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Introduction: Human tau seeding and spreading occur following intracerebral

inoculation into different gray matter regions of brain homogenates obtained from

tauopathies in transgenic mice expressing wild or mutant tau, and in wild-type (WT) mice.

However, little is known about tau propagation following inoculation in the white matter.

Objectives: The present study is geared to learning about the patterns of tau seeding

and cells involved following unilateral inoculation in the corpus callosum of homogenates

from sporadic Alzheimer’s disease (AD), primary age-related tauopathy (PART: neuronal

4Rtau and 3Rtau), pure aging-related tau astrogliopathy (ARTAG: astroglial 4Rtau with

thorn-shaped astrocytes TSAs), globular glial tauopathy (GGT: 4Rtau with neuronal

tau and specific tau inclusions in astrocytes and oligodendrocytes, GAIs and GOIs,

respectively), progressive supranuclear palsy (PSP: 4Rtau with neuronal inclusions, tufted

astrocytes and coiled bodies), Pick’s disease (PiD: 3Rtau with characteristic Pick bodies

in neurons and tau containing fibrillar astrocytes), and frontotemporal lobar degeneration

linked to P301L mutation (FTLD-P301L: 4Rtau familial tauopathy).

Methods: Adult WT mice were inoculated unilaterally in the lateral corpus callosum

with sarkosyl-insoluble fractions or with sarkosyl-soluble fractions from the mentioned

tauopathies; mice were killed from 4 to 7 months after inoculation. Brains were fixed in

paraformaldehyde, embedded in paraffin and processed for immunohistochemistry.

Results: Tau seeding occurred in the ipsilateral corpus callosum and was also

detected in the contralateral corpus callosum. Phospho-tau deposits were found in

oligodendrocytes similar to coiled bodies and in threads. Moreover, tau deposits

co-localized with active (phosphorylated) tau kinases p38 and ERK 1/2, suggesting

active tau phosphorylation of murine tau. TSAs, GAIs, GOIs, tufted astrocytes, and
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tau-containing fibrillar astrocytes were not seen in any case. Tau deposits were often

associated with slight myelin disruption and the presence of small PLP1-immunoreactive

globules and dots in the ipsilateral corpus callosum 6 months after inoculation of

sarkosyl-insoluble fractions from every tauopathy.

Conclusions: Seeding and spreading of human tau in the corpus callosum of WT mice

occurs in oligodendrocytes, thereby supporting the idea of a role of oligodendrogliopathy

in tau seeding and spreading in the white matter in tauopathies. Slight differences in the

predominance of threads or oligodendroglial deposits suggest disease differences in the

capacity of tau seeding and spreading among tauopathies.

Keywords: tau, tauopathies, seeding and spreading, AD, ARTAG, GGT, PiD

INTRODUCTION

Tauopathies are progressive neurodegenerative diseases
characterized by the accumulation of abnormal hyper-
phosphorylated tau deposits in neurons and glial cells. These
diseases are classified according to the clinical symptoms and
neuropathological features, including particular regional and
cellular vulnerability, together with biochemical and genetic
determinants (Kovacs, 2015a,b). Biochemical factors are mainly
defined by the accumulation of particular tau isoforms; protein
tau in human brain (encoded by MAPT gene) is expressed in
six isoforms arising from alternative splicing of exons 2 and
3 which encode N-terminal sequences, and exon 10 which
encodes a microtubule-binding repeat domain; isoforms with
352 (3R/0N), 381 (3R/1N), and 410 (3R/2N) amino acids are
3Rtau; and isoforms with 383 (4R/0N), 412 (4R/1N), and 441
(4R/2N) amino acids are 4Rtau (Goedert et al., 1989, 1992;
Spillantini and Goedert, 1998). Genetic factors largely depend on
the mutation of MAPT which leads to familial frontotemporal
lobar degeneration with tau deposits (fFTLD-tau).

The main sporadic tauopathies are Alzheimer’s disease (AD),
which is a 4Rtau+3Rtau plus β-amyloidopathy characterized
by the combined accumulation of abnormal tau and β-
amyloid in β-amyloid plaques and cerebral blood vessels
in β-amyloid angiopathy (Duyckaerts and Dickson, 2011;
Lowe and Kalaria, 2015); primary age related tauopathy
(PART), a pure neuronal 3Rtau+4Rtau tauopathy; aging-
related tau astrogliopathy (ARTAG), a pure 4Rtau astroglial
tauopathy characterized by thorn-shaped astrocytes (TSAs) and
granular/fuzzy astrocytes; globular glial tauopathy (GGT), a
4Rtau neuronal and glial tauopathy with distinctive globular
astroglial and oligodendroglial inclusions (GAIs and GOIs,
respectively); Pick’s disease (PiD), a 3Rtau mainly neuronal
tauopathy with some tau deposits in fibrillar astrocytes;
progressive supranuclear palsy (PSP), a 4Rtau neuronal and glial
tauopathy with characteristic tufted astrocytes (TAs) and coiled
bodies; corticobasal degeneration (CBD), a 4Rtau neuronal and
glial tauopathy with characteristic astrocytic plaques and coiled
bodies; and argyrophilic grain disease (AGD), a 4Rtau neuronal
and glial tauopathy with neuronal pre-tangles, grains in the
neuropil, TSAs, and coiled bodies (Tolnay et al., 1997; Jellinger,
1998; Bigio et al., 2001; Ferrer et al., 2003, 2008, 2013; Powers

et al., 2003; Piao et al., 2005; Josephs et al., 2006; Giaccone et al.,
2008; Kovacs et al., 2008, 2016, 2017; Fu et al., 2010; Ahmed et al.,
2011, 2013; Dickson et al., 2011; Muñoz et al., 2011; Tolnay and
Braak, 2011; Crary et al., 2014; Duyckaerts et al., 2015; Jellinger
et al., 2015; Ferrer, 2018a; Kovacs, 2018).

The main familial tauopathies are familial AD (fAD), linked
to mutations in the genes encoding β-amyloid precursor protein
(APP); presenilin 1 (PSEN1) and presenilin 2 (PSEN2), with
biochemical characteristics similar to those in sporadic AD (sAD)
(Bertram and Tanzi, 2011); and familial frontotemporal lobar
degeneration linked to tau mutations (fFTLD-tau), in which
the clinical features, neuropathology, and biochemical attributes
largely depend on the localization of the mutation in MAPT
together with individual variations (Spillantini et al., 1997; Iseki
et al., 2001; Muñoz and Ferrer, 2008; Spina et al., 2008; Ghetti
et al., 2011; Tacik et al., 2016, 2017; Borrego-Écija et al., 2017).

One of the mechanisms involved in the progression of
tauopathies is inter-cellular and trans-regional propagation of
the altered protein tau (de Calignon et al., 2012; Liu et al.,
2012; Iba et al., 2013; Dujardin et al., 2014; Peeraer et al.,
2015; Stancu et al., 2015; Lewis and Dickson, 2016; Goedert and
Spillantini, 2017; Mudher et al., 2017). Studies analyzing tau
seeding and propagation in vivo have been performed following
inoculation of human homogenates in mice expressing human
tau (Clavaguera et al., 2009, 2013a,b, 2015; Ahmed et al., 2014;
Boluda et al., 2015) or in WT mice (Audouard et al., 2016; Guo
et al., 2016; Narasimhan et al., 2017). Homogenates are obtained
from transgenic mice expressing human tau or, more commonly,
from human neuronal or mixed neuronal and glial tauopathies;
these studies are focused on neurons as main targets of tau
propagation although glial cells are also involved (Clavaguera
et al., 2009, 2013a,b, 2015; Ahmed et al., 2014; Boluda et al.,
2015; Audouard et al., 2016; Guo et al., 2016; Narasimhan et al.,
2017). However, tau seeding and spreading occurs in neurons,
astrocytes, and oligodendrocytes following intrahippocampal
inoculation of homogenates from pure ARTAG in WT mice
(Ferrer et al., 2018), raising the important question of the
relevance of astrocytes in the pathogenesis and progression of at
least certain tauopathies. On the other hand, tau homogenates
have been inoculated into different gray matter regions including
cerebral cortex, hippocampus, striatum and locus ceruleus,
among other gray matter centers. Little attention has been
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paid regarding direct and selective tau inoculation into the
white matter.

In this line of thinking, and considering that (1) the
white matter is involved, often severely, in the majority of
tauopathies; and (2) the majority of cells in the white matter are
oligodendrocytes, the present study has been designed to learn
about the capacity of seeding and spreading of abnormal tau and
the involvement of oligodendrocytes in the process, following
unilateral inoculation of sarkosyl-insoluble and sarkosyl-soluble
fractions from distinct human tauopathies, including AD, PART,
ARTAG, GGT, PiD, PSP, and fFTLD-tau linked to P301L
mutation (fFTLD-P301L or P301L), into the lateral corpus
callosum of WT mice.

MATERIALS AND METHODS

Human Cases
Brain tissue was obtained from the Institute of Neuropathology
HUB-ICO-IDIBELL Biobank following the guidelines of Spanish
legislation on this matter (Real Decreto de Biobancos 1716/2011)
and approval of the local ethics committee. One hemisphere
was immediately cut in coronal sections, 1 cm thick, and
selected areas of the encephalon were rapidly dissected, frozen
on metal plates over dry ice, placed in individual air-tight
plastic bags, and stored at −80◦C until use for biochemical
studies. The other hemisphere was fixed by immersion in 4%
buffered formalin for 3 weeks for morphological studies and
neuropathological diagnoses.

Cases were categorized and selected following well-established
neuropathological criteria (Braak et al., 2006; Dickson et al.,
2011; Muñoz et al., 2011; Ahmed et al., 2013; Crary et al., 2014;
Kovacs et al., 2016; Borrego-Écija et al., 2017) excluding cases
with combined pathologies (excepting discrete small blood vessel
disease related to age, and atherosclerosis), systemic diseases, and
prolonged terminal hypoxia. It is worth stressing that ARTAG
cases were pure forms without additional tau pathology excepting
PART stage I-II (without involvement of the hippocampus). The
cause of death was variable and included bronchopneumonia,
rupture of aortic aneurysm, respiratory failure, cardiac arrest,
kidney failure, pulmonary thromboembolism, and metastatic
carcinoma. Post-mortem delay from death to tissue processing
was between 4 h and 18 h. The final selection of inocula was based
on the optimal profile of the western blot bands of sarkosyl-
insoluble fractions visualized with anti-P-tauSer422 antibodies
(see below). Selected samples were from sporadic AD (Braak
stage VI/C: one man and one woman aged 82 and 76 years,
respectively); PART (Braak stage IV: one man and one woman
aged 68 and 72, respectively); pure ARTAG (two women aged
68 and 72, and one man 68 years old); GGT (one man and one
woman aged 49 and 43 years, respectively); PiD (a 67-year-old
man); PSP (one woman aged 72 years old); fFTLD-P301L (one
man 53 years old); and one control (one man 61 years old).

Sarkosyl-Insoluble and Sarkosyl-Soluble
Fractions Used for Inoculations
Human brain samples used for brain inoculation in mice were
obtained from the hippocampus in cases of AD, PART, PiD,

fFTLD-P301L, and control; temporal white matter in cases
of ARTAG; striatum in PSP; and prefrontal cortex area 8 in
GGT cases.

Frozen samples of about 1 g were lysed in 10 volumes (w/v)
with cold suspension buffer (10mM Tris-HCl, pH 7.4, 0.8M
NaCl, 1mM EGTA) supplemented with 10% sucrose, protease,
and phosphatase inhibitors (Roche, GE). The homogenates
were first centrifuged at 20,000×g for 20min (Ultracentrifuge
Beckman with 70Ti rotor), and the supernatant (S1) was
saved. The pellet was re-homogenized in 5 volumes of
homogenization buffer and re-centrifuged at 20,000×g for
20min (Ultracentrifuge Beckman with 70Ti rotor). The two
supernatants (S1+ S2) were thenmixed and incubated with 0.1%
N-lauroylsarkosynate (sarkosyl) for 1 h at room temperature
while being shaken. Samples were then centrifuged at 100,000×g
for 1 h (Ultracentrifuge Beckman with 70Ti rotor). Sarkosyl-
insoluble pellets (P3) were re-suspended (0.2 ml/g) in 50mM
Tris–HCl (pH 7.4). Protein concentrations were quantified with
the bicinchoninic acid assay (BCA) assay (Pierce,Waltham,MA).
Sarkosyl-insoluble and sarkosyl-soluble fractions were frozen at
−80◦C until use.

Western Blotting of Sarkosyl-Insoluble
Fractions
Samples were mixed with loading sample buffer and heated
at 95◦C for 5min. Sixty microgram of protein was separated
by electrophoresis in SDS-PAGE gels and transferred to
nitrocellulose membranes (200mA per membrane, 90min). The
membranes were blocked for 1 h at room temperature with
5% non-fat milk in TBS containing 0.2% tween and were
then incubated with the primary antibody, anti-tau Ser422
(diluted 1:1,000; Thermo Fisher (Waltham, MA, USA). After
washing with TBS-T, blots were incubated with the appropriate
secondary antibody (anti-rabbit IgG conjugated with horseradish
peroxidase diluted at 1:2,000, DAKO, DE) for 45min at room
temperature. Immune complexes were revealed by incubating the
membranes with chemiluminescence reagent (Amersham, GE
Healthcare, Buckinghamshire, UK) (Ferrer et al., 2018).

Animals and Tissue Processing
Wild-type C57BL/6 mice from our colony were used. All animal
procedures were carried out following the guidelines of the
European Communities Council Directive 2010/63/EU and with
the approval of the local ethical committee (University of
Barcelona, Spain). The age and number of animals, and the
survival times, are listed in Table 1.

Inoculation Into the Lateral Corpus
Callosum
Mice were inoculated unilaterally with sarkosyl-insoluble
fractions or with sarkosyl-soluble fractions from the
above-mentioned tauopathies. In parallel, other mice were
injected with 50mM Tris-HCl (pH 7.4) as vehicle (negative)
controls. Mice were deeply anesthetized by intra-peritoneal
ketamin/xylazine/buprenorphine cocktail injection and placed
in a stereotaxic frame after assuring lack of reflexes. Injections
were done using a Hamilton syringe; the coordinates for lateral
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TABLE 1 | Mice used in the study of unilateral inoculation in the lateral corpus callosum, age of inoculation, age of killing, survival, and type of inoculum; AD, Alzheimer’s

disease stage VI; PART, primary age-related tauopathy; ARTAG, aging related tau astrogliopathy; GGT, globular glial tauopathy; PSP, progressive supranuclear palsy; PiD,

Pick’s disease; and fFTLD-P301L, familial frontotemporal lobar degeneration linked to P301L mutation in MAPT.

Age

inoculation

month

Age killed

month

Survival

months

Inoculum Tau-positive

oligodendrocytes in

ipsilateral/contralateral

corpus callosum

Tau-positive threads/dots in

ipsilateral/contralateral

corpus callosum

PLP1-immunoreactive globules and

balls in ipsilateral/contralateral corpus

callosum

7 11 4 Control –/– –/– –/–

Control –/– –/– –/–

AD ++/– φφ/– +/–

ADs –/– –/– –/–

GGT ± φ/– –/–

GGT ± φ/– –/–

GGT ± φ/– –/–

GGT ± φ/– –/–

GGTs –/– –/– –/–

GGTs –/– –/– –/–

GGTs –/– –/– –/–

12 18–19 6–7 AD +++/+++ φφ/φφ ±

AD +++/+++ φφ/φφ ±

PART +++/+++ φφ/φφ ±

PART +++/+++ φφ/φφ ±

PART +++/++ φφ/φ ±

PART +++/++ φ/φ ±

ARTAG +++/+ φφ/φ ±

ARTAG +++/+++ φ/φ ±

ARTAG +++/++ φφ/φ ±

GGT ++/+ φφ/φ ±

GGT ++/++ φφ/φφ ±

GGT +/+ φφ/φ –/–

GGT –/– –/– –/–

control –/– –/– –/–

control –/– –/– –/–

ARTAGs –/– –/– –/–

ARTAGs –/– –/– –/–

10-12 16-18 6 PSP ++/+ φ/φ ±

PSP ++/+ φ/φ –/–

PSP +++/++ φ/φ ±

PiD +/+ φφ/φ –/–

PiD +/+ φφ/φ –/–

PiD +/+ φφ/φ ±

PiD –/– –/– –/–

fFTLD-P301L +/+ φφ/φ ±

fFTLD-P301L ± φφ/φ –/–

fFTLD-P301L +/+ φφ/φ –/–

The column on the right is a summary of the efficiency of the injection referred to the presence of deposits in oligodendrocytes (percentage of tau-containing oligodendrocytes of the total

number of oligodendrocytes per section) in the ipsilateral and contralateral corpus callosum in each mouse. Inoculum refers to sarkosyl-insoluble fractions of the corresponding human

tauopathies with the exception of ADs, GGTs, and ARTAGs, which indicate sarkosyl-soluble fractions of AD, GGT, and ARTAG, respectively. Signs of the semiquantitative study: –, indicate

no tau-positive oligodendrocytes; +, 5–9% tau-positive oligodendrocytes; ++, 10–39%, and + + +, 40–65% tau-positive oligodendrocytes of the total number of oligodendrocytres

per section as revealed with double-labeling immunofluorescence with Olig2 and AT8 antibodies and visualization with confocal microscopy. Tau-containing threads and dots along

the corpus callosum were evaluated as: –, no deposits; φ, a few per section; φφ, some per section; and φφφ, many per section. Regarding myelin alterations in PLP1-immunostained

sections: –, no alterations; +, present.

corpus callosum inoculations were: −1.9 AP; ± 1.4ML relative
to Bregma and −1.0 DV from the dural surface. A volume of 1.2
µl was injected at a rate of 0.1 µl/min. The syringe was retired

slowly over a period of 10min to avoid leakage of the inoculum.
Each mouse was injected with inoculum from a single human
case. Following surgery, mice were kept in a warm blanket and
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monitored until they recovered from the anesthesia. Carprofen
analgesia was administered immediately after surgery and
once a day during the following 2 days. Animals were housed
individually with full access to food and water.

Inoculation Into the Hippocampus of
AD Homogenates
For comparative purposes two mice aged 10 months were
inoculated with sarkosyl-insoluble fractions and two mice of
similar age with sarkosyl-soluble fractions of AD cases into the
hippocampus and killed at the age of 16 months following the
same protocol. The coordinates for hippocampal injections were
−1.9 AP; ± 1.4ML relative to Bregma and −1.5 DV from the
dural surface. A volume of 1.5 µl was injected at a rate of 0.05
µl/min in the hippocampus.

Tissue Processing
Animals were killed under anesthesia and the brains were
rapidly fixed with paraformaldehyde in phosphate buffer,
and then embedded in paraffin. Consecutive serial sections,
4µm thick, were obtained with a sliding microtome. De-
waxed sections were stained with haematoxylin and eosin or
processed for immunohistochemistry using the antibodies AT8
(directed against P-tau at Ser202/Thr205), PLP1 (directed against
proteolipid protein 1) and RT97 (directed against neurofilaments
of 200 kDa) Following incubation with the primary antibody,
the sections were incubated with EnVision + system peroxidase
for 30min at room temperature. The peroxidase reaction was
visualized with diaminobenzidine and H2O2. Control of the
immunostaining included omission of the primary antibody;
no signal was obtained following incubation with only the
secondary antibody.

Double-labeling immunofluorescence was carried out on
the de-waxed sections, 4µm thick, which were stained with a
saturated solution of Sudan black B (Merck, DE) for 15min
to block autofluorescence of lipofuscin granules present in
cell bodies, and then rinsed in 70% ethanol and washed
in distilled water. The sections were boiled in citrate buffer
to enhance antigenicity and blocked for 30min at room
temperature with 10% fetal bovine serum diluted in PBS.
Then the sections were incubated at 4◦C overnight with
combinations of AT8 and one of the following primary
antibodies: glial fibrillary acidic protein (GFAP), Iba-1, Olig2,
and phospho-p38: p38-P (Thr180-Tyr182). Other sections were
immunostained with anti-phospho-tauThr181 and anti-phospho
ERK 1/2 (Thr202/Tyr204) (see Table 2 for the characteristics
of the antibodies). After washing, the sections were incubated
with Alexa488 or Alexa546 fluorescence secondary antibodies
against the corresponding host species. Nuclei were stained
with DRAQ5TM.

The characteristics of the antibodies are listed in Table 2.
Then the sections were mounted in Immuno-Fluore mounting
medium, sealed, and dried overnight. Sections were examined
with a Leica TCS-SL confocal microscope.

Semi-quantitative studies were carried in the ipsilateral
corpus callosum and contralateral corpus callosum in three
non-consecutive sections per case. Data were expressed as

the percentage of oligodendrocytes (as revealed with the
Olig2 antibody) with tau deposits (as seen with the antibody
AT8) compared with the total number of oligodendrocytes in
the same field following double-labeling immunofluorescence
and examination with the confocal microcopy. Signs: –,
indicates no tau deposits in oligodendrocytes; +, 5–9% tau-
positive oligodendrocytes; ++, 10–39%, and + + +, 40–65%
oligodendrocytes containing tau deposits from the total number
of oligodendrocytes in the same field. Regarding the number
of oligodendrocytes co-expressing phospho-tau and phospho-
p38, data were expressed as the percentage of tau-positive
oligodendrocytes containing active p38 from the total number
of tau-containing oligodendrocytes in three non-consecutive
sections in every case. Tau-containing threads and dots along
the corpus callosum were evaluated as: –, no deposits; φ, a few
per section; φφ, some per section; and φφφ, many per section.
Regarding myelin alterations in PLP1-immunostained sections:
–, no alterations;+, present.

RESULTS

Biochemical Characterization of
Tau Inocula
Western blots of sarkosyl-insoluble fractions incubated with anti
P-tau Ser422 antibodies showed the expected phospho-tau band
pattern for each tauopathy. AD and PART were characterized
by bands of 68, 64, and 60 kDa indicative of 3Rtau + 4Rtau
tauopathies; longer exposure showed bands of 50 kDa and about
30–37 kDa, and lower bands of about 20 kDa. ARTAG, GGT,
PSP, and fFTLD-P301L revealed two bands of 68 and 64 kDa
specific to 4Rtau tauopathies. GGT also showed several bands of
about 50 and 55 kDa, and lower bands of truncated tau of about
20 kDa. In contrast, PiD showed two bands of 64 and 60 kDa,
distinctive of 3Rtau tauopathies, in addition to some smears of
∼35 kDa (Figure 1).

Tau Seeding and Spreading in Mice
Inoculated in the Hippocampus and Lateral
Corpus Callosum With Sarkosyl-Insoluble
Fractions From AD
This set of experiments was used to show different regional
vulnerability of the same type of homogenates when injected in
the hippocampus with large numbers of neurons, and the corpus
callosum with a major predominance of oligodendrocytes.

Two mice unilaterally injected in the hippocampus
with sarkosyl-insoluble fractions of AD at the age of 10
months and killed at the age of 16 months showed tau
deposition in neurons and rare glial cells of the hippocampus
(dentate gyrus and CA1 region), in glial cells in the fimbria
(Figures 2A–C), and in some fibers and neurons in septal
nuclei and periventricular hypothalamus (data not shown).
One mouse unilaterally injected in the corpus callosum with
sarkosyl-insoluble fractions from AD at the age of 7 months
and killed at the age of 11 months showed phospho-tau
deposits in the ipsilateral corpus callosum in threads and glial
cells, and rarely extending to the middle corpus callosum
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TABLE 2 | : Characteristics of the antibodies used.

Antibody Mono-/polyclonal Dilution Supplier Country

Iba1 Rabbit polyclonal 1:1000 Wako Richmond, VA, USA

phospho-tau Thr181 Rabbit polyclonal 1:50 Cell Signaling Danvers, MA,USA

phospho-tau Ser422 Rabbit polyclonal 1:1000 Thermo Fisher Waltham, MA, USA

AT8 (Ser202/Thr205) Monoclonal 1:50 Innogenetics Ghent, BE

glial fibrillary acidic protein (GFAP) Rabbit polyclonal 1:500 Dako Glostrup, DK

P38-P (Thr180-Tyr182) Rabbit polyclonal 1:100 Cell Signaling Danvers, MA, USA

ERK 1/2-P (Thr202/Tyr204) Monoclonal 1:50 Merck-Millipore Billerica, MA, USA

Olig2 Rabbit polyclonal 1:500 Abcam Cambridge, UK

PLP1 Monoclonal 1:100 Lifespan Biosci Seattle, WA, USA

RT97 Monoclonal 1:50 Novocastra, Leica Biosyst Barcelona, Spain

FIGURE 1 | Sarkosyl-insoluble fractions of brain homogenates blotted with

anti-tauSer422 in AD, PART, ARTAG, GGT, PSP, PiD, and fFTLD-P301L cases.

The band pattern of AD and PART is characterized by three bands of 68, 64,

and 60 kDa. AD shows, in addition, bands of low molecular weight some of

them of about 20kDa and lower. The ARTAG case is characterized by two

bands of 68 and 64 kDa. GGT shows bands of 68 and 64 kDa, bands

between 50 and 37 kDa, and bands of truncated tau of about 20 kDa. PSP is

characterized by two bands of 68 and 64 kDa whereas PiD is characterized by

two bands of 64 and 60 kDa. Finally, fFTLD-P301L (P301L) shows two bands

of 68 and 64 kDa.

(data not shown). Two mice unilaterally injected into the
corpus callosum with sarkosyl-insoluble fractions of AD at
the age of 12 months and killed at the age of 18 months
showed tau deposition only in glial cells and threads of the
ipsilateral (D), middle region (E) and contralateral (F) corpus
(Figures 2D–F). Double-labeling immunofluorescence in the
corpus callosum showed almost absent co-localization of
GFAP and AT8 (Figure 2G), but numerous oligodendroglial
cells with phospho-tau deposits (Figure 2H) (Table 1). No
tau-positive deposits co-localized with the microglial marker
Iba1 (not shown).

One mouse aged 7 months and twomice aged 10 months were
inoculated with sarkosyl-soluble fractions from AD (ADs). No
tau deposits were seen 4 months and 6 months, respectively, after
the inoculation (Table 1).

Tau Seeding and Spreading in Mice
Inoculated in the Lateral Corpus Callosum
With Sarkosyl-Insoluble and
Sarkosyl-Soluble Fractions From
Pure Tauopathies
Inoculation of sarkosyl-insoluble fractions obtained from pure
tauopathies PART, ARTAG, GGT, PSP, PiD, and fFTLD-P301L
was very effective as seen in Table 1. Of the 25 inoculated animals
in the corpus callosum, only two (one inoculated with GGT and
another with PiD) did not show phospho-tau deposits. Control
cases (two mice inoculated at the age of 7 months and killed
at the age 11 months, and two mice inoculated at the age 12
months and killed at the age of 18–19 months) were negative, as
expected (Table 1).

Mice inoculated with sarkosyl-soluble fractions from
GGT and ARTAG cases (GGTs and ARTAGs) did not
show tau deposits at 4 months and 6 months, respectively,
after unilateral inoculation into the corpus callosum
(Table 1).

Mice injected with sarkosyl-insoluble fractions from GGT
at the age of 7 months and killed 4 months later showed
phospho-tau deposits in the ipsilateral corpus callosum in
threads and glial cells, rarely extending to the middle corpus
callosum. Mice inoculated at the age of 10–12 months and
surviving 6 to 7 months showed phospho-tau deposition in
threads and glial cells in the ipsilateral corpus callosum, middle
region and throughout the contralateral corpus callosum. The
pattern was similar using PART, ARTAG, GGT, PSP, PiD, and
fFTLD-P301L sarkosyl-insoluble fractions of brain homogenates,
although with disease differences regarding tau immunostaining.
PART and ARTAG homogenates showed the most dramatic
capacity for phospho-tau labeling of oligodendrocytes followed
by PSP. Phospho-tau in oligodendrocytes was less marked
in GGT, PiD and fFTLD-P301L when compared with the
other tauopathies (Figures 3, 4; Table 1). The morphology
of tau deposits in glial cells was perinuclear, with certain
coma-like enlargements in some cells, mimicking coiled
bodies in human tauopathies; labeled cells were commonly
arranged as oligodendrocyte rows. Glial cells with the
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FIGURE 2 | Hyper-phosphorylated tau containing cells and fibers following unilateral intra-hippocampal injection (A–C) and unilateral inoculation into the corpus

callosum (D–H) of sarkosyl-insoluble fractions from AD cases into WT mice at the age of 10 and 12 months, respectively, and killed 6 months later. (A,B) tau-containing

neurons and rare glial cells in the hippocampus; (C) tau-containing glial cells and threads in the fimbria. Tau- containing glial cells and threads in the ipsilateral (D),

middle region (E) and contralateral corpus callosum (F). Paraffin sections immunostained with AT8 antibody and slightly counterstained with hematoxylin; (A–F),

bar = 25µm. (G,H) Double-labeling immunofluorescence to GFAP (green) and AT8 (red) (G), and to Olig2 (green) and AT8 (red) in the corpus callosum of WT mice

inoculated with sarkosyl-insoluble fractions from AD at the age of 12 months and killed at the age of 18 months after unilateral inoculation in the corpus callosum. No

tau deposits are seen in astrocytes (G), but phospho-tau is present in oligodendrocytes (arrows). Paraffin sections, nuclei stained with DRAQ5TM (blue); bar = 20µm.

morphology of thorn-shaped astrocytes (TSAs), globular
astrocytic inclusions (GAIs), tufted astrocytes (TAs), and
fibrillary astrocytes were not visualized in any cases. Importantly,
globular oligodendroglial inclusions (GOIs) were not observed
following inoculation of sarkosyl-insoluble fractions from
GGT homogenates.

In addition to glial cells, tau-immunoreactive threads
and dots along nerve fibers were observed in every positive
case. However, threads were more common in GGT,
PiD, and fFTLD-P301L when compared with the other
tauopathies (Table 1).

Tau deposits were restricted to the corpus callosum, no
neurons and other cells were stained in the contralateral cortex
or in any other region at 6–7 months after inoculation into the
corpus callosum.

Identification of Hyper-Phosphorylated
Tau-Containing Cells Using
Double-Labeling Immunofluorescence and
Confocal Microscopy
Double-labeling immunofluorescence was carried out using
monoclonal anti-phospho-tau (clone AT8) and rabbit
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FIGURE 3 | Hyper-phosphorylated tau-containing cells and threads following unilateral inoculation of sarkosyl-insoluble fractions into the lateral corpus callosum from

PART, ARTAG, and GGT cases in WT mice at the age of 12 months and killed 6–7 months later; (A,D,G) correspond to the injected corpus callosum; (B,E,H) to the

middle region of the corpus callosum; and (C,F,I) to the contralateral corpus callosum. Paraffin sections immunostained with antibodies AT8 slightly counterstained

with hematoxylin; bar = 25µm.

polyclonal antibodies to microglia (Iba1), astrocytes (GFAP), and
oligodendroglia (Olig2).

As in the case of inoculation of AD sarkosyl-insoluble
fractions, no tau deposits were seen in microglia at any age
(mice with short survival: 4 months; and mice with long survival:
6–7 months). Phospho-tau deposits in astrocytes were rarely
seen only in ARTAG, as detailed in a previous work (Ferrer
et al., 2018). The vast majority of tau-containing cells in the
corpus callosum were oligodendrocytes, independently of the
tauopathy (Figure 5). The morphology of tau deposits was
similar in all the tauopathies: PART, ARTAG, GGT, PSP, PiD, and
fFTLD-P301L. The distribution of tau was perinuclear, forming
caps or coma-like deposits, the latter resembling coiled bodies
(Figure 5). Phospho-tau-labeled oligodendrocytes were found in
the ipsilateral corpus callosum, middle region and contralateral
corpus callosum (Figure 6). Semi-quantitative studies were
carried out in double-immunolabeled sections using Olig2 and
AT8 antibodies in three non-consecutive sections per case. Data
were expressed as the percentage of oligodendroglia with tau
deposits compared with the total number of oligodendrocytes
in the same field. As summarized in Table 1, the percentage
of labeled oligodendrocytes in the ipsilateral and contralateral

hippocampus was higher in AD, PART and ARTAG than in GGT,
and lower in PiD- and P301L-inoculated mice.

Tau in Oligodendrocytes Is Associated
With Activation of Tau-kinases in
Tau-Positive Cells
Double-labeling immunofluorescence with anti-phospho-tau
antibodies (AT8) and antibodies directed to phosphorylated
p38 kinase (p38-P Thr180-Tyr182), examined with confocal
microscopy, identified co-localization of tau and active p38
(p38-P) in oligodendrocytes in mice inoculated with sarkosyl-
insoluble fractions from tauopathies. Co-localization occurred
in oligodendrocytes in the ipsilateral corpus callosum, middle
region and contralateral corpus callosum (Figures 7A–C).
Semiquantitative studies showed that between 20 and 30%
of tau-containing oligodendrocytes co-localized phosphorylated
p38 kinase.

Similarly, double-labeling immunofluorescence with anti-
phospho-tauThr181 and phospho-ERK 1/2 (Thr202/Tyr204)
showed co-localization of tau and phospho-ERK 1/2-P in
oligodendrocytes in the corpus callosum of mice inoculated

Frontiers in Aging Neuroscience | www.frontiersin.org 8 May 2019 | Volume 11 | Article 112

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Ferrer et al. Oligodendrocytes in Tau Seeding and Spreading

FIGURE 4 | Hyper-phosphorylated tau-containing cells and threads following unilateral inoculation of sarkosyl-insoluble fractions into the lateral corpus callosum from

PSP, PiD, and fFTLD-P3101L in WT mice at the age of 10–12 months and killed at the age of 16–18 months; (A,D,G) correspond to the injected corpus callosum;

(B,E,H) to the middle region of the corpus callosum; and (C,F,I) to the contralateral corpus callosum. Paraffin sections immunostained with antibodies AT8 slightly

counterstained with hematoxylin; bar = 25µm.

with sarkosyl-insoluble fractions from tauopathies (Figure 7D).
The number of oligodendrocytes co-localizing phospho-tau and
phospho-ERK 1/2 was between 25 and 35% of the total number
of tau-containing oligodendrocytes.

The same pattern was seen in the different
tauopathies (Figures 7E–G).

No expression of phospho-p38 and phospho-ERK 1/2 was
observed outside the sites of phospho-tau deposits.

Long-Term Effects on Myelin Linked to
Tau Spreading
To learn whether tau deposition in oligodendrocytes and threads
had any impact on myelin and nerve fibers, consecutive
sections to those used for AT8 immunohistochemistry
were immunostained with anti-PLP1 antibody, as a marker
of myelin, and with the antibody RT97 as a marker of
neurofilaments 200 kDa.

Myelin lesions in the corpus callosum were very rare in
inoculated animals killed 4 months after the injection. However,
PLP1 immunohistochemistry disclosed slight myelin disruption
and the presence of small globules and balls in the ipsilateral
corpus callosum 6 months after the inoculation in some cases.
These changes were observed in all samples in all tauopathies

with tau deposits, although with disease-dependent variability;
lesions were more common following inoculation of AD, PART,
and ARTAG followed by GGT than following inoculation
of homogenates from PSP, PiD, and fFTLD-P301L (Figure 8;
Table 1). No changes were seen in cases inoculated with sarkosyl-
soluble fractions and in controls.

In contrast to myelin alterations, no modifications were
observed in parallel sections immunostained with the antibody
RT97 (data not shown).

DISCUSSION

The present findings are in line with previous observations
concerning tau seeding and spreading of abnormal tau derived
from human brain homogenates of different tauopathies
inoculated into the brain ofmice (Clavaguera et al., 2009, 2013a,b,
2015; Ahmed et al., 2014; Boluda et al., 2015; Audouard et al.,
2016; Guo et al., 2016; Narasimhan et al., 2017; Ferrer et al., 2018).
In all these experimental paradigms, studies are focused on the
neuronal involvement following inoculation in different regions
of the gray matter including cerebral cortex, hippocampus,
striatum and locus ceruleus, among others. However, the effects
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FIGURE 5 | Double-labeling immunofluorescence to Olig2 (green) and AT8 (red) in the corpus callosum of WT mice inoculated with sarkosyl-insoluble fractions from

PART, GGT, PSP, PiD, and FTLD-P301L and killed 6–7 months after unilateral inoculation showing phospho-tau deposition in oligodendrocytes (arrows). Paraffin

sections, nuclei stained with DRAQ5TM (blue); (A) bar = 15µm; (B,D,E), bar = 10µm; (C) bar = 20µm.
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FIGURE 6 | Double-labeling immunofluorescence to Olig2 (green) and AT8 (red) in the corpus callosum of WT mice inoculated with sarkosyl-insoluble fractions from

ARTAG at 12 months and killed at 19 months showing oligodendrocytes (arrows) containing hyper-phosphorylated tau in the injected corpus callosum (A), middle

region (B), and contralateral corpus callosum (C). Paraffin sections, nuclei stained with DRAQ5TM (blue); bar = 15µm.

of inoculation of abnormal tau in the white matter have not been
examined in detail.

The present observations show tau seeding and spreading
in the corpus callosum of WT mice following inoculation of
homogenates from AD (4R+3R tauopathy + β-amyloidopathy),
and pure neuronal 4R+3R tauopathy (PART), pure astrocyte
4R tauopathy (ARTAG), combined neuronal and glial 4R
tauopathy (PSP), neuronal and glial 4R tauopathy with
specific globular glial inclusions (GGT), 3R tauopathy
(PiD), and familial FTLD-P301L. In all these paradigms,
oligodendrocytes, and threads are the main if not the
only targets of abnormal tau, albeit with variations in
the capacity for seeding and spreading, depending on
the tauopathy.

The overwhelming presence of tau in oligodendrocytes
in comparison to astrocytes following abnormal tau
inoculation into the corpus callosum may be explained
because oligodendrocytes represent about 75.4 ± 5.1% of cells
in the human corpus callosum, (Yeung et al., 2014), and the
great majority of oligodendrocytes in mouse corpus callosum are

not replaced during the animal’s lifetime (Tripathi et al., 2017).
Other targets of tau seeding and spreading, as neurons in gray
matter regions, are well documented (Clavaguera et al., 2009,
2013a,b, 2015; Ahmed et al., 2014; Boluda et al., 2015; Audouard
et al., 2016; Guo et al., 2016; Narasimhan et al., 2017; Ferrer
et al., 2018), and here supported as complementary data using
the same homogenates of AD employed for callosal inoculation
following injection into the hippocampus; inoculation of
homogenates into the hippocampus produced tau deposition
in neurons and their projections, in addition to glial cells in
the fimbria.

Slight peculiarities in relation with the amount
of labeled oligodendrocytes and threads in the
analyzed tauopathies are probably related to particular
characteristics of tau in the different diseases. This
possibility is in agreement with the observation that
distinct artificially-generated strains of tau produce
different types of neuronal and glial inclusions
depending on the strain (Sanders et al., 2014;
Kaufman et al., 2016).
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FIGURE 7 | (A–C) Double-labeling immunofluorescence to phosphorylated p38 (p38-P: Thr180-182) (green) and AT8 (red) in the corpus callosum of WT mice

inoculated unilaterally with sarkosyl-insoluble fractions from ARTAG at the age of 12 months and killed at the age of 19 months. Phospho-p38 kinase (p38-P)

co-localizes with tau deposits (arrows) in oligodendrocytes in the ipsilateral corpus callosum (A), middle region (B), and contralateral corpus callosum (C). (D)

Double-labeling immunofluorescence to phospho-ERK 1/2 (Thr202/Tyr204) (green) and phospho-tau Thr181 (red) in the corpus callosum of WT mice inoculated with

sarkosyl-insoluble fractions from GGT at the age of 12 months and killed at the age of 19 months. Phospho-ERK 1/2 co-localizes with tau deposits (arrows) in

oligodendrocytes. (E–G) Double-labeling immunofluorescence to p38-P and AT8 (merge) in oligodendroglial cells of the corpus callosum of WT mice inoculated

unilaterally with sarkosyl-insoluble fractions from PART (E), PSP (F), or PiD (G) at the age of 10–12 months and killed 6 months later. Paraffin sections, nuclei stained

with DRAQ5TM (blue), (A,B), bar = 5µm; (C) bar = 10µm; (D) bar = 20µm; (E–G), bar in (G) = 10µm.
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FIGURE 8 | Representative sections of the corpus callosum immunostained with antibodies anti-PLP1 (proteolipid protein 1) in WT mice following inoculation of AD,

PART, ARTAG, GGT, PiD, and PSP in the lateral corpus callosum at the age of 10–12 months and killed 6 months later. Disrupted myelin with occasional formation of

small PLP1-immunoreactive balls is observed, when compared with mice inoculated with vehicle (control). Paraffin sections immunostained with antibodies PLP1

slightly counterstained with hematoxylin; bar = 50µm.

Morphological characteristics of tau inclusions in
oligodendrocytes in the present experiments are reminiscent to
coiled bodies which are the most typical tau oligodendroglial
inclusions in the majority of human tauopathies. However,
coiled-like bodies are also observed following inoculation of AD
and PART sarkosyl-insoluble homogenates thus indicating that
pure neuronal tauopathies (AD and PART) have the capacity
to induce tau seeding and spreading in oligodendrocytes in
WT mice. On the other hand, GOIs, which are typical of
GGT, are not seen following inoculation of sarkosyl-insoluble
homogenates from GGT cases. Based on these findings, it
may be suggested that, in addition to the postulated tau
strains, the characteristics of the host tau and the region of
inoculation help determine the characteristics of tau seeding and
spreading of human tau inoculated into WT mice. Therefore,
the present observations show that inoculation of homogenates
from specific tauopathies into the corpus callosum does not
replicate important aspects of the corresponding human
tauopathies. Regarding astrocytes, TSAs typical of ARTAG,

GAIs typical of GGT, tau-containing fibrillary astrocytes
found in PiD, and TA of PSP are not reproduced in WT
following intracallosal inoculation of homogenates from the
corresponding tauopathies. This may be due, in part, to the
predominance of GAIs and TAs in gray matter regions in
human diseases, while TSAs are typically localized in the
white matter.

Importantly, sarkosyl-soluble fractions have no capacity of tau
seeding in any cases.

It may be suggested that the progressive appearance
of threads along the corpus callosum is due to diffusion
of the seeds. However, it can be posed that tau seeding
and spreading in oligodendrocytes is an active process. On
the one hand, inoculated tau has a half-life of a few
days (Guo et al., 2016), whereas tau immunostaining in
the corpus callosum extends over greater distances with
longer survival time. Moreover, abnormal tau deposits in
inoculated mice particularly those in oligodendrocytes co-
express phospho-kinase p-38 and phospho-ERK-1/2; expression
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of phospho-kinase p38 and phospho-ERK-1/2 is restricted to
the regions with phospho-tau deposits including threads and
dots, thus suggesting active phosphorylation of resident murine
tau (Ferrer et al., 2001a,b, 2005; Ferrer, 2004; Puig et al., 2004).

Coiled bodies are present in most non-AD tauopathies,
and the white matter is affected in the majority of tauopathies.
Various transgenic mice expressing tau mutations have
oligodendroglial, in addition to neuronal and astroglial
inclusions (Götz et al., 2001; Lin et al., 2003, 2005; Ren
et al., 2014; Ferrer, 2018b). Moreover, selective over-
expression of mutant tau in oligodendrocytes using CNP
promoter in mice produces filamentous inclusions in
oligodendrocytes and progressive impairment of axonal
transport, followed by myelin and axonal disruption
(Higuchi et al., 2005). Finally, in vitro studies have also
shown deleterious effects of abnormal tau expression and
deposition in oligodendrocytes which are causative of
degeneration in particular settings (Richter-Lansberg, 2008;
Richter-Landsberg, 2016). Functional deficiencies linked to
phospho-tau deposition in oligodendrocytes and threads is
also supported in the present study by the demonstration
of slightly disrupted myelin and the occasional presence of
PLP1-immunoreactive balls and dots in the ipsilateral corpus
callosum following inoculation of sarkosyl-enriched fractions
fromAD, PART, ARTAG and less commonly with GGT, PSP, PiD,
and fFTLD-301L.

Together, the present findings show that the white
matter may be involved in tau seeding and spreading in
a variety of experimentally-induced tauopathies. This is
in accordance with the well-recognized, although often
minimized, tau involvement of the white matter in most
human tauopathies. Moreover, the present observations point
to oligodendrocytes as targets of tau seeding and spreading
in the white matter, thus highlighting oligodendrogliopathy
(Ferrer, 2018b) as a component in the pathogenesis
of tauopathies.
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