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Objective: Several models have been proposed for the evolution of Alzheimer’s disease
(AD) biomarkers. The aim of this study was to identify changepoints in a range of
biomarkers during the preclinical phase of AD.

Methods: We examined nine measures based on cerebrospinal fluid (CSF), magnetic
resonance imaging (MRI) and cognitive testing, obtained from 306 cognitively normal
individuals, a subset of whom subsequently progressed to the symptomatic phase
of AD. A changepoint model was used to determine which of the measures had a
significant change in slope in relation to clinical symptom onset.

Results: All nine measures had significant changepoints, all of which preceded
symptom onset, however, the timing of these changepoints varied considerably.
A single measure, CSF t-tau, had an early changepoint (34 years prior to symptom
onset). A group of measures, including the remaining CSF measures (CSF Abeta and
phosphorylated tau) and all cognitive tests had changepoints 10–15 years prior to
symptom onset. A second group is formed by medial temporal lobe shape composite
measures, with a 6-year time difference between the right and left side (respectively nine
and 3 years prior to symptom onset).

Conclusion: These findings highlight the long period of time prior to symptom onset
during which AD pathology is accumulating in the brain. There are several significant
findings, including the early changes in cognition and the laterality of the MRI findings.
Additional work is needed to clarify their significance.

Keywords: preclinical Alzheimer’s disease, biomarkers, changepoints, shape analysis, cognitive assessment,
CSF assessment

INTRODUCTION

Accumulating evidence indicates that the underlying neuropathological mechanisms associated
with Alzheimer’s disease (AD) begin a decade or more before the emergence of mild cognitive
impairment (MCI) (Sperling et al., 2011). This has led to an increasing interest in understanding
the order and magnitude of biomarker changes during this ‘preclinical’ phase of AD.
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A hypothetical model has been proposed describing the order
in which biomarkers change across the spectrum of AD (Jack
et al., 2013). It has, however, been challenging to effectively test
this model since most longitudinal studies that have enrolled
cognitively normal individuals and collected relevant measures
have limited follow-up. Additionally, studies with limited follow-
up tend to lack a sufficient number of clinical outcomes (i.e.,
number of cases who progress to MCI) and therefore have limited
power for statistical analyses designed to determine the timing of
biomarker changes during preclinical AD.

Such analyses are feasible using data from the BIOCARD
study, in which participants were cognitively normal when first
enrolled, a wide range of informative measures were collected at
baseline, and some participants have now been followed for over
20 years. The availability of these measures when the subjects
were cognitively normal, and the unusually long duration of
follow-up, allows the examination of the timing of biomarker
changes during preclinical AD.

The primary goal of the analyses described here was to
identify changepoints in measures based on cerebrospinal fluid
(CSF), magnetic resonance imaging (MRI), and cognitive testing,
obtained from a cohort of cognitively normal individuals, a subset
of whom subsequently progressed to the symptomatic phase of
AD. This study was approved by the Johns Hopkins Medicine
Institutional Review Board.

MATERIALS AND METHODS

Study Design
The BIOCARD study, the study from which these data were
drawn, was initiated at the National Institutes of Health (NIH)
in 1995. While at the NIH, subjects were administered a
neuropsychological battery and clinical assessments annually.
MRI scans, CSF, and blood specimens were obtained
approximately every 2 years. The study was stopped in 2005
for administrative reasons and re-established at Johns Hopkins
University (JHU) in 2009, at which point the annual clinical
and neuropsychological assessments were reinitiated. Bi-annual
collection of CSF and MRI scans was re-established in 2015,
and the acquisition of positron emission tomography (PET)
scans using Pittsburgh Compound B (PiB) was begun. Tau PET
imaging was initiated in 2017 (see Figure 1 for a schematic
representation of the study design). This paper is based on
CSF and MRI data collected during the 1995–2005 period and
neuropsychological tests during the 1995–2013 period.

Qualified researchers may obtain access to all de-identified
clinical and imaging data used for this study.

Selection of Participants
Recruitment was conducted by the staff of the Geriatric
Psychiatry branch of the intramural program of the National
Institute of Mental Health. At baseline, all participants completed
a comprehensive evaluation at the NIH, consisting of a physical,
neurological and psychiatric examination, an electrocardiogram,
standard laboratory studies, and neuropsychological testing.
Individuals were excluded from participation if they were

cognitively impaired or had significant medical problems such as
severe cerebrovascular disease, epilepsy or alcohol or drug abuse.

A total of 349 individuals were initially enrolled in the
study, after providing written informed consent. By design,
approximately 75% of the participants had a first degree relative
with dementia of the Alzheimer type. The analyses presented
here are based on data from 290 subjects who were cognitively
normal at baseline and had complete observations on the baseline
variables of interest. Subjects were excluded from analyses for the
following reasons: (1) subjects had not yet re-enrolled in the study
or had withdrawn (n = 29); (2) Subjects were below 40 years old at
the beginning of study (n = 20). Not all biomarkers were available
for every subject and the actual number of subjects actually used
for each run of the model was smaller: 256 for CSF, 270 for MRI
and 281 for cognitive tests, for which we also excluded subjects
who only had one battery of tests, to allow for a more reliable
practice effect correction (see Statistical Analysis).

Of the 290 subjects included in these analyses, 209 subjects
remained cognitively normal at their last visit and 81 subjects
were diagnosed with MCI or dementia due to AD by the time
of their last visit. The demographic characteristics of the subjects
in the analysis are shown in Table 1, which are similar to the
characteristics of the cohort as a whole. Most of the subjects who
became symptomatic over time still meet criteria for MCI and
all but a very small number (n = 3) have a clinical diagnosis
consistent with AD. Follow-up of the cohort is continuing
and the goal is to get autopsies on as many participants as
possible. The accuracy of the clinical-pathological diagnoses has
been 92% to date.

Consensus Diagnostic Procedures
Clinical and cognitive assessments were completed annually at
the NIH initially and subsequently at JHU, as noted above.
A consensus diagnosis for each study visit was established by
the staff of the BIOCARD Clinical Core at JHU (prospectively
for subjects evaluated starting in 2009 and retrospectively for
subjects evaluated at the NIH). This research team included:
neurologists, neuropsychologists, research nurses and research
assistants. During each study visit, each subject had received a
comprehensive cognitive assessment and a Clinical Dementia
Rating (CDR), as well as a comprehensive medical evaluation
(including a medical, neurologic and psychiatric assessment). For
the cases with evidence of clinical or cognitive dysfunction, a
clinical summary was prepared that included information about
demographics, family history of dementia, work history, past
history of medical, psychiatric and neurologic disease, current
medication use and results from the neurologic and psychiatric
evaluation at the visit. The reports of clinical symptoms from
the CDR interview with the subject and collateral source (e.g.,
spouse, child, friend) were summarized, and the results of the
neuropsychological testing were reviewed.

The diagnostic process for each case was handled in a similar
manner. Two sources of information were used to determine if
the subject met clinical criteria for the syndromes of MCI or
dementia: (1) the CDR interview conducted with the subject
and the collateral source was used to determine if there was
evidence that the subject was demonstrating changes in cognition
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FIGURE 1 | Schematic representation of the study design.

TABLE 1 | Baseline characteristics of the participants included in the analyses in
comparison to the cohort as a whole.

Variable Cohort as a whole Subjects in Analysis

Subjects in Analysis 349 290

Age, mean years (SD) 57.3 (10.4) 58.8 (8.5)

Gender, % females 57.6% 58.3%

Education, mean years (SD) 17.0 (2.4) 17.1 (2.3)

Ethnicity, % Caucasians 97.1% (0.9%) 89.3%

% ApoE-4 carriers 33.6% 35.4%

MMSE, mean score (SD) 29.5 (0.9) 29.5 (0.8)

ApoE-4, apolipoprotein E-4; MMSE, Mini-Mental State Exam.

in daily life, (2) cognitive tests scores (and their comparison
to established norms) were used to determine if there was
evidence of significant decline in cognitive performance over
time. If a subject was deemed to be impaired, the decision
about the likely etiology of the syndrome was based on the
medical, neurologic, and psychiatric information collected at
each visit, as well as medical records obtained from the subject,
where necessary. More than one etiology could be endorsed
for each subject (e.g., AD and vascular disease). One of four
possible diagnostic categories was selected at each visit for each
subject: (1) Normal, (2) Mild Cognitive Impairment, (3) Impaired
Not MCI or (4) Dementia. The decision about the estimated
age of onset of clinical symptoms was determined separately,
and was based on responses from the subject and collateral
source during the CDR interview regarding approximately
when the relevant clinical symptoms began to develop. These
diagnostic procedures are comparable to those implemented
by the Alzheimer’s Disease Centers program supported by the
National Institute on Aging.

The estimated age of onset of clinical symptoms was based
primarily on a semi-structured interview with the subject and the
collateral source. The staff conducting the consensus diagnoses
were blinded to the CSF and imaging measures.

Within the context of this study, the diagnosis of Impaired
Not MCI typically reflected contrasting information from the
CDR interview and the cognitive test scores (i.e., the subject
or collateral source expressed concerns about cognitive changes

in daily life but the cognitive testing did not show changes,
or vice versa, the test scores provided evidence for declines
in cognition but neither the subject nor the collateral source
reported changes in daily life).

Selection Criteria for Variables Included
in the Analyses
The changepoint analyses presented here include variables from
the three primary domains evaluated in the BIOCARD study,
obtained when subjects were first enrolled. These domains
include: (1) cognitive test scores, (2) CSF values, and (3) MRI
measures. In order to be as parsimonious as possible, we based
the selection of which specific variables should be included in the
analyses on findings from prior publications (Albert et al., 2014)
that examined each of these measures in relation to time to onset
of clinical symptoms. A total of 9 measures were included, as
described below.

Cognitive Assessments
The annual, comprehensive neuropsychological battery covered
all major cognitive domains, including memory, executive
function, language, visuospatial ability, attention, speed of
processing and psychomotor speed (see Albert et al., 2014 for
the complete battery). We selected four cognitive measures to
include in the changepoint analyses, as these four measures
were significant in the multivariate Cox models examining the
association between baseline performance and time to onset
of clinical symptoms: (1) Digit Symbol Substitution Test from
the Wechsler Adult Intelligence Scale – Revised; (2) Logical
Memory – delayed recall from the Wechsler Memory Scale –
Revised; (3) Verbal Paired Associates – Immediate recall from the
Wechsler Memory Scale - Revised; and (4) Boston Naming Test.

CSF Assessments
Cerebrospinal fluid specimens were collected over time at the
NIH (1995–2005) but were later analyzed at a single point in time
by investigators at JHU. The CSF specimens collected from the
participants were analyzed using the xMAP-based AlzBio3 kit
[Innogenetics] run on the Bioplex 200 system. CSF specimens
were analyzed in triplicate on the same plate. The AlzBio3 kit
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contains monoclonal antibodies specific for Aβ1-42 (4D7A3),
t-tau (AT120), and p-tau181p (AT270), each chemically bonded
to unique sets of color-coded beads, and analyte-specific detector
antibodies (HT7, 3D6). Calibration curves were produced for
each biomarker using aqueous buffered solutions that contained
the combination of the three biomarkers at concentrations
ranging from 54 to 1,799 pg/ml for synthetic Aβ1-42 peptide,
25–1,555 pg/ml for recombinant tau, and 15–258 pg/ml for a tau
synthetic peptide phosphorylated at the threonine 181 position
(i.e., the p-tau181p standard). Each subject had all samples
(run in triplicate) analyzed on the same plate. The intra-assay
coefficients of variation (CV) for plates used in this study were:
7.7% ± 5.3 (Aβ1−42); 7.1% ± 4.9 (t-tau); 6.3% ± 4.8 (p-tau181).
Interassay (plate-to-plate) CVs for a single CSF standard run on
all plates used in this study were: 8.9%± 6.5 (Aβ1−42); 4.7%± 3.3
(t-tau), and 4.3%± 3.18 (p-tau181). Compared with studies using
the same kits and platforms, our absolute results are at the median
levels for Aβ1−42, t-tau, and p-tau181. The CVs, plate-to-plate
variability, and the dynamic range of our assays are well within
published norms (Mattsson et al., 2009; Shaw et al., 2009).

Three CSF variables were generated from these analyses: (1)
Abeta 42, (2) total tau (t-tau), and (3) phosphorylated tau (p-tau)
(Moghekar et al., 2013).

MRI Assessments
The MRI scans acquired from the participants were obtained
using a standard multi-modal protocol with a GE 1.5T scanner.
The coronal scans employed an SPGR (Spoiled Gradient
Echo) sequence (TR = 24, TE = 2, FOV = 256 × 256,
thickness/ gap = 2.0/0.0 mm, flip angle = 20, 124 slices).
The scans were processed with a semi-automated method,
using region-of-interest large deformation diffeomorphic metric
mapping (ROI-LDDMM) techniques (Miller et al., 2013).
More precisely, the MRI volumetric regions of interest (ROI)
included the entorhinal cortex, hippocampus, and amygdala.
For each of the three ROI, landmarks were placed manually
in each MRI scan to mark the boundaries of the ROI,
following previously published protocols [see Csernansky et al.
(1998) and Miller et al. (2013) for the hippocampus, Munn
et al. (2007) for the amygdala, and Miller et al. (2013)
for the entorhinal cortex]. Next, a group template for the
entorhinal cortex, hippocampus, and amygdala was created,
based on the set of baseline MRI scans. The same set of
landmarks was placed into this group template as in the
individual subject scans. ROI-LDDMM procedures were then
used to map the group template to the individual subject
scans, using both landmark matching (Csernansky et al., 2000)
and volume matching (Beg et al., 2005). The resulting
segmented binary images for the entorhinal cortex, hippocampus
and amygdala were used to calculate the volume of each
structure, by hemisphere, by summing the number of voxels
within the volume.

A medial temporal lobe composite was used in the present
analyses, based on an average of the entorhinal cortex,
hippocampus and amygdala. [Prior analyses showed that this
composite is more strongly associated with CSF alterations that
are an early marker of AD than the individual MRI measures

taken separately (Gross et al., 2017).] The measurements from the
right and left hemisphere were examined separately.

The volumetric measurements of the entorhinal cortex,
hippocampus and amygdala were normalized for head size
by including total intracranial volume (ICV) as a covariate
(Sanfilipo et al., 2004). ICV was calculated using coronal SPGR
scans in Freesurfer 5.1.0 (Segonne et al., 2004).

Statistical Analysis
Overview
The overall goal of the changepoint analyses was to determine
if each of the measures selected for analysis had a significant
changepoint in relation to time to onset of clinical symptoms
and, if so, the timing of these changepoints with respect to
one another. The model used in these analyses has previously
been applied to MRI data in this cohort in order to establish
the order in which changes occur in the volume, thickness and
shape of medial temporal lobe regions during preclinical AD
(Younes et al., 2014). A more advanced version of the model
(Tang et al., 2017) is applied here to the full range of biomarkers
available in the study.

The changepoint is represented in the model as a significant
change in slope (see Figure 2). The model uses all of the available
data (both from subjects who remained normal as well for those
who progressed to MCI) in order to estimate the changepoint.
The main features of the model are as follows:

1. Time is measured relative to the clinical onset time of
the disease (even though age is included as a covariate).
This means that if a subject has been diagnosed with MCI
10 years after another, the time scale for the latter is shifted
10 years to the right compared with the former.

2. Clinical onset times for normal subjects, which are not
observed, are treated as missing data, therefore assuming
“right censoring.” The model therefore assumes that
every subject will ultimately get the disease if they were
to live indefinitely. A prior model of disease onset is
used in conjunction.

FIGURE 2 | Schematic representation of the changepoint model.
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3. The model assumes linearity in the measures as a function
of age, with the change of slope at the changepoint.
It is slightly different from the sigmoidal model of
Jack et al. (2013), in which biomarkers smoothly transition
from a low-abnormality plateau to a high-abnormality
plateau in an S-shaped curve. Since the data in the study
pertain to individuals who were cognitively normal at
baseline and remained normal or who progressed from
normal to MCI, the model assumes that the subjects are
either in the low-abnormality range or in a transition
phase, thus not requiring adaptation to an S-shaped
function which might allow for two changepoints.

4. All models included age and gender as covariates
and a constant random effect. Education was included
as an additional covariate for the cognitive measures;
intracranial volume and left-handedness was included as
an additional covariate for the MRI measures.

5. We also corrected for the impact of a practice effect on
cognitive tests (Rabbitt et al., 2004; Zehnder et al., 2007;
Vivot et al., 2016) by introducing a covariate that depends
on the number of tests taken in the past, defined by
zpractice = 1− 2−k, when a test is taken for the kth time.

6. For cognitive tests, we also limited our analyses to subjects
that had at least two measurements over the course of
the study. (This restriction was not applied to other
biomarkers.)

7. CSF t-tau and p-tau were transformed to logarithmic scale
in the analyses. For robustness, a constraint ensuring non-
negative slopes in the regression model was applied.

8. The model can project the changepoint forward in time as
well as backward, sometimes allowing for a changepoint
that precedes the initiation of data collection. Although
the goal is to identify a changepoint preceding the
onset of symptoms, this two-phase model allows for the
changepoint and clinical onset of symptoms to coincide.

As shown in Figure 3, the model organizes the estimated time
of symptom onset for the biomarker values along a broken line.
The model fits the data so that the subjects with less abnormal
values (e.g., higher test scores) tend to be on the left side of
the curve and therefore to have a longer estimated time to
clinical symptom onset.

Mathematical Description
Let n denote the number of subjects in the study. For subject
k, we assume pk observations of a scalar biomarker, denoted
yk, 1, ..., yk, pk , at ages tk, 1, ..., tk,pk . Let T1,...,Tn denote the
subjects’ ages at the end of the study. Typically: Tk > tk,pk (age
at last biomarker measurement). Let Uk denote the age at MCI
onset, which is observed only if Uk ≤ Tk.

Finally, let zk, 1, ..., zk,pk denote additional covariates, such
as gender, education level, intracranial volume, etc. (Each
zk may be a vector.) Let ηk denote a constant random
effect associated with each subject and εk,1, ...εk, pk a random
noise associated with each observation. They are modeled
as Gaussian variables with respective variances τ2 and σ2.
A prior distribution is used for Uk, and modeled as a

Gaussian with mean m1 = 93 years and standard deviation
σ1 = 14.5 years. (This distribution was learned from an
independent dataset.) Details on the estimation procedure
leading to these values can be found in Tang et al. (2017).
Importantly, this distribution represents a clinical onset time
applicable to the whole population (including people who will
not get AD during their lifetime). Onset times for the diseased
population (i.e., conditional to onset prior to death) would be
significantly smaller.

The changepoint model is

yk,j = a+ b1tk, j + b2Uk + c max(tk, j − Sk, 0)

+βTzk, j + ηk + εk, j

where Sk = max(Uk −1, 20) (in years) is the changepoint, the
largest of 1 years before onset or 20 years.

This is a two-phase regression model. The biomarker first
follows a linear trajectory (phase I)

yk, j = a+ b1tk, j + b2Uk + βTzk, j + ηk + εk, j

for tk, j < Sk and then switches (with a continuous transition) to
the model (phase II)

yk, j = a+ (b1 + c)tk, j + b2Uk − cSk + βTzk, j + ηk + εk, j

which is still linear, now with slope b1 + c.
The null hypothesis model assumes the phase I model over all

times, or equivalently that c = 0.
The changepoint parameter is estimated using posterior

means defined as follows. For each fixed1, the model parameters
are estimated by maximum likelihood, and the value of the
log-likelihood `(1) is computed. The estimator for 1 is then
defined by

∧

1 =

∑
1 1(e`(1)

− e`0)∑
1(e`(1) − e`0)

where the sum is over a finite number of 1 between 0
and 100, and `0 is the log-likelihood for the null hypothesis
of no changepoint.

Validation
P-values and confidence intervals are estimated using bootstrap
techniques. The bootstrap method estimates standard errors
based on random resampling of the data with replacement;
it can be a more reliable method of calculating standard
errors and statistical significance than parametric methods
(Efron, 1979). For p-values, a general model is fitted, residuals
are estimated, then resampled to reconstruct a model satisfying
the null hypothesis (hence with c = 0). For confidence intervals,
the approach is similar, but the full estimated model is
used for reconstruction. We used 1,000 bootstrap samples for
each estimation. A median absolute deviation was calculated
for each changepoint in order to provide a robust estimate
of the standard deviation, estimated as the median of the
absolute value of the difference from the median of the
sample as a whole.

Additionally, a “precedence graph” was developed using the
variables for which significant changepoints were calculated
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FIGURE 3 | Model prediction for each variable compared with the observed data. The variables shown in the figures include: (A) CSF t-tau; (B) CSF p-tau; (C) Digit
Symbol Substitution Test; (D) Left Medial Temporal Lobe Volume. The red lines are the observed data for the subjects who remained cognitively normal. The green
lines represent individuals who progressed to cognitive impairment. Dark red stars (and dark green stars, respectively) are the model predictions for the same
subjects for whom observed data are presented. The blue vertical line marks the estimated changepoint. The black vertical line marks the estimated onset of clinical
symptoms. The age of onset for the subjects who remained cognitively normal was imputed via Bayesian prediction. Note that the x-axis values for cognitively
normal subjects are based on an estimated clinical onset time (since the “true one” is right-censored), using the posterior mean of its distribution given the observed
data. This explains the gap that can be observed in some graphs between actual and censored observations, since the latter lacks the statistical variability around
the estimated posterior mean.
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(n = 8). Each of the measures were compared with one
another using a bootstrap technique to determine the fraction
of bootstrap samples for which the changepoint estimates for
one measure were found to be earlier than the other. More
precisely, precedence between two modalities A and B, with
estimated changepoints 1̂A and 1̂B, is assessed by computing
the probability

P(1̂A ≤ 1̂B),

this probability being itself estimated using bootstrap resampling
(i.e., for the sampling distribution). Because this probability
requires to sample from the joint distribution of 1̂A and 1̂B,
bootstrap samples are generated consistently across modalities,
and the corresponding normalized frequency are computed over
1,000 replicas. This means that if, in order to reconstitute a
bootstrap sample for visit time t′ in modality A, one has used the
original residual computed at visit time t, then the corresponding
original residual from the same visit time t in modality B will
be used, whenever possible, to reconstitute a bootstrap sample at
time t′ for B. (When these two modalities have not been measured
together at the considered visit times, the bootstrap samples are
created independently.)

Groups of variables were computed using hierarchical
clustering, based on precedence probability vectors, in order to
provide a more concise representation of the changepoints with
respect to one another. Arrows were drawn between measures
when the confidence for one changepoint was earlier than the
other at least 75% of the time.

Null Hypothesis Model
The model with c = 0, which corresponds to our null hypothesis
of no changepoint related to disease onset takes the form

yk, j = a+ b1tk, j + b2Uk + βTzk, j + ηk + εk, j.

Importantly, it includes a disease effect, through the use of the
onset time as a partially observed covariate. While our primary
focus here is on changepoint, there is certainly an interest in
testing the significance of the hypothesisb2 6= 0, with respect to
the “double-null” model

yk, j = a+ b1tk, j + βTzk, j + ηk + εk, j,

which, this time, includes no disease related effect. A significant
value of b2, say, with b2 > 0, implies a lower value of the
biomarker for earlier cognitive onsets.

Accounting for a Normal Changepoint
The changepoint in the proposed model is specified in terms of
“time before disease onset” and does not include the possibility of
such a change being due to normal aging. One of the difficulties
in trying to account for both effects (let us call them disease
vs. normal changepoint) is that if one of them is strong enough
and not corrected for, it may induce significance when testing
for the other effect even if that one is not present. On the
other hand, correcting for an effect that is not present may
reduce the power for detecting the other effect, even if the
latter is present. For clarity and to simplify the exposition, we
have focused our model and results on a single changepoint

measured against disease onset. To be complete, however, we also
explored a model in which a correction for a normal changepoint
is included (which will therefore be more conservative for the
detection of a change associated with disease). This model
includes one additional covariate taking the form max(tkj–δ,
0) where δ is a subject-independent age measuring the normal
changepoint. To simplify the estimation process, this time δ

is computed first (using maximum likelihood for a model
without disease changepoint, which in this case only includes
random effects as hidden variables), and then plugged into
the general model.

RESULTS

Like most statistical results, significant tests reflect a possible
association between two factors and any further interpretation
(including, in particular, conclusions about cause and effect)
can only be expressed as plausible hypotheses, consistent with
the results, with other evidence and maybe prior beliefs. For
our model, significant results provide a credible indication that
a change of regime in the biomarker occurs some number of
years before clinical onset. One of the possible interpretations is
indeed that the changepoint marks an effect of the disease, which
happens before its onset can be detected. Another, however,
is that the change is non-pathological, but that its timing
is correlated with the disease onset. Statistics alone cannot
determine which one is more likely to reflect reality.

The results of the changepoint analyses for each of the
nine variables examined are summarized in Table 2. As can
be seen, all of the variables had a significant changepoint. The
changepoints varied widely across the years preceding symptom
onset. Figures 3, 4 provide graphical representations of the
model predictions.

The earliest changepoint is for CSF t-tau, that is estimated at
approximately 34 years. Significantly later in time, we estimate
changepoints for two cognitive markers: The Logical Memory
Delayed Recall (15.4 years prior to symptom onset), and the
Digit Symbol Substitution Test (14.6 years prior to symptom
onset). They are followed a couple of years later by the other two
cognitive measurements: Boston Naming Test (13.2 years prior to
clinical symptom onset) and Paired Associates Immediate Recall
(11.3 years prior to symptom onset), with CSF p-tau in between
(13.0 years prior to clinical symptom onset) and CSF abeta a
little later (9.6 years prior to symptom onset). Imaging markers
come next, with a 6-year difference between the changepoints
estimated on the right (8.8 years prior to clinical symptom onset)
and on the left (2.8 years prior to clinical symptom onset) medial
temporal lobe volumes. This arrangement is summarized in
Figure 5 showing the precedence graph between these variables,
in which arrows are placed only when the changepoint order
could be estimated with enough reliability, as measured via
bootstrap resampling.

All markers except CSF t-tau were significant for rejecting
the double-null hypothesis of no effect of the cognitive onset
time on the marker, with p-values given by 0.047 (left MTL),
0.004 (right MTL), 0.016 (CSF abeta), 0.007 (CSF p-tau) and
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TABLE 2 | Results of changepoint analysis for CSF, MRI and cognitive variables.

Variable Category/Name Significance of normal
changepoint p-value

Estimated number of years
of changepoint prior to

symptom onset [75% CI]

Median absolute
deviation of changepoint

Cerebrospinal fluid

Abeta <0.001 9.6 [6.4–12.8] 1.6

p-tau 0.024 13.0 [6.0–20.1] 3.1

t-tau 0.027 34.4 [24.9–44.0] 3.8

Magnetic Resonance Imaging

Medial Temporal Lobe (L) <0.001 2.8 [1.9–3.6] 0.2

Medial Temporal Lobe (R) 0.002 8.8 [6.0–11.6] 1.5

Cognitive Test Scores

Digit Symbol Substitution <0.001 14.6 [11.5–17.7] 1.2

Logical Memory Delayed <0.001 15.4 [12.6–18.1] 1.6

Paired Associates Delayed <0.001 11.3 [8.4–14.2] 1.2

Boston Naming Test 0.001 13.2 [10.3–16.2] 1.7

less than 0.001 for all cognitive markers. We found b2 > 0 for
all markers (indicating a smaller value of the marker for earlier
onsets), except for CSF p-tau, for which this value was negative.

Variables that were significant for normal changepoints
(p-value less than 0.05) at fixed age in the considered
biomarkers for CSF p-tau (age: 51.3), CSF t-tau (age:
64.2 years), Digit Symbol Substitution (age: 74.8), Logical
Memory Delayed (age: 67) and right medial temporal lobe
(age: 48.6 years). Introducing this normal changepoint
in the model as an additional covariate had limited
impact on the significance and value of the disease
changepoint times.

DISCUSSION

The changepoint analyses presented here lead to several
conclusions. First, the changepoint for CSF t-tau occurs several
decades prior to the onset of clinical symptoms. Second,
the changepoints seen in the rest of the variables appear to
reflect a cascade of events in which multiple measures are
changing a decade prior to the onset of clinical symptoms.
Third, there is a significant difference in the vulnerability of
the right vs. the left medial temporal lobe. Several of these
findings diverge from the hypothesized ordering of biomarkers
in the model proposed by Jack et al. (2013), as well as the
hypothetical stages proposed in the NIA/AA Working Group
Report, both of which propose that cognitive change follows
significant accumulation of amyloid and tau (Sperling et al.,
2011). Our results describe a more complex ordering, in which
some cognitive effects were found to predate changepoints in
CSF abeta. It is of course possible that changes in amyloid
occur at a time too early to be detectable in our model, or
with a different slope associated with the disease, which is
not addressed here.

To gain further insights into these findings, we looked
in greater detail at the two cognitive tests with very early
timepoints. Figure 3A (which shows the model regression on
t-tau after removal of covariate and random effects) indicates

that, after a first phase during which t-tau is flat, the protein
appears to accumulate starting about 34 years before onset.
This is a large gap, but, as already remarked, these results
do not inform us on the pathological nature of this increase,
but rather on the fact that an event/changepoint seems to
happen for CSF t-tau accumulation with a timing that can be
associated with clinical impairment several decades later. In
other terms, while this changepoint appears to be associated
with the onset of disease, it does not necessarily correspond
to an early effect. These findings also highlight the differential
relationship between CSF t-tau and p-tau during the evolution
of AD, although p-tau and t-tau tend to be highly correlated.
This difference is emphasized in the recent AD biomarker
“framework” (Jack et al., 2018), which argued that p-tau is
more closely related to the pathophysiology of AD, with CSF
p-tau levels correlating with neurofibrillary tangle pathology in
AD patients. By comparison, elevations in t-tau are also seen
in other diseases and are reflective of more general levels of
neurodegeneration.

The difference in the changepoint for the right and left medial
temporal has been presaged by prior reports that have examined
the individual regions within the MTL separately. For example,
we previously reported that both the right entorhinal cortex and
amygdala, when measured at baseline, were significantly related
to time to onset of symptoms, whereas measures on the left were
not (Soldan et al., 2015). Further studies are needed to determine
why this differential vulnerability may occur.

It is important to acknowledge the limitations of these
analyses. First, the wide confidence intervals for the CSF
assays, particularly for CSF t-tau and p-tau, limit the ability to
narrow down the changepoint for this important biomarker. The
variability of CSF assays has been an acknowledged challenge
in the field for some time, reflected by international efforts
to develop improved methods (Mattsson et al., 2011). Newer
assays are currently under development (Chang et al., 2017)
raising the possibility that measures with less variability will
be soon available that will permit more accurate changepoint
estimates, with narrower confidence intervals. Second, while
the sample size used here is sufficient to generate findings
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FIGURE 4 | Schematic representation of significant changepoint results in relation to symptom onset. The estimated onset of clinical symptoms is represented by
the value of 0 at the bottom right side of the figure. The numbers to the left of the 0 represent the estimated number of years prior to symptom onset for the
changepoint of each variable. The width of each box represents a bias-corrected 75% confidence interval for the estimated value of each variable.

FIGURE 5 | A precedence graph representing the order of the changepoints among the variables with significant changepoints. An arrow between groups of
variables indicates that, more than 75% of the time, the changepoint for the variable represented as the ‘source’ was found to be earlier than the changepoint for the
variable represented as the ‘target,’ using bootstrap samples. The groupings of the variables were computed using hierarchical clustering within each modality,
based on the precedence probability vectors. Arrows that can be inferred by transitivity are not shown for clarity.

with substantial statistical significance, the width of most of
the 75% confidence intervals is between 5 and 10 years, some
of them being even greater. Under the assumption that an
increase in sample size may reduce the confidence intervals,
we have established a consortium of five sites around the
world that are collecting comparable data (Gross et al., 2017).
We plan to apply this changepoint model to data gathered
from across the sites, which will greatly increase the sample
size. Third, the model itself incorporates assumptions that may
limit its applicability. For example, a two-phase linear model
assumes some continuity of the biomarkers before and after
changepoint, since it only accounts for a change of slope.
A very abrupt change, for example, would be imperfectly
approximated by the model and may result in a loss of
power in the likelihood ratio test. Sublinear or hyperlinear
evolutions before or after changepoints may have a similar

effect. There could also be more than one changepoint,
which is not handled by the analysis thus far. Additionally,
the estimates of the changepoint are generally more stable
when the likelihood ratio test p-value is small, and for small
changepoints. Lastly, the changepoint analysis presented here
is for univariate biomarkers, and therefore it has been applied
separately to each of the variables. While this approach can,
in theory, be extended to the multivariate case, such an
extension presents statistical challenges, which are currently
under investigation.

As these findings emphasize, identifying biomarker
changepoints during the preclinical phase of AD remains
challenging. Extrapolating the implications of changepoints
to predictive models that might identify individuals likely to
progress to AD in later life is yet another step beyond the
estimation of changepoints. The efforts underway to develop
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improved treatments for AD offer the hope that when accurate
prediction on an individual basis is possible, effective therapeutic
interventions will be available.
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