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Despite subjective cognitive decline (SCD), a preclinical stage of Alzheimer’s disease (AD),

being widely studied in recent years, studies on centrality frequency in individuals with

SCD are lacking. This study aimed to investigate the differences in centrality frequency

between individuals with SCD and normal controls (NCs). Forty individuals with SCD

and 53 well-matched NCs underwent a resting-state functional magnetic resonance

imaging scan. We assessed individual dynamic functional connectivity using sliding

window correlations. In each time window, brain regions with a high degree centrality

were defined as hubs. Across the entire time window, the proportion of time that the hub

appeared was characterized as centrality frequency. The centrality frequency correlated

with cognitive performance differently in individuals with SCD and NCs. Our results

revealed that in individuals with SCD, compared with NCs, correlations between centrality

frequency of the anterior cortical regions and cognitive performance decreased (79.2%

for NCs and 43.5% for individuals with SCD). In contrast, correlations between centrality

frequency of the posterior cortical regions and cognitive performance increased in SCD

individuals compared with NCs (20.8% for NCs and 56.5% for individuals with SCD).

Moreover, the changes mainly focused on the anterior (93.3% for NCs and 45.5% for

individuals with SCD) and posterior (6.7% for NCs and 54.5% for individuals with SCD)

regions associated with the default mode network (DMN). In addition, we used absolute

thresholds (correlation efficient r = 0.2, 0.25) and proportional thresholds (sparsity= 0.2,

0.25) to verify the results. Dynamic results are relative stable at absolute thresholds while

static results are relative stable at proportional thresholds. Converging findings provide

a new framework for the detection of the changes occurring in individuals with SCD via

centrality frequency of the DMN.

Keywords: subjective cognitive decline, centrality frequency, resting-state functional magnetic resonance

imaging, hub probability, default mode network
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INTRODUCTION

Alzheimer’s disease (AD) is one of the classical chronic

neurodegenerative diseases and considered of the common cause

of dementia. With the progression of the disease, patients
gradually lose independence and withdraw from family and
society. According to the Alzheimer’s Association Report, the

patients’ medical care cost is up to 232 billion dollars in America
in 2017 (Alzheimer’s, 2018). Moreover, there are no effective

treatments that can stop or slow AD progression by much

(Winblad et al., 2016), so developed countries have spent a great
deal on AD patients’ medical care. Subjective cognitive decline
(SCD) appears at a very early stage of AD and has the potential to
be an effective symptomatic indicator of preclinical AD (Lopez-
Sanz et al., 2017). In clinical trials, SCD generally refers to
subjectively experienced cognitive deterioration (Tales et al.,

2015) and primarily related to the increasing risk of developing
AD (Jessen et al., 2014). Convergent evidence from clinical
studies shows that tau, Aβ protein levels and gray matter atrophy

are the current validated biomarkers for the early identification

of AD (Lopez-Sanz et al., 2018). In addition, researchers found
a disrupted pattern in the peripheral brain regions of SCD

subjects based on the structural diffusion tensor imaging data

(Yan et al., 2018). However, the InternationalWorking Group has
reported that structural and metabolic changes emerge later than
functional changes (Dubois et al., 2016), which can be assessed by

electrophysiological techniques or magnetic resonance imaging
(MRI) scans. Previous studies have shown abnormal increased
brain activity during memory tasks inMCI (Puregger et al., 2003)

and SCD (Maestu et al., 2011) subjects. Even in spontaneous
brain activity, SCD individuals have presented with significant
alpha power alterations (Lopez-Sanz et al., 2016). The above

studies mainly adopted the method of magnetoencephalogram
(MEG) or electroencephalogram (EEG) because of its high
temporal resolution.

MRI scans have higher spatial resolution, which is better for

simultaneously knowing about the brain structure and function.
In recent years, resting state functional magnetic resonance
imaging (fMRI) has attracted more and more attention on the

application of studying the mechanisms of neurological disorders

(Lau et al., 2016). Resting state fMRI, which can reflect intrinsic
brain activity, is based on a blood oxygenation level-dependent
(BOLD) signal to extract biomarkers. Recently, resting state fMRI
has been effectively used for the preclinical identification of AD

(Wee et al., 2013). One common method to process resting state
fMRI data is functional connectivity (FC), which sheds light on
the exchange of information across functionally specialized brain

regions. This method usually calculates the pairwise Pearson’s
correlation coefficient or the sparse representation (Jie et al.,
2014) between every pair of N time series from averaged brain

regions to obtain a whole brain FC (Zhang et al., 2017a).
Compared with the sparse representation measures, Pearson’s
correlation is more easily calculated and more widely used (Chen
et al., 2016). Based on this method, researchers found that in
MCI subjects, not only functional connectivity between the left
thalamus and a set of regions was decreased (Wang et al., 2012)
but also functional connectivity in cortical midline structures

was decreased (Ries et al., 2010). Besides, the whole-brain voxel-
wise degree map measured by static functional connectivity also
showed the reduced degree in the right middle occipital gyrus
in the progression from MCI to AD (Deng et al., 2016). In
addition, Vega et al. (2016) found that elderly SCD women
who reported more severe cognitive decline showed weaker
negative functional connectivity within the frontal cortex and
stronger positive connectivity within the right middle temporal
gyrus. Thus, abnormal FC across specific brain regions has
been associated with cognitive decline, which supports the
“disconnection” hypothesis in SCD.

The functional connectivity studies above are almost based
on a static functional network, which represents an average and
is stable. However, some findings have suggested that the brain
functional connectivity is non-stationary and not in a state of
equilibrium, and the discrete FC states switch rapidly (Allen
et al., 2014; Hansen et al., 2015; Vidaurre et al., 2017). Therefore,
compared with traditional average functional connectivity,
dynamic functional connectivity provides a new perspective for
data analysis. Resting state brain networks (RSNs) constructed
by MEG and fMRI showed significant similarity (Brookes et al.,
2011), but different stationarity (de Pasquale et al., 2010). MEG
RSNs showed more non-stationary maybe because of the high
time resolution. Thus, researchers studied the temporal dynamics
of hub regions at the slow and fast timescale measured by MEG
(de Pasquale et al., 2012, 2016, 2018; Betti et al., 2018). Dynamic
analysis is often used under the assumption that the relationships
between areas are of greater interest than the relative signal
amplitudes (Keilholz et al., 2017). A dynamic functional network
can reveal the rapid fluctuation and time-varying characteristics
of brain function, which cannot be revealed in the static
functional connectivity analysis. The dynamic FC analysis has
great potential in the field of neurological disorders, providing
biomarkers in major disorders and diseases (Kaiser et al., 2016),
including schizophrenia (Damaraju et al., 2014), Parkinson’s
disease (Rowe et al., 2010), and Alzheimer’s disease (Jones et al.,
2012). In a study of particular note, researchers showed that
compared with features from static functional connectivity, using
features selected from a dynamic network can achieve better
performance in discriminating ADpatients from normal controls
(de Vos et al., 2018). Thus, dynamic connectivity has the potential
to find optimal disease markers. However, to our knowledge, few
studies have focused on dynamic functional connectivity in SCD
(Pijnenburg et al., 2008; Jiang et al., 2018).

In this study, we constructed dynamic resting state FC with
fMRI of normal control participants and SCD participants. A
previous study showed the disruption of average FC network
with MEG in SCD participants and further demonstrated the
different synchronization patterns in anterior default mode
network (DMN) and posterior DMN compared to normal
control participants (Lopez-Sanz et al., 2017). The above results
were based on static FC, while no dynamic FC reported similar
results according to our knowledge. Additionally, a previous
study from our group showed the rich club disturbances in
SCD participants, which indicated the abnormality of highly
connected hubs (Yan et al., 2018). Hence, we hypothesized that
the disruption of FC in SCD participants not only in static FC,
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but also in dynamic FC. And the disruption of highly connected
hubs revealed by dynamic FC would take place in the SCD
stage. In addition, in order to compare with previous studies,
we classified the hubs into anterior and posterior network, DMN
and non-DMN.

METHODS

Participants
The dataset in this study has been reported by previous study
(Yang et al., 2018). This study was approved by the Medical
Research Ethics Committee and Institutional Review Board of
Xuanwu Hospital (ClinicalTrials.gov identifier: NCT02353884
and NCT02225964). A total of 93 Chinese participants, including
53 normal control (NC) participants and 40 SCD participants
with memory concerns were voluntarily recruited for this
study. NC participants were recruited by advertisements and
SCD participants were recruited from the memory clinic of
the Medical Neurology Department of Xuan Wu Hospital
Capital Medical University in Beijing, China. All participants
agreed to and signed the informed consent in accordance
with the Declaration of Helsinki. The diagnosis of SCD was
consistent with SCD Initiative (Jessen et al., 2014). Experienced
neurologists evaluated all the participants by professional
cognitive scales, including the Chinese version of the Mini-
Mental State Examination (MMSE), the Beijing version of
Montreal Cognitive Assessment (MoCA), the auditory verbal
learning test (AVLT), the Clinical Dementia Rating (CDR), the
clock drawing test (CDT), Activities of Daily Living (ADL) Scale,
Hachinski Ischemic Score (HIS), and Center for Epidemiologic
Studies depression scale (CES-DS). All the participants had the
MMSE and MoCA scores with the normal range as reported
in the previous study (Yang et al., 2018). NC participants had
no memory concerns, while SCD participants had self-report
continuousmemory decline within the last 5 years and confirmed
by an informant. And demographic details and participants’
scores on neuropsychological tests are summarized in Table 1.

MRI Acquisition
All participants were imaged with a 3.0 Tesla MR imager
(Siemens Magnetom Trio Tim MRI system, Germany) using
a standard head coil. Resting-state blood oxygenation level
dependent (BOLD) signals were collected using an echo-planar
imaging (EPI) sequence with the following parameters: 28 axial
slices; repetition time (TR) = 2,000ms; echo time (TE) = 40ms;
flip angle (FA) = 90◦; slice thickness = 4.0mm; gap = 0.8mm;
matrix = 64 × 64; and field of view (FOV) = 256 × 256mm.
All participants were asked to keep their eyes closed and mind
relaxed with as little motion as possible during the scan, which
lasted for 8min. In addition to rs-fMRI scans, T1-weighted
images were acquired for anatomical reference. T1-weighted MR
images were obtained by a 3D magnetization-prepared rapid
gradient echo (MPRAGE) with the following parameters: slices
= 176, thickness= 1.0mm, TR= 1,900ms, TE= 2ms, inversion
time (TI)= 900ms, FA= 9◦, FOV= 224× 256mm, and matrix
= 448× 512.

TABLE 1 | Participant demographics.

Group NC (n = 53) SCD (n = 40) P-value

Age (years) 63.50 ± 8.25 64.90 ± 8.31 0.421

Gender (M/F) 21/32 16/24 0.900

Education 10.98 ± 5.10 11.65 ± 4.53 0.513

AVLT-I 9.23 ± 1.89 8.32 ± 1.92 0.027

AVLT-D 10.15 ± 2.87 8.95 ± 2.66 0.043

AVLT-R 12.00 ± 2.61 11.18 ± 2.75 0.144

MMSE 28.19 ± 2.17 28.05 ± 1.93 0.750

MoCA 26.22 ± 3.16 25.51 ± 1.73 0.288

CDT 2.64 ± 0.65 2.57 ± 0.69 0.604

CDR 0.00 ± 0.00 0.01 ± 0.08 0.324

CES-DS 2.18 ± 4.59 4.52 ± 5.59 0.073

HIS 0.06 ± 0.32 0.62 ± 1.72 0.058

ADL 20.02 ± 0.14 20.28 ± 1.26 0.228

The P-value for gender distribution in the two groups was obtained by the chi-squared

test. The P-values for differences in age, years of education and scale scores between

the two groups were obtained by the two-sample t-test. Values are expressed as the

mean ± SD.

Data Preprocessing
Based on the MATLAB software platform, the rs-fMRI data
were preprocessed via GRETNA (Wang et al., 2015), a graph
theoretical network analysis toolbox for imaging connectomics
that included the following preprocessing steps. First, we applied
the removal of the first 10 time points to improve the signal-
to-noise ratio. Second, the slice-time and head motions were
corrected for the difference between scan layers. Third, the
functional data were normalized into Montreal Neurological
Institute (MNI) space by structural images (T1 images) for
each subject. Forth, spatial smoothing with a 4mm full-width
half-maximum Gaussian kernel, removal of the linear trend in
the signal, band-pass filtering (0.01–0.1Hz) and global signal
regression were applied to data in succession. Lastly, the
functional data were transformed to the Automated Anatomical
Labeling (AAL) atlas by the LDDMM transformation (Du et al.,
2011; Tan and Qiu, 2016).

Mapping Hubs in Static and Dynamic
Functional Connectivity
In static functional connectivity, we divided the brain (not
including cerebellum regions) into 90 regions based on the AAL
atlas and used the average signal for each region to obtain a
functional connectivity matrix. Functional connectivity between
all pairs of the 90 regions was represented by linear Pearson
correlation coefficients between all pairs of the time series. Rij was
the Pearson correlation coefficient between the ith brain region
and the jth brain region:

Rij =

∑
[

(x[t]i − xi)
(

x[t]j − xj
)]

√

∑

[

(x[t]i − xi)
2
(

x[t]j − xj
)2

]

i, j = 1 . . . 90

This will generate a 90 × 90 correlation matrix. To identify
hubs, we counted the number of strongly functional connectivity
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to each ROI (above a threshold of r > 0.25). This metric is
sometimes referred to as degree centrality or degree in graph
theory (Carboni, 2015). This measure of connectivity (degree, D)
for each ROI (i) with all other regions (j) is determined as follows:

Di =
∑

dij j = 1 . . . 90, i 6= j

Then for the comparison between groups, the degree of each
ROI was normalized to Z-scores in every correlation matrix. The
Z-score transformation was as follows:

Zi =
Di − D

σD
i = 1 . . . 90,

where D refers to the mean degree across all the ROIs and
σD refers to the standard deviation of all the ROIs in every
correlation matrix. According to a previous study, hubs were
defined based on the degree and the degree was one standard
deviation higher than the mean value (Buckner et al., 2009).

In dynamic functional connectivity, 215 brain networks (215
time windows) were constructed for each subject. Combined with
the sliding time-window approach, a 90 × 90 brain network was
constructed in each time window with the width of 25 TR (50 s)
slid in steps of 1 TR (2 s). As mentioned above, the hubs were
defined in each time window according to the same algorithm
to static functional connectivity. The Z-score transformation
of degree was performed in each time window. Furthermore,
we calculated the percentage of each ROI being hubs during
the whole time windows. The percentage was defined as hub
probability and suggest the centrality frequency of specific ROI
(Zhang et al., 2017b).

Statistical Analysis
To compare the difference of dynamic functional connectivity
between NC and SCD group, we first ran independent t-test
for hub probability of each ROI. Furthermore, to reveal the
relationship between functional brain dynamics and cognitive
performance, the multiple linear regression model was employed
inNC group, SCD group and all participants. The hub probability
of 90 AAL regions was entered as the main factor, and the scores
of each neuropsychological tests was entered as the dependent
variable, while controlling for age, gender and education level.
We selected the brain regions (p < 0.05) whose centrality
frequency played important roles in cognitive performance for
further analyses.

Similar analyses were performed on static functional
connectivity. The degree centrality was entered as the main
factor for the multiple linear regression model and the brain
regions (p < 0.05) were selected for the further analyses.

Validation of the Degree Centrality
The calculation of degree centrality was fundamental to the
present analysis. Thus, based on the previous definition of
strongly functional connectivity (at a threshold of correlation
efficient r = 0.25), we ran the similar analysis at the other
threshold of correlation efficient r = 0.2 to compare the results.
In addition, previous studies showed different strategies for

the threshold selection to obtain a binary graph, such as a
fixed density (Zalesky et al., 2014), multiple densities (Chiang
et al., 2016), and individual statistical threshold (de Pasquale
et al., 2013, 2017). A previous study reported that the absolute
threshold (based on correlation efficient) and proportional
threshold (based on sparsity) were popular and powerful to
obtain the binary graphs (Garrison et al., 2015). Therefore, we
performed Z-scored transformation on the Pearson correlation
matrix and ran the similar analysis on the matrix at the
proportional threshold (sparsity = 0.2, 0.25) to compare the
results (Zhang et al., 2017b).

RESULTS

Difference of Hub Probability Between NC
and SCD Group
We performed independent t-test on mean hub probability of
each ROI (90 ROIs) between NC and SCD group. As shown
in Figure 1A, right gyrus rectus, left midcingulate area, right
midcingulate area, left hippocampus, right calcarine sulcus,
left lingual gyrus and left superior occipital showed significant
difference (p < 0.05) between NC and SCD group. The p-value is
0.036, 0.035, 0.018, 0.003, 0.029, 0.015, 0.017, respectively.

Relationship Between Degree Centrality
and Neuropsychological Tests
For the static functional connectivity, we performed
linear regression analyses between scores on different
neuropsychological tests and degree centrality of 90 brain
regions, finding 17 brain regions in the NC group, 23 brain
regions in the SCD group and 22 brain regions in all participants.
The degree centrality of above brain regions was significantly
correlated with the scores (p < 0.05, see Supplementary Table 1

and Figure 1B). We considered that these brain regions
contributed more prominently to cognitive performance.

Furthermore, we classified these brain regions into the
anterior region, posterior region and subcortical region. 58.8%
of the brain regions we found in the NC group were located in
anterior cortical regions, including the bilateral superior frontal
gyrus, orbital part, left opercular part of inferior frontal gyrus,
bilateral orbital part of inferior frontal gyrus, left olfactory
cortex, right gyrus rectus, right middle cingulate, left postcentral
gyrus and left precuneus. However, only 39.1% of the brain
regions we found in the SCD group were located in anterior
cortical regions, including the bilateral superior frontal gyrus,
dorsolateral, left area triangularis, left orbital part of inferior
frontal gyrus, left rolandic operculum, right gyrus rectus, right
superior parietal lobule, right inferior parietal lobule, and right
precuneus (see Figure 2). These results suggested that compared
with NCs, degree centrality in anterior cortical regions decreased
its contribution to cognitive performance in SCD participants.

Relationship Between Hub Probability and
Neuropsychological Tests
For the dynamic functional connectivity, we performed
linear regression analyses between scores on different
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FIGURE 1 | Difference between groups at the absolute threshold (correlation efficient r = 0.25). (A) The mean hub probability of seven brain regions (right gyrus rectus,

left midcingulate area, right midcingulate area, left hippocampus, right calcarine sulcus, left lingual gyrus and left superior occipital) showed significant difference

between NC (blue) and SCD (red) group. Statistical significance: *p < 0.05; **p < 0.01. (B) The proportion of anterior regions in NC group minus the proportion in

SCD group from the three levels: whole brain (yellow), in DMN (orange) and out of DMN (red). Both the static and dynamic functional connectivity results were shown.

FIGURE 2 | Relationship between Z-scored degree centrality measured by static functional connectivity of brain regions and neuropsychological tests in NC group

(the first column), SCD group (the second column) and all participants (the third column). The forth column showed the proportion of significant correlated regions

(p < 0.05) located in anterior (red) cortical and other (gray) cortical regions in the two groups. The nodes covered by red are located in anterior cortical regions. By

contrast, nodes covered by gray are located in posterior cortical regions or subcortical regions. The size of each node represents the absolute value of standardized ß.

Nodes are located according to their centroid stereotaxic coordinates. (A) All the significant correlated regions (p < 0.05). (B) The regions in the default mode network.

(C) The regions out of the default mode network.

neuropsychological tests and hub probabilities of 90 brain
regions, finding 24 brain regions in the NC group, 23 brain
regions in the SCD group and 24 brain regions in all participants.
The hub probability of above brain regions was significantly
correlated with the scores (p < 0.05, see Supplementary Table 2

and Figure 1B). We considered that these brain regions
contributed more prominently to cognitive performance.

Furthermore, we classified these brain regions into the
anterior region, posterior region and subcortical region. 79.2%
of the brain regions we found in the NC group were located in
anterior cortical regions, including the bilateral superior frontal
gyrus (orbital part),bilateral middle frontal gyrus, orbital part,
left opercular part of inferior frontal gyrus, left supplementary
motor area, left olfactory cortex, bilateral superior frontal gyrus,
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FIGURE 3 | Relationship between hub probability measured by dynamic functional connectivity of brain regions and neuropsychological tests in NC group (the first

column), SCD group (the second column) and all participants (the third column). The forth column showed the proportion of significant correlated regions (p < 0.05)

located in anterior (red) cortical and other (gray) cortical regions in the two groups. The nodes covered by red are located in anterior cortical regions. By contrast,

nodes covered by gray are located in posterior cortical regions or subcortical regions. The size of each node represents the absolute value of standardized ß. Nodes

are located according to their centroid stereotaxic coordinates. (A) All the significant correlated regions (p < 0.05). (B) The regions in the default mode network. (C)

The regions out of the default mode network.

medial part, right superior frontal gyrus, medial orbital part,
left insula, bilateral middle cingulate, left postcentral gyrus, left
superior parietal lobule, bilateral inferior parietal lobule, and
bilateral paracentral lobule. However, only 43.5% of the brain
regions we found in the SCD group were located in anterior
cortical regions, including the right middle frontal gyrus, orbital
part, left orbital part of inferior frontal gyrus, left rolandic
operculum, bilateral supplementary motor area, left olfactory
cortex, left supramarginal gyrus, bilateral angular gyrus and right
paracentral lobule (see Figure 3A). These results suggested that
compared with NCs, centrality frequency in anterior cortical
regions decreased its contribution to cognitive performance in
SCD participants.

Similar changes were also found in the default mode network
(DMN).We classified the brain regions into the DMN (Andrews-
Hanna et al., 2014) and other regions. Both the NC group
and SCD group had approximately 50% of the identified brain
regions belong to the DMN.Within these regions, 93.3% of them
belonged to anterior cortical regions in the NC group, including
the bilateral superior frontal gyrus (orbital part), bilateral middle
frontal gyrus, orbital part, left opercular part of inferior frontal
gyrus, left olfactory cortex, bilateral superior frontal gyrus,
medial part, right superior frontal gyrus, medial orbital part,
bilateral middle cingulate, left superior parietal lobule and

bilateral inferior parietal lobule. Only 45.5% of them belonged
to anterior cortical regions in the SCD group, including the
right middle frontal gyrus, orbital part, left olfactory cortex, left
supramarginal gyrus and bilateral angular gyrus (see Figure 3B).
The distribution of the brain regions out of the DMN did not
show such large differences between the NC group and the
SCD group (see Figure 3C). According to the above results,
we hypothesized that centrality frequency in anterior cortical
regions, especially in the DMN, decrease their contribution to
cognitive performance in the transition from NC to SCD.

Since the SCD group showed decreased contribution to
cognitive performance in the anterior cortical regions, we showed
the difference of anterior cortical regions in the whole brain,
in DMN and out of DMN (the proportion of anterior cortical
regions in NC group minus the proportion in SCD group, see
Figure 3B). The regions in DMN showed the largest proportion
both in static and dynamic functional connectivity.

Validation
Validation of the Degree Centrality
Differences of hub probability between NC and SCD group in
different conditions were shown in Figure 4. Five brain regions
showed significant differences (p < 0.05) at a threshold of
correlation efficient r = 0.2. And the five regions were included
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FIGURE 4 | Difference between groups at the different thresholds. Statistical significance: *p < 0.05; **p < 0.01. (A) The absolute threshold (correlation efficient

r=0.2). The mean hub probability of five regions (right midcingulate area, left hippocampus, left and right lingual gyrus and left superior occipital) showed significant

difference between NC (blue) and SCD (red) group. (B) The proportional threshold (sparsity = 0.2). Right superior frontal gyrus, left rolandic operculum, and right

lingual gyrus showed significant difference. (C) The proportional threshold (sparsity = 0.25). Left anterior cingulate gyrus, left posterior cingulate gyrus, and right

amygdala showed significant difference.

in the regions revealed at a threshold of correlation efficient
r = 0.25. As for the binary network with sparsity of 0.2 and 0.25,
only three brain regions showed significant differences (p< 0.05)
between the two groups, respectively. The brain regions were
right superior frontal gyrus, left rolandic operculum, and right
lingual gyrus for the sparsity of 0.2 and left anterior cingulate
gyrus, left posterior cingulate gyrus, right amygdala for the
sparsity of 0.25. Specifically, the regions revealed by sparsity
algorithm with the two thresholds were totally different.

As Figure 5 shown, differences at a threshold of correlation
efficient r = 0.2 were similar to the threshold of correlation
efficient r = 0.25 in the dynamic functional connectivity.
However, the static functional connectivity showed different
trends. For the static functional connectivity, the regions out of
DMN decreased more than regions in DMN with the threshold
of correlation efficient r = 0.2 and the results were opposite with
the threshold of correlation efficient r = 0.25. For the sparsity
algorithm, the static functional connectivity showed similar
trends with sparsity of 0.2 and 0.25, but the dynamic functional
connectivity showed different trends. More details were shown
in Supplementary Material about the multiple regression model
results of static and dynamic functional connectivity with the
threshold of correlation efficient r = 0.2, sparsity of 0.2 and 0.25
(Supplementary Tables 3–5).

DISCUSSION

The aim of the present study was to determine the differences
in the centrality frequency of the default mode network (DMN)
in individuals with subjective cognitive decline (SCD). The
results were consistent with the hypothesis that SCD individuals
showed obvious abnormalities in centrality frequency in an
anterior-posterior distribution and the abnormality was related
to cognitive performance. In particular, our results revealed that,
compared with the NC group, the percentage of brain regions
in the SCD group whose hub probabilities were significantly
correlated with the scores on the neuropsychological tests
obviously decreased in anterior cortical regions and increased in
posterior cortical regions. Moreover, this phenomenon occurred

mainly in the default mode network (DMN). The results
were consistent in static and dynamic functional connectivity.
Furthermore, we used the threshold of correlation efficient r
= 0.2, sparsity of 0.2 and 0.25 to verify the results. Results
showed that sparsity algorithm was stable to the static functional
connectivity, while the threshold algorithmwas stable to dynamic
functional connectivity. Based on our results, we might say that
regarding centrality frequency, the DMN is more susceptible to
damage compared to other regions in SCD individuals.

Difference of Hub Probability Between NC
and SCD Group
Seven brain regions showed significant different hub probability
betweenNC and SCD group. Among them, right gyrus rectus, left
midcingulate area and right midcingulate area showed smaller
hub probability in SCD group. However, left hippocampus, right
calcarine sulcus, left lingual gyrus and left superior occipital
showed larger hub probability in SCD group compared to NC
group. Similar to previous studies, researchers have showed that
gyrus rectus and hippocampus were important MRI biomarkers
for the early diagnosis of Alzheimer’s disease by machine
learning (Salvatore et al., 2015). Besides, researchers revealed that
cingulate and calcarine sulcus showed the opposite correlations
between sulcal variability and cognition in Alzheimer’s brain
(Mega et al., 1998). A resting-state functional connectivity study
showed that connectivity in the lingual gyrus and occipital
was related to subjective memory complaints severity (Kawagoe
et al., 2019). Converging results indicated that different brain
regions showed different centrality frequency patterns in the
SCD group, which might help with the early detection of
cognitive impairment.

Anterior Brain Region Abnormalities
Indicated by Centrality Frequency
Anterior regions, including the dorsolateral prefrontal cortex,
medial prefrontal cortex, anterior cingulate cortex, posterior
cingulate cortex, precuneus, sensorimotor cortex and lateral
parietal cortex, play an important role in episodic memory,
mental activity, movement, and social behavior (Devinsky et al.,
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FIGURE 5 | Proportion of SCD group’s decrease in anterior cortical regions relative to NC group. The proportion of anterior regions revealed by static and dynamic

functional connectivity in NC group minus the proportion in SCD group from the three levels: whole brain (yellow), in DMN (orange) and out of DMN (red). (A) The

absolute threshold (correlation efficient r = 0.2). (B) The proportional threshold (sparsity = 0.2). (C) The proportional threshold (sparsity = 0.25).

1995; Davidson et al., 2008). A recent study showed that
in SCD individuals, anterior and posterior regions behaved
differently in the pattern of alterations. In particular, hyper
synchronization over anterior regions and hypo synchronization
over posterior regions (Lopez-Sanz et al., 2017). Our study
suggested that centrality frequency in anterior regions can
weaken its contribution to cognitive performance in SCD
individuals. The present results were similar to some previous
studies that have found abnormalities in the above regions in
Alzheimer’s disease and its early stage, such as astrocytemetabolic
reduction in PCC (Minoshima et al., 1997) and excitability
enhanced in SMC (Ferreri et al., 2016). Both the previous studies
and our study showed that at the global spatial pattern level, the
abnormalities of anterior brain regions have been highlighted in
SCD individuals.

DMN Abnormalities Indicated by
Centrality Frequency
The DMN, consisting of discrete, bilateral and symmetrical
cortical areas, plays a central role in the brain’s intrinsic activity.
Functions of the DMN include scene construction, associative
prediction, episodic memory processing, self-processing,
mentalizing and conceptual processing (Andrews-Hanna
et al., 2014). Our results implied that in individuals with SCD,
the centrality frequency of DMN changed more than in other
regions. Many existing studies have also discovered abnormalities
in the DMN in Alzheimer’s disease and its incipient stage. Dillen
et al. (2017) revealed that the hippocampus functionally
decoupled from posterior DMN nodes in SCD and prodromal
AD patients. Besides, Jones et al. (2011) found that AD
patients displayed an accelerated pattern of age-associated
changes in the DMN, such as declining connectivity in the
posterior DMN. Su et al. (2017) suggested that the breakdown
of DMN connectivity may occur in the very early stage of
Alzheimer’s disease. Taken together, these studies emphasized
the abnormal functional connectivity pattern of the DMN in the
progression of AD.

Our study revealed abnormalities in SCD via dynamic
functional connectivity. Previous studies focused more on brain
network feature extraction and then found abnormalities in AD
patients with permutation entropy (Wang et al., 2017), minimum
spanning tree (Wang et al., 2018), rich club structures (Yan et al.,
2018), and so on. In recent years, dynamic FC analysis has been

used to provide functional biomarkers for Alzheimer’s disease,
even its early stage. Jones et al. (2012) adopted a functional
connectivity graph based on the sliding time window method
to study the dynamic abnormal spontaneous activity of the
brain in patients with AD and found that links in the posterior
DMN were significantly reduced in AD patients. What’s more,
Quevenco et al. (2017) indicated that alteration of anterior-
posterior brain dynamics were related to memory abnormality
in the preclinical stage of AD. In a recent study, researchers (de
Vos et al., 2018) also found that compared with static functional
connectivity features, using dynamic functional connectivity
features to classify AD patients and normal controls resulted in
a better classification level. Based on dynamic brain networks,
these findings provided a new perspective for the rs-fMRI data
analysis of SCD individuals.

CONCLUSION

Above all, our study provided a new point of view to detect
the changes occurring in SCD with resting-state fMRI. In SCD
individuals, centrality frequency in the anterior cortical regions
weakened its contribution to cognitive performance, especially in
the default mode network. Therefore, it is of great significance to
explore the individual development and phylogeny of the default
mode network in a resting state. The other striking aspect of the
data analysis was that we used threshold and sparsity algorithm
with different parameters (0.2 and 0.25) to verify our results.
A previous MEG study used threshold and sparsity algorithms
to obtain the binary network (de Pasquale et al., 2016). They
indicated that threshold algorithm could avoid the influence of
large number of small weights. In the present study, the static
functional connectivity was fluctuant with different thresholds
(0.2 and 0.25). Thus, we speculated that the static functional
connectivity had large number of small weights. In this study,
some limitations must be emphasized. First of all, the selection
process of participants was quite subjective and need to be
improved. Second, the data processing parameters could have
been chosen more carefully, such as the length of the window.
Third, the transformation of SCD to MCI or AD is not a certain
outcome in the current study. Therefore, in the future, we need
to perform more follow-up analyses to confirm the transition of
SCD individuals and try to predict the progression of the disease
with centrality frequency of the DMN.
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