values computed within the region highlighted in red on panel (a), for HC (yellow triangles) and PD (red circles). (d) Scatter plot showing the
correlation between the DAT-SPECT measured in the putamen and the mean GM volume estimated within the region highlighted in red on panel (c), for HC (yellow
triangles) and PD (red circles). Plot legend reports Spearman’s correlation coefficients.

the MDS-UPDRS total were the MD values in the operculum,
the putamen DAT-SPECT values, and the interaction between
putamen DAT-SPECT – GM volume in premotor, prefrontal
cortex and insula (see Tables 3, 4).

We did not find any significant correlation between the single
imaging measures and the BS MDS-UPDRS scores.

For the longitudinal prediction models we found that the
combination of BL DAT-SPECT and MRI measures was not able
to significantly predict the 1MDS-UPDRS scores for the group
of patients with and without medication (see Tables 3, 4).

However the linear combination of BL imaging measures
significantly predicted 1MDS-UPDRS2 for the PD no med
group, and 1MDS-UPDRS1 and 2 for the PD on med
(Tables 3, 4). The significant regressors for the prediction of
1MDS-UPDRS2 in the PD no med group were GM volume in
the premotor and prefrontal cortex, putamen DAT-SPECT, FA in
the pontine tegmentum and the interaction between DAT signal
in the putamen – GM volume in premotor, prefrontal cortex
and insula (Tables 3, 4). For the PD on med, the significant
predictors of 1MDS-UPDRS1 were the MD in the pons nuclei,
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TABLE 3 | Summary of the linear models explaining the MDS-UPDRS components at baseline (BL) and the MDS-UPDRS variation (1MDS-UPDRS) 1 year
after the baseline.

Time
point

Dependent
variable

Model predictors: p-value R2 Adj R2 F-,
p-value

GM vol
in PFC

and
PMC

MD in
OP

MD in
PN

FA in
PT

DAT in
Put

Interaction
DAT in

Put – MD
PN

Interaction
DAT in Put –

GM vol in
PFC and PMC

and IN

Age Gender Dominant
side

BL MDS-UPDRS1 0.37 0.11 0.75 0.81 0.35 0.05 0.01 0.37 0.9 0.83 0.12 0.09 0.82, 0.57

MDS-
UPDRS2

0.30 0.01∗ 0.08 0.17 −2 × 10−4

∗

0.39 0.10 0.01∗ 0.87 0.12 0.38 0.29 4,
2 × 10−4∗

MDS-
UPDRS3

0.88 0.09 0.40 0.85 0.50 0.06 0.11 0.02 0.13 0.22 0.21 0.09 2, 0.08

MDS-
UPDRS
tot

0.9 0.002∗ 0.23 0.50 0.006∗ 0.03 0.002∗ 0.01 0.31 0.70 0.31 0.21 4.85,
0.003∗

1 MDS-
UPDRS1 PD
on med+no
med

0.78 0.29 0.25 0.44 0.37 0.74 0.58 0.13 0.35 0.34 0.15 0.03 1.02, 0.43

MDS-
UPDRS1 PD
on med

0.87 0.70 0.003∗ 0.47 0.01∗ 0.002∗ 0.32 0.008∗ 0.96 0.87 0.47 0.27 5.7,
0.004∗

MDS-
UPDRS1 PD
no med

0.28 0.11 0.44 0.38 0.5 0.9 0.21 0.44 0.09 0.06 0.19 0.01 1, 0.41

MDS-
UPDRS2 PD
on med+no
med

0.02 0.30 0.36 0.03 0.03 0.03 0.80 0.01 0.12 0.18 0.22 0.09 1.71, 0.09

MDS-
UPDRS2 PD
on med

0.006∗ 0.009∗ 0.17 0.01∗ 0.004∗ 0.25 0.004∗ 0.66 0.05 0.27 0.37 0.15 4.68,
0.01∗

MDS-
UPDRS2 PD
no med

0.003∗ 0.02 0.09 0.01∗ 0.01∗ 0.23 0.01∗ 0.55 0.6 0.11 0.37 0.21 4.75,
0.01∗

MDS-
UPDRS3 PD
on med+no
med

0.02 0.96 0.94 0.01 0.03 0.41 0.20 0.41 0.22 0.25 0.15 0.05 1.1, 0.38

MDS-
UPDRS3 PD
on med

0.76 0.74 0.47 0.34 0.95 0.74 0.48 0.77 0.99 0.44 0.27 0.13 0.59, 0.83

MDS-
UPDRS3 PD
no med

0.61 0.19 0.9 0.5 0.6 0.02 0.09 0.87 0.28 0.7 0.20 0.03 1.14, 0.35

MDS-UPDRS
tot PD on
med+no
med

0.02 0.98 0.92 0.01 0.01 0.03 0.71 0.08 0.98 0.38 0.17 0.03 1.3, 0.31

MDS-UPDRS
tot PD on
med

0.82 0.58 0.69 0.58 0.5 0.06 0.61 0.79 0.58 0.38 0.21 0.05 0.89, 0.54

MDS-UPDRS
tot PD no
med

0.14 0.24 0.03 0.34 0.04 0.73 0.37 0.86 0.16 0.22 0.27 0.11 1.69, 0.11

Models for the 1MDS-UPDRS were estimated separately for the patients without medication 1 year after baseline (no med), for the patients on L-Dopa 1 year after
baseline (on med) and for the patients of both groups together (on med + no med). The model predictors were the mean imaging values extracted from the following
regions: IN, insula; OP, operculum; PFC, prefrontal cortex; PMC, premotor cortex; PN, pons nuclei; Put, putamen; PT, pontine tegmentum. We report the p-value for
every regressor, and the determination coefficient (R2), adjusted R2, f-value, and p-value for every model. Bold characters and “∗” indicate a significant (p < 0.05) model –
(p < 0.01) regressors.
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TABLE 4 | Summary of the slopes (β) of the linear regressions explaining the MDS-UPDRS components at baseline (BL) and the MDS-UPDRS variation (1MDS-UPDRS)
1 year after the baseline.

Time
point

Dependent
variable

Model predictors: β slope

GM vol in
PFC and

PMC

MD in
OP

MD in
PN

FA in
PT

DAT in Put Interaction
DAT in Put –

MD PN

Interaction
DAT in Put –

GM vol in PFC
and PMC and

IN

Age Gender Dominant
side

BL MDS-UPDRS1 2.8 −3.7 104.7 −1.8 8.6 × 104
−3.1 × 103

−9.4 104 0.1 −0.1

MDS-UPDRS2 −0.54 −19.8 50.2 −6.5 3.4 × 104
−1.5 × 104 9.8 1.1 × 104

−0.1 −0.7

MDS-UPDRS3 0.8 −6.7 149 −2.9 1.9 × 105
−1.9 × 104 3.7 2.6 × 104 0.23 3.3

MDS-UPDRS tot 3 −30.3 303 −11.2 3.1 × 105 3.8 × 104 4 4.8 × 104 0.36 3.1

1 MDS-UPDRS1 PD
on med+no med

−2 −9.1 19.2 −0.4 −3.2 × 104
−8.5 × 103 3.5 5.1 × 103 0.1 −1.1

MDS-UPDRS1 PD
on med

−3.4 23.2 81.4 −1.9 −2.3 × 105
−2.6 × 104

−8.3 −3.1 × 103 0.1 −1.4

MDS-UPDRS1 PD
no med

1.2 −14.5 −63.4 −1.3 5.6 × 103
−7.2 × 103 11.5 1.1 × 104 0.04 −1.7

MDS-UPDRS2 PD
on med+no med

2.3 −1 −29.7 −0.6 −7.5 × 104 6.4 × 103 7.6 1.7 × 104
−0.01 0.5

MDS-UPDRS2 PD
on med

−9.4 −20.1 235 9.3 3.3 × 104 3.2 × 104
−24.1 1.5 × 104 0.07 2.9

MDS-UPDRS2 PD
no med

5.5 −26.8 −116.8 −2.8 −5.9 × 104
−865.3 9.5 2.3 × 104

−0.03 −0.5

MDS-UPDRS3 PD
on med+no med

9.5 29.6 14.1 −1.3 −2.2 × 105 1.1 × 104 7.2 2.1 × 104
−0.1 −1

MDS-UPDRS3 PD
on med

−5 −42.8 447.3 13.6 3.3 × 105 1.1 × 105
−139.7 1.2 × 104

−0.03 2.7

MDS-UPDRS3 PD
no med

9.8 −31 −240.1 −2.9 −3.1 × 105
−4.2 × 103 15.2 2.5 × 104 0.02 −3

MDS-UPDRS tot
PD on med+no
med

9.8 19.5 3.7 −2.3 −3.3 × 105 9.1 × 103 18.3 4.3 × 104
−0.01 −1.6

MDS-UPDRS tot
PD on med

−17.7 −40 763.8 21.1 1.3 × 105 1.1 × 105
−172.1 2.4 × 104 0.1 4.1

MDS-UPDRS tot
PD no med

16.5 −72.3 −420.3 −7.1 −3.6 × 105
−1.2 × 104 36.1 5.9 × 104 0.03 −5.3

Models for the 1MDS-UPDRS were estimated separately for the patients without medication 1 year after baseline (no med), for the patients on L-Dopa 1 year after
baseline (on med) and for the patients of both groups together (on med + no med). The model predictors were the mean imaging values extracted from the following
regions: IN, insula; OP, operculum; PFC, prefrontal cortex; PMC, premotor cortex; PN, pons nuclei; Put, putamen; PT, pontine tegmentum. Bold characters indicate a
significant (p < 0.05) model – (p < 0.01) regressors.

the DAT-SPECT in the putamen, interaction DAT – MD in the
pons nuclei and age. The premotor and prefrontal GM volume,
putamen DAT binding, MD in the pons nuclei and the interaction
DAT in putamen – MD in pons nuclei significantly predicted
1MDS-UPDRS2 for the PD on med group.

We did not find any significant correlation between the single
imaging measures and the 1MDS-UPDRS scores for both the PD
no med and on med groups.

DISCUSSION

Here, we evaluated the relative and combined value of MRI
and DAT-SPECT measures as biomarkers of disease severity and
clinical progression in de novo PD patients. Consistent with prior
literature, we identified DAT-SPECT and MRI abnormalities

in patients compared to the HC (Brooks, 1998; Lee et al.,
2000; Isaias et al., 2007; Gattellaro et al., 2009; Wang et al.,
2011). Most importantly, we found that in combination, these
imaging abnormalities could reliably predict both current clinical
symptoms and their progression over time, suggesting that they
could be used as prognostic biomarkers.

Clinical Variables
Prior to perform the image comparison and the prediction
analysis of the clinical scores, we statistically compared the
MDS-UPDRS across groups. As expected, we found significantly
higher clinical scores for the PD patients with respect to the
HC. Moreover, we observed significantly higher increase of the
MDS-UPDRS 1, 2, and total scores at BL and TP1, as well
as 1MDS-UPDRS1 and 1MDS-UPDRS2 for the PD group on
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med with respect to the PD no med group. Those results are
in agreement with the fact that patients on medication exhibit
more advanced disease stages. The lack of significant difference
in MDS-UPDRS3 between the PD on med and PD no med
groups might be explained by the fact that the motor assessment
is a highly variable measure, involving both patient- and rater-
dependent variability (Mentzel et al., 2016; Rahmim et al., 2017).
The use of a longitudinal clinical assessment over 1 year might
have increased this variability, confounding potential differences
between the groups.

Regional Findings
Earlier studies have reported altered diffusion MRI measures
across different brain areas in PD and associated animal models
(Peran et al., 2010; Wang et al., 2011; Zhang et al., 2011, 2015;
Du et al., 2012; Schwarz et al., 2013; Tan et al., 2015; Lim et al.,
2016; Loane et al., 2016; Nagae et al., 2016). Consistent with
those findings, we showed distinct patterns of MD alterations
in the prefrontal cortex, suggesting underlying microstructure
degradation that might be due to the loss of dopaminergic
input into the striatum (Hornykiewicz, 1998; Mattay et al., 2002;
Gattellaro et al., 2009; Zhan et al., 2012; Kim et al., 2013).

Furthermore, we found increased FA values in PD patients
in midbrain regions corresponding to the location of pontine
tegmentum. This region is affected by the alpha synuclein
pathology at early disease stages (Braak et al., 2003; Mori et al.,
2008; Venda et al., 2010), and it is associated with the patho-
physiology of sleep behavior disorder frequently observed at
prodromal disease stage (Iranzo et al., 2006; Burke and O’Malley,
2013). There is substantial controversy in the literature about the
magnitude, directionality and neurobiological interpretation of
FA changes in this region. While Wang et al. (2011) also found
increased FA values in the substantia nigra, other studies reported
lowered FA in PD patients in this region (Peran et al., 2010;
Rolheiser et al., 2011; Du et al., 2012; Prakash et al., 2012; Zhang
et al., 2016). The reason for this divergence remains unclear but
might be related to the inclusion of more advanced PD patients
in those studies.

Structural Network Findings
In agreement with previous research showing 40–60% loss of
striatal dopaminergic innervations from substantia nigra in de
novo PD patients, we found a significantly reduced DAT-SPECT
signal in the striatum (Brooks, 1998; Lee et al., 2000; Isaias
et al., 2007). Our findings on significant interactions between
putamen DAT uptake and MD values in the pons nuclei are in
line with the known disruption of brainstem projections to the
striatum. More specifically, we found that a lower striatal DAT
uptake was linked to lower MD values in PD patients, which was
the opposite of what we observed in HC. This finding supports
the idea that structural covariance might be more sensitive
to axonal and neuronal damage in the ponto-mesencephalic
tegmentum, which did not show significant MD changes in direct
group comparisons. The pons nuclei represent the anatomical
origin of projections modulating the dopaminergic action of the
substantia nigra and they are under dopaminergic inhibitory
control from the ventral tegmental area, which is known to

degenerate in PD (Guiard et al., 2008). According to the
physiological functions attributed to the noradrenergic system,
impaired functioning of pons nuclei in PD results primarily in
affective disorders (Remy et al., 2005), cognitive disturbances
(Javoy-Agid and Agid, 1980), sleep disorders (Boeve et al.,
2007), sensory impairment (Braak et al., 2003) and autonomic
dysfunction (Orskov et al., 1987).

Furthermore, in PD patients we found a decrease in
putamen DAT being linked to lower GM volume values in
the premotor-prefrontal cortex, while in HC a reduction in
putamen DAT was associated to a bigger GM volume. While,
we did not detect any significant atrophy in those cortical
regions using group comparisons, these findings suggested
that progressive loss of striatal DAT uptake translates into
GM volume loss in premotor-prefrontal regions. This result
is in line with studies showing that significant GM volume
loss is predominantly observed in more advanced PD patients
exhibiting cognitive deficits (Beyer et al., 2007; Melzer et al.,
2012). The clinical stage arises when the disease spreads
from brainstem to basal ganglia nuclei and then to cortical
regions in an ascending course (Lang and Lozano, 1998;
Braak et al., 2003).

Prediction of Symptom Severity and
Disease Progression
After identifying these alterations in patients compared to
HC, we then evaluated their link to current disease severity
and their prognostic value for future symptoms progression
measured by the MDS-UPDRS subscales. We showed that
the combination of the imaging measures was significantly
related to the current clinical severity measured by MDS-
UPDRS2 and MDS-UPDRS total. The imaging measures that
better predicted the BL MDS-UPDRS2 were the MD values
in the operculum and the DAT-SPECT signal in the putamen,
while the MDS-UPDRS total was better predicted by the
MD values in the operculum, the putamen DAT-SPECT
values, and the interaction between putamen DAT-SPECT –
GM volume in premotor, prefrontal cortex and insula. The
absence of significant correlation between each of those imaging
measures and the MDS-UPDRS2 and MDS-UPDRS total is in
agreement with results previously reported literature (McGhee
et al., 2013). Moreover this result highlights the fact that the
combination of those imaging measures, rather than each single
one, could be used as biomarker for predicting symptoms
measured by MDS-UPDRS2.

The MDS-UPDRS2 is a subscale evaluating the subject’s
impairment in daily life activities (Goetz et al., 2008), and
it is often used to evaluate symptoms severity perceived by
the patient. Consequently MDS-UPDRS2 can be used to
assess improvements related to pharmacological treatments
or surgical therapies such as deep brain stimulation
(Rodriguez-Oroz et al., 2005).

One key objective of the study was to evaluate the association
between the imaging biomarkers and disease progression. As
dopaminergic treatments have substantial effects on the clinical
symptoms measured with MDS-UPDRS, those treatments
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represent a potential confound that needs to be controlled for.
Due to this reason we first performed the predictive analysis
of symptoms progression using the entire PD cohort and then
we employed separate models for the PD no med and on
med groups. For the patients on medications we employed the
MDS-UPDRS scores assessed off medication. The off medication
clinical assessments performed for the PPMI study were acquired
asking the patients not to take PD medication the day before.
While, the half-life of L-Dopa is short enough to achieve a
sufficient wash out in 24 h, the half-life of dopamine agonists
or other medications could be longer and therefore be not
sufficient to estimate a proper off medication symptom severity
(Brooks, 2008; Onofrj et al., 2009; Reichmann, 2009). For
this reason, we restricted our analyses of the patients treated
only with L-Dopa.

We found that GM volume extracted from the premotor
cortex, putamen DAT, the interaction between both, and
brainstem FA values were significant predictors for 1MDS-
UPDRS2 in the untreated patients. The 1MDS-UPDRS2 in the
group on medication was significantly predicted by the same
measures with the addition of MD assessed in the pons nuclei.
Though the separation of PD patients in no med and on med
groups was performed to exclude confounds of treatment onto
the MDS-UPDRS scales, the separate analyses could be also
considered as independent replication samples of the prognostic
link of MRI and DAT measures onto clinical symptoms measures.
This consistency of the significant association between the
identified structural measures and 1MDS-UPDRS2 across both
groups strengthens the confidence in these findings.

Finally, we found that the MD in the pons nuclei, putamen
DAT-SPECT, interaction DAT – MD in the pons nuclei were
significant predictors of 1MDS-UPDRS1, which is associated
to non-motor and cognitive deficits. However, the significant
prediction of the 1MDS-UPDRS1 was only observed in
the on med group. Beside the possibility of being a false
positive finding, this difference could also reflect the more
severe phenotype in the on med group or the more complex
effects of treatment onto clinical severity captured by MDS-
UPDRS1. In fact the L-Dopa treatment of the on med group
is likely to interfere with the clinical measures of symptoms
severity as no off medication assessment was performed for
the MDS-UPDRS1. Therefore it is important to replicate this
association in an independent cohort in order to evaluate
the prognostic ability of those imaging measures for the
1MDS-UPDRS1.

The linear combination of DAT-SPECT and MRI measures
was not able to significantly predict the symptoms progression at
TP1 using the data of both PD no med and on med groups. This
results might be indicative of the fact that using heterogeneous
groups of patients could confound the reliability of predictive
analysis (Miller and O’Callaghan, 2015; Tuite, 2016).

The lack of significant correlation between each of the
imaging measures used in this study and the 1MDS-UPDRS
scores confirms previous literature results (McGhee et al.,
2013). The crucial finding of this analysis was that the
combination of DAT-SPECT imaging, structural and diffusion
MRI achieved reliable prediction of some symptom severity

scores and disease progression in 1 year in homogeneous
cohort of patients, as reported by a previous study (Rahmim
et al., 2017), while the single imaging measures failed to
provide significant correlation with those scores. Many
studies in literature assessed the correlations between disease
severity-progression and brain changes in PD patients using
uni-modal approaches (Burton et al., 2004; Nagano-Saito
et al., 2005; Benninger et al., 2009; Wattendorf et al., 2009;
Schwarz et al., 2013). The results cover different regions
with a wide variety of repeatability and low correlations with
clinical scores.

The findings obtained in the current study can be indicative
of the presence of microstructural tissue changes induced by the
disease in the early stages. In light of the correlation with the
clinical progression, the combination of the imaging measures
affected by those tissue changes could be employed as disease
progression biomarker.

Cross-sectional and longitudinal studies in PD patients will
be crucial to confirm our results and establish the value
of the identified imaging alterations in more advanced and
prodromal PD populations.

Limitations and Outlook
Here, we investigate the association between different imaging
and clinical measures in a large cohort of de novo untreated PD
patients. The acquisition of all those imaging modalities might
be time-consuming and expensive, limiting their use in clinical
protocols. However, recent advances in MRI hardware, such as
improved scanner gradient performance, and software, such as
parallel imaging and multi-band imaging sequences (Griswold
et al., 2002; Setsompop et al., 2012; Uecker et al., 2014), can
substantially reduce the time required for acquiring MRI data.

Despite the good correlation between brain changes and
clinical scores, the study provides a reliable prediction only for
some symptom subtypes. This might be due to the fact that
the disease progression differentially affects the various cortical-
subcortical circuits (Kish et al., 1988).

We find several potential structural and molecular imaging
biomarkers altered in de novo PD patients. We further show the
potential of these alterations as biomarkers of current symptom
severity and their prognostic value with respect to evolution of
specific PD symptom domains.

DATA AVAILABILITY

Publicly available datasets were analyzed in this study. This data
can be found here: https://www.ppmi-info.org/.

AUTHOR CONTRIBUTIONS

JD, FS, AB, and BD conceptualized the research project. JD
organized the research project. SL executed the research project
and statistical analysis, and wrote the first draft of manuscript.
SL and JD designed the statistical analysis. JD critically reviewed
the statistical analysis. SL, JD, FS, AB, and BD critically
reviewed the manuscript.

Frontiers in Aging Neuroscience | www.frontiersin.org 10 March 2019 | Volume 11 | Article 57

https://www.ppmi-info.org/
https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-11-00057 March 13, 2019 Time: 18:15 # 11

Lorio et al. Imaging Biomarkers for PD Progression

FUNDING

Data used in the preparation of this article were obtained
from the PPMI database (www.ppmi-info.org/data). For up-
to-date information on the study, visit www.ppmi-info.org.
PPMI – a public-private partnership – is funded by the
Michael J. Fox Foundation for Parkinson’s Research and
funding partners, including Abbvie, Avid Radiopharmaceuticals,
Biogen Idec, Briston-Myers Squibb, Covance, GE Healthcare,
Genentech, GlaxoSmithKline, Lilly, Lundbeck, Merck, Meso
Scale Discovery, Pfizer, Piramal, Roche, and UCB. SL was
supported by the National Institute for Health Research
Biomedical Research Centre at Great Ormond Street Hospital

for Children NHS Foundation Trust, The Henry Smith Charity,
and Action Medical Research (GN2214). BD was supported
by the Swiss National Science Foundation (project grant no.
32003B_159780 and SPUM 33CM30_140332/1), Foundation
Parkinson Switzerland, Foundation Synapsis. LREN is grateful
to the Roger de Spoelberch and the Partridge Foundations for
their generous support.

ACKNOWLEDGMENTS

We would like to thank David W. Carmichael for providing
useful feedback on the manuscript.

REFERENCES
Alexander-Bloch, A., Giedd, J. N., and Bullmore, E. (2013a). Imaging structural

co-variance between human brain regions. Nat. Rev. Neurosci. 14, 322–336.
doi: 10.1038/nrn3465

Alexander-Bloch, A., Raznahan, A., Bullmore, E., and Giedd, J. (2013b). The
convergence of maturational change and structural covariance in human
cortical networks. J. Neurosci. 33, 2889–2899. doi: 10.1523/JNEUROSCI.3554-
12.2013

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm.
Neuroimage 38, 95–113. doi: 10.1016/j.neuroimage.2007.07.007

Ashburner, J., Csernansky, J. G., Davatzikos, C., Fox, N. C., Frisoni, G. B., and
Thompson, P. M. (2003). Computer-assisted imaging to assess brain structure
in healthy and diseased brains. Lancet Neurol. 2, 79–88. doi: 10.1016/S1474-
4422(03)00304-1

Ashburner, J., and Friston, K. J. (2000). Voxel-based morphometry–the methods.
Neuroimage 11, 805–821. doi: 10.1006/nimg.2000.0582

Ashburner, J., and Friston, K. J. (2005). Unified segmentation. Neuroimage 26,
839–851. doi: 10.1016/j.neuroimage.2005.02.018

Atkinson-Clement, C., Pinto, S., Eusebio, A., and Coulon, O. (2017). Diffusion
tensor imaging in Parkinson’s disease: review and meta-analysis. Neuroimage
Clin. 16, 98–110. doi: 10.1016/j.nicl.2017.07.011

Benninger, D. H., Thees, S., Kollias, S. S., Bassetti, C. L., and Waldvogel, D. (2009).
Morphological differences in Parkinson’s disease with and without rest tremor.
J. Neurol. 256, 256–263. doi: 10.1007/s00415-009-0092-2

Beyer, M. K., Janvin, C. C., Larsen, J. P., and Aarsland, D. (2007). A magnetic
resonance imaging study of patients with Parkinson’s disease with mild
cognitive impairment and dementia using voxel-based morphometry. J. Neurol.
Neurosurg. Psychiatry 78, 254–259. doi: 10.1136/jnnp.2006.093849

Boeve, B. F., Silber, M. H., Saper, C. B., Ferman, T. J., Dickson, D. W., Parisi, J. E.,
et al. (2007). Pathophysiology of REM sleep behaviour disorder and relevance to
neurodegenerative disease. Brain J. Neurol. 130, 2770–2788. doi: 10.1093/brain/
awm056

Braak, H., Tredici, K. D., Rüb, U., de Vos, R. A. I., Jansen Steur, E. N. H., and
Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s
disease. Neurobiol. Aging 24, 197–211. doi: 10.1016/S0197-4580(02)00065-9

Brooks, D. J. (1998). The early diagnosis of Parkinson’s disease. Ann. Neurol. 44,
S10–S18. doi: 10.1002/ana.410440704

Brooks, D. J. (2008). Optimizing levodopa therapy for Parkinson’s disease
with levodopa/carbidopa/entacapone: implications from a clinical and
patient perspective. Neuropsychiatr. Dis. Treat. 4, 39–47. doi: 10.2147/NDT.
S1660

Burke, R. E., and O’Malley, K. (2013). Axon degeneration in Parkinson’s disease.
Exp. Neurol. 246, 72–83. doi: 10.1016/j.expneurol.2012.01.011

Burton, E. J., McKeith, I. G., Burn, D. J., Williams, E. D., and O’Brien, J. T.
(2004). Cerebral atrophy in Parkinson’s disease with and without dementia: a
comparison with Alzheimer’s disease, dementia with Lewy bodies and controls.
Brain 127, 791–800. doi: 10.1093/brain/awh088

Camicioli, R., Sabino, J., Gee, M., Bouchard, T., Fisher, N., Hanstock, C., et al.
(2011). Ventricular dilatation and brain atrophy in patients with Parkinson’s

disease with incipient dementia. Mov. Disord. 26, 1443–1450. doi: 10.1002/mds.
23700

Campabadal, A., Uribe, C., Segura, B., Baggio, H. C., Abos, A., Garcia-Diaz, A. I.,
et al. (2017). Brain correlates of progressive olfactory loss in Parkinson’s disease.
Parkinsonism Relat. Disord. 41, 44–50. doi: 10.1016/j.parkreldis.2017.05.005

Chang, Y.-T., Hsu, S.-W., Tsai, S.-J., Chang, Y.-T., Huang, C.-W., Liu, M.-E.,
et al. (2017). Genetic effect of MTHFR C677T polymorphism on the structural
covariance network and white-matter integrity in Alzheimer’s disease. Hum.
Brain Mapp. 38, 3039–3051. doi: 10.1002/hbm.23572

Chou, K.-H., Lin, W.-C., Lee, P.-L., Tsai, N.-W., Huang, Y.-C., Chen, H.-L.,
et al. (2015). Structural covariance networks of striatum subdivision in patients
with Parkinson’s disease. Hum. Brain Mapp. 36, 1567–1584. doi: 10.1002/hbm.
22724

de Schipper, L. J., van der Grond, J., Marinus, J., Henselmans, J. M. L., and
van Hilten, J. J. (2017). Loss of integrity and atrophy in cingulate structural
covariance networks in Parkinson’s disease. Neuroimage Clin. 15, 587–593.
doi: 10.1016/j.nicl.2017.05.012

Draganski, B., Ashburner, J., Hutton, C., Kherif, F., Frackowiak, R. S. J., Helms, G.,
et al. (2011). Regional specificity of MRI contrast parameter changes in
normal ageing revealed by voxel-based quantification (VBQ). Neuroimage 55,
1423–1434. doi: 10.1016/j.neuroimage.2011.01.052

Du, G., Lewis, M. M., Sen, S., Wang, J., Shaffer, M. L., Styner, M., et al. (2012).
Imaging nigral pathology and clinical progression in Parkinson’s disease. Mov.
Disord. 27, 1636–1643. doi: 10.1002/mds.25182

Gattellaro, G., Minati, L., Grisoli, M., Mariani, C., Carella, F., Osio, M., et al. (2009).
White matter involvement in idiopathic Parkinson disease: a diffusion tensor
imaging study. Am. J. Neuroradiol. 30, 1222–1226. doi: 10.3174/ajnr.A1556

Goetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T., Fahn, S., Martinez-
Martin, P., et al. (2008). Movement Disorder Society-sponsored revision of the
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation
and clinimetric testing results. Mov. Disord. 23, 2129–2170. doi: 10.1002/mds.
22340

Gong, G., He, Y., Chen, Z. J., and Evans, A. C. (2012). Convergence and divergence
of thickness correlations with diffusion connections across the human cerebral
cortex. Neuroimage 59, 1239–1248. doi: 10.1016/j.neuroimage.2011.08.017

Greve, D. N., and Fischl, B. (2009). Accurate and robust brain image alignment
using boundary-based registration. Neuroimage 48, 63–72. doi: 10.1016/j.
neuroimage.2009.06.060

Griswold, M. A., Jakob, P. M., Heidemann, R. M., Nittka, M., Jellus, V.,
Wang, J., et al. (2002). Generalized autocalibrating partially parallel acquisitions
(GRAPPA). Magn. Reson. Med. 47, 1202–1210. doi: 10.1002/mrm.10171

Guiard, B. P., El Mansari, M., and Blier, P. (2008). Cross-talk between
dopaminergic and noradrenergic systems in the rat ventral tegmental area,
locus ceruleus, and dorsal hippocampus. Mol. Pharmacol. 74, 1463–1475. doi:
10.1124/mol.108.048033

Helmich, R. C., Derikx, L. C., Bakker, M., Scheeringa, R., Bloem, B. R., and Toni, I.
(2010). Spatial remapping of cortico-striatal connectivity in Parkinson’s disease.
Cereb. Cortex 20, 1175–1186. doi: 10.1093/cercor/bhp178

Hornykiewicz, O. (1998). Biochemical aspects of Parkinson’s disease. Neurology 51,
S2–S9. doi: 10.1212/WNL.51.2_Suppl_2.S2

Frontiers in Aging Neuroscience | www.frontiersin.org 11 March 2019 | Volume 11 | Article 57

http://www.ppmi-info.org
https://doi.org/10.1038/nrn3465
https://doi.org/10.1523/JNEUROSCI.3554-12.2013
https://doi.org/10.1523/JNEUROSCI.3554-12.2013
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1016/S1474-4422(03)00304-1
https://doi.org/10.1016/S1474-4422(03)00304-1
https://doi.org/10.1006/nimg.2000.0582
https://doi.org/10.1016/j.neuroimage.2005.02.018
https://doi.org/10.1016/j.nicl.2017.07.011
https://doi.org/10.1007/s00415-009-0092-2
https://doi.org/10.1136/jnnp.2006.093849
https://doi.org/10.1093/brain/awm056
https://doi.org/10.1093/brain/awm056
https://doi.org/10.1016/S0197-4580(02)00065-9
https://doi.org/10.1002/ana.410440704
https://doi.org/10.2147/NDT.S1660
https://doi.org/10.2147/NDT.S1660
https://doi.org/10.1016/j.expneurol.2012.01.011
https://doi.org/10.1093/brain/awh088
https://doi.org/10.1002/mds.23700
https://doi.org/10.1002/mds.23700
https://doi.org/10.1016/j.parkreldis.2017.05.005
https://doi.org/10.1002/hbm.23572
https://doi.org/10.1002/hbm.22724
https://doi.org/10.1002/hbm.22724
https://doi.org/10.1016/j.nicl.2017.05.012
https://doi.org/10.1016/j.neuroimage.2011.01.052
https://doi.org/10.1002/mds.25182
https://doi.org/10.3174/ajnr.A1556
https://doi.org/10.1002/mds.22340
https://doi.org/10.1002/mds.22340
https://doi.org/10.1016/j.neuroimage.2011.08.017
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1002/mrm.10171
https://doi.org/10.1124/mol.108.048033
https://doi.org/10.1124/mol.108.048033
https://doi.org/10.1093/cercor/bhp178
https://doi.org/10.1212/WNL.51.2_Suppl_2.S2
https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-11-00057 March 13, 2019 Time: 18:15 # 12

Lorio et al. Imaging Biomarkers for PD Progression

Houk, J. C., and Wise, S. P. (1995). Feature article: distributed modular
architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in
planning and controlling action. Cereb. Cortex 5, 95–110. doi: 10.1093/cercor/
5.2.95

Iranzo, A., Molinuevo, J. L., Santamaría, J., Serradell, M., Martí, M. J.,
Valldeoriola, F., et al. (2006). Rapid-eye-movement sleep behaviour disorder as
an early marker for a neurodegenerative disorder: a descriptive study. Lancet
Neurol. 5, 572–577. doi: 10.1016/S1474-4422(06)70476-8

Isaias, I. U., Benti, R., Cilia, R., Canesi, M., Marotta, G., Gerundini, P., et al.
(2007). [123I]FP-CIT striatal binding in early Parkinson’s disease patients with
tremor vs. akinetic-rigid onset. Neuroreport 18, 1499–1502. doi: 10.1097/WNR.
0b013e3282ef69f9

Javoy-Agid, F., and Agid, Y. (1980). Is the mesocortical dopaminergic system
involved in Parkinson disease? Neurology 30, 1326–1330.

Junqué, C., Ramírez-Ruiz, B., Tolosa, E., Summerfield, C., Martí, M.-J., Pastor, P.,
et al. (2005). Amygdalar and hippocampal MRI volumetric reductions in
Parkinson’s disease with dementia. Mov. Disord. 20, 540–544. doi: 10.1002/mds.
20371

Kägi, G., Bhatia, K. P., and Tolosa, E. (2010). The role of DAT-SPECT in movement
disorders. J. Neurol. Neurosurg. Psychiatry 81, 5–12. doi: 10.1136/jnnp.2008.
157370

Kim, H. J., Kim, S. J., Kim, H. S., Choi, C. G., Kim, N., Han, S., et al. (2013).
Alterations of mean diffusivity in brain white matter and deep gray matter in
Parkinson’s disease. Neurosci. Lett. 550, 64–68. doi: 10.1016/j.neulet.2013.06.050

Kish, S. J., Shannak, K., and Hornykiewicz, O. (1988). Uneven pattern of
dopamine loss in the striatum of patients with idiopathic Parkinson’s disease.
Pathophysiologic and clinical implications. N. Engl. J. Med. 318, 876–880. doi:
10.1056/NEJM198804073181402

Kraemmer, J., Kovacs, G. G., Perju-Dumbrava, L., Pirker, S., Traub-Weidinger, T.,
and Pirker, W. (2014). Correlation of striatal dopamine transporter imaging
with post mortem Substantia nigra cell counts. Mov. Disord. 29, 1767–1773.
doi: 10.1002/mds.25975

Lang, A. E., and Lozano, A. M. (1998). Parkinson’s disease. N. Engl. J. Med. 339,
1044–1053. doi: 10.1056/NEJM199810083391506

Le Bihan, D., Mangin, J.-F., Poupon, C., Clark, C. A., Pappata, S., Molko, N., et al.
(2001). Diffusion tensor imaging: concepts and applications. J. Magn. Reson.
Imaging 13, 534–546. doi: 10.1002/jmri.1076

Lee, C. S., Samii, A., Sossi, V., Ruth, T. J., Schulzer, M., Holden,
J. E., et al. (2000). In vivo positron emission tomographic evidence
for compensatory changes in presynaptic dopaminergic nerve
terminals in Parkinson’s disease. Ann. Neurol. 47, 493–503.
doi: 10.1002/1531-8249(200004)47:4<493::AID-ANA13>3.0.CO;2-4

Lim, J.-S., Shin, S. A., Lee, J.-Y., Nam, H., Lee, J.-Y., and Kim, Y. K. (2016). Neural
substrates of rapid eye movement sleep behavior disorder in Parkinson’s disease.
Parkinsonism Relat. Disord. 23, 31–36. doi: 10.1016/j.parkreldis.2015.11.027

Loane, C., Politis, M., Kefalopoulou, Z., Valle-Guzman, N., Paul, G., Widner, H.,
et al. (2016). Aberrant nigral diffusion in Parkinson’s disease: a longitudinal
diffusion tensor imaging study. Mov. Disord. 31, 1020–1026. doi: 10.1002/mds.
26606

Lorio, S., Fresard, S., Adaszewski, S., Kherif, F., Chowdhury, R., Frackowiak,
R. S., et al. (2016). New tissue priors for improved automated classification of
subcortical brain structures on MRI. Neuroimage 130, 157–166. doi: 10.1016/j.
neuroimage.2016.01.062

Mattay, V. S., Tessitore, A., Callicott, J. H., Bertolino, A., Goldberg, T. E.,
Chase, T. N., et al. (2002). Dopaminergic modulation of cortical function in
patients with Parkinson’s disease. Ann. Neurol. 51, 156–164. doi: 10.1002/ana.
10078

McGhee, D. J., Royle, P. L., Thompson, P. A., Wright, D. E., Zajicek, J. P.,
and Counsell, C. E. (2013). A systematic review of biomarkers for disease
progression in Parkinson’s disease. BMC Neurol. 13:35. doi: 10.1186/1471-
2377-13-35

Mechelli, A., Friston, K. J., Frackowiak, R. S., and Price, C. J. (2005). Structural
covariance in the human cortex. J. Neurosci. 25, 8303–8310. doi: 10.1523/
JNEUROSCI.0357-05.2005

Meijer, F. J. A., Bloem, B. R., Mahlknecht, P., Seppi, K., and Goraj, B. (2013). Update
on diffusion MRI in Parkinson’s disease and atypical parkinsonism. J. Neurol.
Sci. 332, 21–29. doi: 10.1016/j.jns.2013.06.032

Melzer, T. R., Watts, R., MacAskill, M. R., Pitcher, T. L., Livingston, L., Keenan, R. J.,
et al. (2012). Grey matter atrophy in cognitively impaired Parkinson’s disease.
J. Neurol. Neurosurg. Psychiatry 83, 188–194. doi: 10.1136/jnnp-2011-300828

Mentzel, T. Q., Lieverse, R., Levens, A., Mentzel, C. L., Tenback, D. E., Bakker,
P. R., et al. (2016). Reliability and validity of an instrument for the assessment of
bradykinesia. Psychiatry Res. 238, 189–195. doi: 10.1016/j.psychres.2016.02.011

Miller, D. B., and O’Callaghan, J. P. (2015). Biomarkers of Parkinson’s disease:
present and future. Metabolism 64, S40–S46. doi: 10.1016/j.metabol.2014.10.030

Mori, F., Tanji, K., Zhang, H.-X., Nishihira, Y., Tan, C.-F., Takahashi, H., et al.
(2008). Maturation process of TDP-43-positive neuronal cytoplasmic inclusions
in amyotrophic lateral sclerosis with and without dementia. Acta Neuropathol.
116, 193–203. doi: 10.1007/s00401-008-0396-9

Mueller, K., Jech, R., Ballarini, T., Holiga, Š., Růžička, F., Piecha, F. A., et al.
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