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Cross-sectional magnetic resonance imaging (MRI) studies reported significant
associations between gray matter (GM) density changes in various limbic and
neocortical areas and worst cognitive performances in elderly controls. Longitudinal
studies in this field remain scarce and led to conflicting data. We report a
clinico-radiological investigation of 380 cognitively preserved individuals who undergo
neuropsychological assessment at baseline and after 18 months. All cases were
assessed using a continuous cognitive score taking into account the global evolution
of neuropsychological performances. The vast majority of Mini Mental State Examination
(MMSE) 29 and 30 cases showed equal or worst performance at follow-up due to a
ceiling effect. GM densities, white matter hyperintensities and arterial spin labeling (ASL)
values were assessed in the hippocampus, amygdala, mesial temporal and parietal
cortex at inclusion using 3 Tesla MRI Scans. Florbetapir positron emission tomography
(PET) amyloid was available in a representative subsample of 64 cases. Regional amyloid
uptake ratios (SUVr), mean cortical SUVr values (mcSUVr) and corresponding z-scores
were calculated. Linear regression models were built to explore the association between
the continuous cognitive score and imaging variables. The presence of an APOE-ε4 allele
was negatively related to the continuous cognitive score. Among the areas studied,
significant associations were found between GM densities in the hippocampus and
amygdala but not mesial temporal and parietal areas and continuous cognitive score.
Neither ASL values, Fazekas score nor mean and regional PET amyloid load was related
to the cognitive score. In multivariate models, the presence of APOE-ε4 allele and GM
densities in the hippocampus and amygdala were independently associated with worst
cognitive evolution at follow-up. Our data support the idea that early GM damage in the
hippocampus and amygdala occur long before the emergence of the very first signs of
cognitive failure in brain aging.

Keywords: longitudinal study, cognition, magnetic resonance imaging, gray matter density, white matter
hyperintensity, arterial spin labeling, hippocampus, amygdala

Frontiers in Aging Neuroscience | www.frontiersin.org 1 June 2019 | Volume 11 | Article 157

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2019.00157
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2019.00157&domain=pdf&date_stamp=2019-06-28
https://creativecommons.org/licenses/by/4.0/
mailto:francois.herrmann@hcuge.ch
https://doi.org/10.3389/fnagi.2019.00157
https://www.frontiersin.org/articles/10.3389/fnagi.2019.00157/full
https://loop.frontiersin.org/people/174813/overview
https://loop.frontiersin.org/people/661026/overview
https://loop.frontiersin.org/people/171792/overview
https://loop.frontiersin.org/people/755447/overview
http://loop.frontiersin.org/people/338682/overview
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Herrmann et al. MRI Markers in Cognitive Decline

INTRODUCTION

Cognitive trajectories in old age are variable ranging from
cognitive stability to fluctuations over time and, in a limited
number of cases, progressive worsening of neuropsychological
performances corresponding to the pre-mild cognitive
impairment (MCI) state. In a large sample from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) cohort followed-up
annually for 5 years, 40% of cases showed stable and high
memory and executive function performances (successful agers)
whereas 20% displayed progressive decline (declining agers; Lin
et al., 2017). Similar data were obtained in Mexican Americans
(Downer et al., 2017) and Korean aged over 65 years (Min, 2018).
Although within normal age-adjusted performances, declining
agers are thought to exhibit the first signs of cognitive frailty and
are of particular interest for future therapeutic interventions.
Most of the previous investigations in this field focused on the
concept of preclinical AD searching to establish the predictive
power of lesion burden, functional and structural brain changes
in community-based samples of elderly controls. In this context,
a combination of AD biomarkers in cerebrospinal fluid (Aβ42,
tau, and phospho-tau), non-invasive neuroimaging, and genetic
risk factors have been investigated with promising but also
conflicting data (for review, see Khan, 2018). When addressing
the cognitive trajectories in old age, one should keep in mind
the marked heterogeneity of elderly controls. Prior to 80 years,
most of them did not correspond to the preclinical AD concept
and their cognitive fate may be determined by a variety of
other parameters such as significant vascular burden or limited
cognitive reserve due to genetic or environmental factors (Li
et al., 2017). But even within the theoretical framework of
preclinical AD, there is substantial heterogeneity with respect to
its neuropsychological definition (Epelbaum et al., 2017). Most
of the longitudinal investigations in cognitively intact elderly
individuals examined the evolution of neuropsychological
parameters (working and episodic memory as well as executive
abilities; Dubois et al., 2018; Rabin et al., 2018) or screening
test (more frequently Mini Mental State Examination, MMSE)
scores over time. However, cognitive performances may vary
substantially in healthy elders with some of them declining and
others remaining stable or even improving at follow-up. An
accurate approach of cognitive evolution in this population needs
to consider both improvement and decline of task performances
in a wide range of cognitive tests over short time periods.

Among the different imaging techniques used to predict
the cognitive evolution in elderly controls, amyloid positron
emission tomography (PET) imaging and structural magnetic
resonance imaging (MRI) changes are likely to address
two distinct processes. Based on 1,209 cognitively intact
individuals aged 50–95, Jack and collaborators showed that
hippocampal volume loss may occur before abnormal amyloid
PET occurrence. Unlike hippocampal volume decrease that
starts at 30 years, and becomes significant after 60 years and
is APOE4-independent, amyloid PET positivity occurred after
70 years and depended on the presence of APOEε4 alleles. These
data indicated that Aβ accumulation arises in later life on a
background of preexisting structural deficits that are associated

with aging and not with amyloid pathology per se (Jack et al.,
2015). Several observations pointed to the dissociation between
neurodegeneration and amyloid pathology in normal aging and
proposed two spatially distinct patterns of atrophy, a tau-related
cortical thinning and Aβ-related hippocampal volume decrease,
that may have a synergistic effect on subtle cognitive decline
(Besson et al., 2015; Edmonds et al., 2015; Insel et al., 2015;
Wang et al., 2015).

Given the recent progress in MRI analysis, several parameters
are now available to explore the neuroanatomical substrates of
the progressive transition from preserved cognition to the initial
stages of cognitive deterioration. In normal aging, diffusion
tensor imaging studies showed early fractional anisotropy
decrease in the hippocampus and parahippocampal gyrus,
supramarginal gyrus, frontotemporal lobes, mesial temporal
lobes and anterior cigulate cortex (Hong et al., 2016; Lancaster
et al., 2016). Data on gray matter (GM) are, however,
more ambiguous. Regional GM decrements in right thalamus,
left parahippocampal gyrus, inferior temporo-parietal lobules,
anterior cingulum, and precentral gyrus have been documented
(Lee et al., 2016; Fletcher et al., 2018; Squarzoni et al., 2018) but
in certain cohorts GM densities were preserved or marginally
affected in healthy controls (Hong et al., 2016; Takeuchi et al.,
2017). The initial stages of cognitive deterioration may be related
not only to structural but also functional changes that affect
brain perfusion. In this line, we reported that reduced arterial
spin labeling (ASL) in the posterior cingulate cortex at baseline
is associated with the development of subtle neuropsychological
deficits in healthy elderly controls (Xekardaki et al., 2015).

The present longitudinal study of a community-based cohort
of highly educated elderly individuals explores the demographic,
clinical and 3T MRI correlates of very subtle cognitive decline
(prior toMCI) controlling for the presence of amyloid pathology.
In order to obtain a global assessment of cognitive status
without a priori hypotheses, we established a continuous
cognitive score taking into account not only AD-related
cognitive functions and considering both improvement and
decline of neuropsychological performances at follow-up. Using
univariate and multivariate linear regression models controlled
for demographic variables (age, gender, education), MMSE
scores at baseline, amyloid load, and Fazekas score of white
matter lesion severity, we explored the association between
subtle cognitive changes and patterns of GM volumes and ASL
values in limbic and temporo-parietal areas (Bharath et al., 2017;
Zanchi et al., 2017).

MATERIALS AND METHODS

Population
The protocol was approved by the Ethics Committee of
the Geneva University Hospitals of Geneva. All experimental
procedures were carried out in accordance with the approved
guidelines and with the principles of the Declaration of Helsinki.
All participants were given written informed consent prior
to inclusion. These community-based cases were recruited via
advertisements in local newspapers and media. All participants
had normal or corrected-to-normal visual acuity. Past hearing
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problems were identified as a part of the medical interview
(including both subjects and their proxies). All cases with
such problems were a priori excluded. Audition was tested by
standard audiologic tests including self-report and speech in
noise perception in all cases during clinical routine medical
examination. Cases with self-report of hearing loss and altered
speech in noise perception were addressed in specialized
consultation and were not considered for further investigations.
The education level was defined according to the Swiss scholar
system, where level 1 = less than 9 years (primary school), level
2 = between 9 and 12 years (high school) and level 3 = more
than 12 years (university). To control for the confounding effect
of cardiovascular diseases, individuals with subtle cardiovascular
symptoms and a history of stroke and transient ischemic episodes
were also excluded from the present study. The inclusion period
for control subjects was from October 2014 to March 2016.

The final sample included 380 elderly controls: 232 (61.1%)
women and 148 (38.9%) men, aged 74.2 ± 4.1 (mean ± SD)
ranging from 68.6 to 90.0 years, all assessed with structural and
resting state fMRI at baseline (Zanchi et al., 2017).

Neuropsychological Assessment
Participants were evaluated at inclusion with an extensive
neuropsychological battery, including the MMSE (Folstein et al.,
1975), the Hospital Anxiety and Depression Scale (HAD;
Zigmond and Snaith, 1983), and the Lawton Instrumental
Activities of Daily Living (IADL; Barberger-Gateau et al., 1992).
Cognitive assessment included: (a) attention [Digit-Symbol-
Coding (Wechsler, 1997a), Trail Making Test A (Reitan, 1958)];
(b) working memory [verbal: Digit Span Forward (Wechsler,
1997b), visuospatial: VisualMemory Span (Corsi; Milner, 1971)];
(c) episodic memory [verbal: RI-48 Cued Recall Test (Buschke
et al., 1997), visual: Shapes Test (Baddley et al., 1994)];
(d) executive functions [Trail Making Test B (Reitan, 1958),
Wisconsin Card Sorting Test (WCST; Heaton et al., 1993)
and Phonemic Verbal Fluency Test (Cardebat et al., 1990)];
(e) language (Boston Naming Test; Kaplan et al., 1983); (f) visual
gnosis (Ghent, 1956); and (g) praxis ideomotor (Schnider et al.,
1997), reflexive (Poeck, 1985), and constructional (Consortium
to Establish a Registry for Alzheimer’s Disease, CERAD), figures
copy (Welsh et al., 1994).

In agreement with the criteria of Petersen et al. (2001),
participants with a CDR score of 0.5 but no dementia and
a score exceeding 1.5 standard deviations (SDs) below the
age-appropriate mean in any of the previously mentioned tests
were classified as MCI and were excluded. Participants who
met DSM-IV diagnostic criteria of dementia on the basis
of the neuropsychological and clinical assessments were also
excluded. Participants with neither dementia nor MCI were
classified as cognitively healthy older controls and underwent
full neuropsychological assessment once at follow-up, on average
18 months later, with the same neuropsychological battery.

APOE Assessment
Whole blood samples were collected at baseline for all subjects
for APOE genotyping. Standard DNA extraction was performed
using either 9 ml EDTA tubes (Sarstedt, Germany) or Oragene

Saliva DNA Kit (DNA Genotek, Inc., Ottawa, ON, Canada)
which were stored at −20◦C. APOE genotyping was done on the
LightCycler (Roche Diagnostics, Basel, Switzerland) as described
previously (Nauck et al., 2000). Subjects were classified according
to the presence of an APOEε4 allele (ε4/ε3, ε3/ε3, ε3/ε2 carrier).

MRI Imaging
Imaging data were acquired on a 3TMRI Scanner (TRIO Siemens
Medical Systems, Erlangen, Germany). A high-resolution
T1-weighted anatomical scan (magnetization prepared rapid
gradient echo (MPRAGE), 256 × 256 matrix, 176 slices 1 mm
isotropic, TR = 2,300 ms, TE = 2.27 ms,) was collected as
well as a pulsed ASL sequence [64 × 64 matrix, 24 slices,
voxel size 3.44 × 3.44 × 5 mm3, TE 12 ms, TR 4,000 ms,
inversion time (TI) 1,600 ms]. Additional sequences included
axial fast spin-echo T2-weighted imaging (4,000/105, 30 sections,
4-mm section thickness), susceptibility weighted imaging (28/20,
208 × 256 × 128 matrix, 1 × 1 × 1 mm3 voxel size) were
performed to exclude brain disease, such as ischemic stroke,
subdural hematomas, or space-occupying lesions.

Assessment of Gray Matter Volumes
3DT1 MRIs were preprocessed with the FSL software package1,
according to the standard procedure. The essential processing
steps included brain extraction with the FSL Brain Extraction
Tool2, tissue-type segmentation with the FMRIB Automated
Segmentation Tool3, nonlinear transformation into Montreal
Neurological Institute reference space, and creation of a study-
specific GM template to which the native GM images were then
nonlinearly reregistered. The modulated segmented images were
then smoothed with an isotropic Gaussian kernel with a width of
2 mm. Furthermore, we created a mask for the bilateral mesial
temporal cortex, hippocampus, amygdala, caudate nuclei, and
parietal lobes that was then applied to the GM image of the study-
specific template, and we obtained GM density values in each
area of interest.

Arterial Spin Labeling
The reconstructed relCBF ASL perfusion images were spatially
normalized using a linear spatial alignment from ASL raw
data to the individual high-resolution 3DT1 image, followed
by the application of the non-linear spatial registration
determined in the pre-processing of the 3DT1 data. These spatial
transformations were then applied to the relCBF maps calculated
directly on the MRI scanner. This two-steps approach results in
a non-linear spatial registration of the ASL relCBF map into the
MNI space. We then calculated the relCBF values in each area
of interest.

In addition to the GM and ASL analysis, white matter lesion
severity was analyzed on T2-weighted images according to the
established Fazekas scale (Fazekas et al., 1987).

Amyloid PET Imaging With (18)F-Forbetapir
Florbetapir images were acquired 50–60 min after injection for
77 subjects. Seventy PET data were acquired on a Discovery

1http://www.fmrib.ox.ac.uk/fsl/
2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET
3http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fast
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PET/CT 710 scanner (GE Healthcare) and 7 PET imaging
were performed using a BiographTM mCT scanner (Siemens).
All studies were quantitatively evaluated using the Amyvid
BRASS commercial automated functional brain analysis software
(Hermes Medical Solutions AB, Stockholm, Sweden). Regional
amyloid uptake ratios (SUVr), mean cortical SUVr values
(mcSUVr) and z-score (number of SDs from the healthy
control SUVr in the BRASS template) were calculated relative to
the cerebellum.

Statistics
Demographic and neuropsychological data were compared
between the two visits with paired t-test and Wilcoxon matched-
pairs signed rank test. The significance level was set at
P < 0.05 but was corrected to P < 0.0079 for multiple
testing by using the Benjamini-Hochberg method (Benjamini
and Hochberg, 1995).

The subtle cognitive decline continuous score was defined
as follows. Most of the cognitive performances, discrete
or continuous, cannot be linearly combined by adding the
individual scores to a unique composite cognitive score. Thus
all values were converted to z scores. Subsequently, we summed
the number of cognitive tests at follow-up with performances at
least 0.5 SD higher compared with the first evaluation, leading
to the number of tests with improved performances (range,
0–14). Similarly, we summed the number of cognitive tests at
follow-up with performances at least 0.5 SDs lower compared
with the first evaluation, yielding the number of tests with
decreased performances (range, 0–14). Finally, the number of
tests with improved minus the number of tests with decreased
performances results in a final continuous cognitive score.

Simple and multiple linear regression models were used to
identify predictors of the continuous cognitive score (dependent
variable) including GM volumes, ASL values and potential
confounders such as age, gender, education levels, MMSE at
baseline, Fazekas score, and APOE genotyping. Full models and
models with only the significant variables were obtained by
stepwise backward selection process. Each model was run for
all four regions independently (hippocampus, middle temporal
gyrus, parietal cortex, amygdala). To examine whether working
memory or episodic memory changes were associated with
our independent variables, we run the same regression models
using the neuropsychological tests (z-score) used for these
functions (Digit Span Forward, Visual Memory Span, RI-48
Cued Recall Test and Shapes Test) as the dependent variable.
The same models were also run while adding normalized cortical
amyloid volume assessed by florbetapir PET expressed either as
a continuous variable or a binary score (below vs. above or equal
to SUVr 1.2).

We also added to the above simple and multiple linear
regression models an Apoe4∗GM volume interaction term and
subsequently built an ANCOVA model to perform a power
analysis using the PASS version 13 software (PASS 13. NCSS,
LLC. Kaysville, Utah, USA4, 2014).

4www.ncss.com

FIGURE 1 | Histogram of the continuous cognitive score at follow-up with
the corresponding normal density curve.

All other statistics were performed with the STATA
statistical software, Version 15.1 (StataCorp, College Station, TX,
USA, 2017).

RESULTS

Sample Description
The distribution of the continuous cognitive score at follow-up
is illustrated in Figure 1. Education levels were distributed as
follows: 63 (16.6%) level 1 (primary school), 175 (46.0%) level
2 (high school) and 142 (37.4%) level 3 (university). Sixty-
five (17.1%) participants had at least one allele APOEε4. Mean
MMSE score was of 28.5 ± 1.3 (mean ± SD) ranging from
24.0 to 30.0.

Cognition
Univariate analysis showed thatMMSE at baseline was negatively
related to the continuous cognitive score [regression coefficient:
−0.48 (−0.78, −0.17)] meaning that the highest is the MMSE
score the lower is the cognitive score (implying that the most
preserved cases are at higher risk to deteriorate; see Figure 2A).
This analysis also showed that the presence of an APOEε4 allele
was associated with significantly lower continuous cognitive
scores [regression coefficient: −1.09 (−2.13, −0.04); see also
Figure 2B]. Neither age nor gender or education was related to
the cognitive outcome in this cohort.

Cognition and GM Densities
Among the areas studied, significant positive associations
were found between GM densities in the hippocampus and
continuous cognitive score [regression coefficient: 12.54 (1.99,
23.10); see Figure 3 left panel]. This was also the case for the
amygdala [regression coefficient: 11.04 (2.24, 19.84); see Figure 3
right panel] but not for mesial temporal and parietal gyrus.
Importantly, ASL values in the areas studied were not related to
the cognitive score. This was also the case for the Fazekas score
in all of the areas studied.
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FIGURE 2 | Box plots of the continuous cognitive score at follow-up as a function of Mini Mental State Examination (MMSE) score (panel A) and APOE genotype
(panel B).

FIGURE 3 | (A) Scatter plot and linear regression (along with its 95%
confidence bands) of the continuous cognitive score (cgs) over the gray
matter density (gmd) in the hippocampus (cgs = −5.44 + 12.55∗ gmd,
p = 0.020) and the amygdala (cgs = −5.57 + 11.04∗ gmd, p = 0.014)
regions. N = 362. r = Pearson’s correlation coefficient. (B) The regions of
interest are highlighted in yellow for the hippocampus (left panel) and blue for
the amygdala (right panel) in brain magnetic resonance imaging (MRI) scan.

In multivariate models taking into account MMSE scores,
APOE genotyping, and the three MRI variables (GM densities,
ASL values, Fazekas score), the presence of APOEε4 allele, higher
MMSE score at baseline and GM densities in the hippocampus
and amygdala were all associated with worst cognitive evolution
at follow-up (Table 1). Although significant, the model including
these parameters explained 7% of the cognitive variability. To

explore a possible ceiling effect of MMSE score in our sample, we
examined the association between MMSE scores at baseline and
its evolution at follow up (increment or decrement; Table 2). The
vast majority of MMSE 29 and 30 cases showed equal or worst
performance at follow-up due to a ceiling effect. When working
or episodic memory tests alone were used as dependent variable,
no significant association was found with MRI variables (data
not shown).

The Apoe4∗GM volume interaction term was not statistically
significant (ANCOVA: hippocampus: p = 0.597; amygdala:
p = 0.623). A post hoc power analysis yield equivalent results for
both areas. A total sample of 798 would be needed to achieve 84%
power to detect differences among the means vs. the alternative
of equal means using an F-test with a 0.050 significance level.

Sub-sample With Amyloid PET
Sixty-four participants underwent an amyloid PET. They did
not differ in respect to age, gender, education, MMSE score and
continuous cognitive score compared to the 298 cases without
amyloid PET (see Table 3).

Normalized cortical amyloid volume in the hippocampus
and the amygdala expressed either as a continuous variable
(hippocampus: p = 0.714; amygdala: p = 0.566) or a binary score
(p = 0.340; p = 0.304) was not associated with cognitive evolution.

DISCUSSION

Our data in a community-based cohort of highly educated
controls indicate reveal that GM densities in the hippocampus
and amygdala but not mesial temporal and parietal gyrus
are associated with worst global cognitive performances
in healthy controls. As recently reported, amyloid load
was not related to cognitive changes at follow-up in the
present series. This was also the case for white matter
hyperintensities (Fazekas score) and ASL values, two MRI
variables frequently cited as correlates of cognitive impairment in
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TABLE 1 | Multiple linear regression models predicting the continuous cognitive
score (dependent variable) with only the significant variables obtained by stepwise
backward selection process and adjusted for the main confounders [Mini Mental
State Examination (MMSE) at baseline, APOE genotyping, ASL, Gray matter index
and FAZEKAS score].

Reduced model

Region Coef 95% CI P

HIPPOCAMPUS
APOE Genotype
3/2 0.219 −1.021 − 1.460 0.728
3/3 0.000 –
4/3 −1.051 −2.092 − −0.011 0.048
MMSE −0.499 −0.806 − −0.191 0.002
ASL 0.002 −0.001 − 0.004 0.135
Gray matter index 12.701 2.090 − 23.311 0.019
FAZEKAS
Absent 0.000 –
Mild 0.419 −0.464 − 1.302 0.352
Moderate 0.804 −0.375 − 1.983 0.181
Severe −0.327 −1.980 − 1.325 0.697

AMYGDALA
APOE Genotype
3/2 0.133 −1.112 − 1.377 0.834
3/3 0.000 –
4/3 −1.044 −2.079 − −0.008 0.048
MMSE −0.493 −0.800 − −0.186 0.002
ASL 0.002 −0.0002 − 0.003 0.078
Gray matter index 10.575 1.699 − 19.452 0.020
FAZEKAS
Absent 0.000 –
Mild 0.432 −0.448 − 1.312 0.335
Moderate 0.748 −0.426 − 1.923 0.211
Severe −0.292 −1.942 − 1.359 0.728

A different model was run for each of the two regions.

brain aging (Son et al., 2012; Xekardaki et al., 2015; Arvanitakis
et al., 2016; De Vis et al., 2018). In conjunction with
previous studies in normal aging, these findings suggest that
changes in GM densities in limbic areas is the most reliable
correlate of cognitive decline at the very early stages of
brain aging.

GM loss in limbic areas has been often associated with
time to progression from MCI to AD (Atiya et al., 2003;
Kantarci and Jack, 2003; Younes et al., 2014). Early studies
have already reported that the decrease of GM density in the
hippocampus and amygdala may predict subsequent cognitive
decline at the pre-MCI state (Jack et al., 2010; Squarzoni

et al., 2012; Edmonds et al., 2015). In the same line, baseline
measures of the hippocampus and amygdala in preclinical AD
patients predict subsequent development of MCI (Grundman
et al., 2002; den Heijer et al., 2006; Griffith et al., 2013;
Guderian et al., 2015). Younes and collaborators also reported
that hippocampal and amygdala GM atrophy occurs 2–4 years
prior to the first signs of AD (Younes et al., 2014). However,
the decrease of GM density in these areas varies substantially in
preclinical AD cases reflecting the heterogeneity of the structural
damage at this stage of the degenerative process (Lauriola
et al., 2017; Perrotin et al., 2017). Two recent longitudinal
studies in large community-based cohorts led to conflicting
data. In the Rotterdam study of 3,264 cases, hippocampal
volume was not associated with cognitive decrement at 5 years
(Vibha et al., 2018). In contrast, Fletcher et al. (2018) found
that baseline hippocampal volumes had significant incremental
effects on cognitive decline in 460 cognitively preserved elders.
The present data indicate that GM densities in the hippocampus
and amygdala are significant predictors of the continuous
cognitive score.

Cognitive variations in healthy elders within the normal range
may be determined by demographic factors, basal cognition,
and APOE genotyping that were not systematically taken into
account in multivariate models. In fact, male gender, low level of
education, and mainly the presence of APOE4 allele have been
associated with worst cognitive trajectories in non-demented
elders (Bretsky et al., 2003; Honea R. et al., 2009; Honea R. A.
et al., 2009; Zehnder et al., 2009; Haller et al., 2017; Li et al.,
2017; Lin et al., 2017) but negative or ambiguous data have
also been reported (Van Gerven et al., 2012; López et al.,
2017; Min, 2018). In the present study, higher MMSE scores
are associated with higher risk of cognitive decline in this
series. At first glance, this finding may be surprising. Early
contributions showed that single MMSE measures do not allow
for identifying MCI subjects who convert to AD (Arevalo-
Rodriguez et al., 2015). Moreover, higher MMSE scores at
AD diagnosis is associated with faster cognitive decline due
to the rapid accumulation of neuropathological changes after
diagnosis (Contador et al., 2017). Most of our cases scored
28 and above at baseline. As expected, the vast majority of
MMSE 29 and 30 cases showed equal or worst performance
at follow-up due to a ceiling effect. Interestingly, the rare
cases with MMSE scores of 25 and 26 remained stable or

TABLE 2 | Association between MMSE scores at baseline and its evolution at follow up (increment or decrement).

Delta MMSE score (follow-up minus baseline)

Worsening Improvement

−5 −4 −3 −2 −1 0 1 2 3 4 5 Total
Baseline MMSE

24 0 0 0 0 0 1 0 1 1 0 0 3
25 0 0 0 0 0 1 2 2 2 0 0 7
26 0 0 0 0 1 3 3 6 2 1 16
27 0 0 0 2 7 9 15 3 3 39
28 0 0 0 8 16 28 31 7 90
29 1 3 4 17 25 43 27 120
30 0 4 7 12 36 28 87
Total 1 7 11 39 85 113 78 19 8 1 0 362

The gray zone of the table corresponds to non-existing values.
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TABLE 3 | Comparison of baseline characteristics of cases with and without
amyloid positron emission tomography (PET).

PET Total P

No Yes
N = 298 N = 64 N = 362

Age at evaluation 74.2 ± 4.1 74.1 ± 4.0 74.2 ± 4.1 0.833
Gender 0.625

F 179 (60.1%) 39 (60.9%) 218 (60.2%)
M 119 (39.9%) 25 (39.1%) 144 (39.8%)

NSC 0.557
<9 50 (16.8%) 11 (17.2%) 61 (16.9%)
9–12 136 (45.6%) 28 (43.8%) 164 (45.3%)
>12 112 (37.6%) 25 (39.1%) 137 (37.8%)

Génotype APOE 0.402
3/2 36 (12.1%) 5 (7.8%) 41 (11.3%)
3/3 212 (71.1%) 47 (73.4%) 259 (71.5%)
4/3 50 (16.8%) 12 (18.8%) 62 (17.1%)

MMSE 28.5 ± 1.3 28.5 ± 1.2 28.5 ± 1.3 0.600
Continuous cognitive −0.0 ± 3.9 0.2 ± 3.5 0.0 ± 3.8 0.701
score

even improved at follow-up pointing to the selection of
highly educated cognitively preserved volunteers in this study.
From this point of view, our cases cannot be compared to
those with NIA-AA preclinical stage 3 that usually display
worst cognitive outcomes over time. In respect to APOE
genotyping, several studies suggested that the presence of an
APOEε4 allele is related to longitudinal changes in medial
temporal cortical thickness, and hippocampal atrophy rates
(Donix et al., 2010; Lu et al., 2011; Reiter et al., 2017). The
independent contribution of APOE genotyping, hippocampal
and amygdala atrophy on worst cognitive performances in
healthy controls has been suggested by Honea R. et al. (2009)
and Squarzoni et al. (2012) in their cross-sectional investigations.
However, the association between APOEε4 allele and cognition
at the pre-MCI stages is still a matter of debate with some
studies showing no association between APOEε4 and memory
performances or hippocampal volume in cognitively normal
individuals (Protas et al., 2013; Jack et al., 2015; Lupton et al.,
2016). When considering the continuous cognitive score that
provides an overall assessment of high cortical functions, our
data reveal that APOEε4 genotype and GM density in the
hippocampus and amygdala are all independent predictors of
cognitive decrement in healthy elderly people. Importantly, no
such association was found when isolated tests of working
or episodic memory were taken into account indicating that
detailed neuropsychological exploration of all cognitive abilities
in cognitively preserved individuals at baseline where the known
patterns of cognitive vulnerability established in MCI could be
not applicable.

Our negative data should be also discussed. Adding to
recent lines of evidence, PET amyloid load (measured both
in neocortical areas as well as hippocampus and amygdala)
did not predict subtle cognitive changes in the present
cohort (Dubois et al., 2018). Current evidence about the role
of amyloid accumulation in cognitively preserved controls
remain ambiguous. Although early data suggested that elevated
amyloid levels at baseline (SUVr > 1.5) were associated
with greater cognitive decline at follow-up (Petersen et al.,

2016), more recent contributions indicated that PIB PET
β-amyloid’s relationship to cognitive decline was nonlinear
being more prominent at lower β-amyloid levels (Knopman
et al., 2018). The INSIGHT-pre AD data published recently
showed no association between this parameter and cognitive
fate at 30-month follow-up in healthy controls (Dubois et al.,
2018). Our observations agree with this latter viewpoint
implying that the detrimental effect of amyloid accumulation in
cognitively preserved elders is at the best marginal. However,
this observation should be interpreted with caution since
our cases showed low amyloid accumulations with SUVr
values >1.2 only in 16/64 of cases. Only two cases exceeded
the cut-off value of 1.5. It is thus possible that amyloid
burden was too low to produce significant cognitive impact
in this cohort. The association of GM densities with cognitive
performances is limited to the hippocampus and amygdala and
did not involve mesial temporo-parietal association areas. In
a previous study, Lancaster et al. (2016) reported that DTI
variables in mesial temporal lobe is associated with a decline
of episodic memory at 3-year follow-up in healthy controls.
In elderly persons with subjective cognitive impairment, Hong
et al. (2016) reported decreased fractional anisotropy in
supramarginal gyrus and frontotemporal lobes in the absence
of GM atrophy. Second, the low to moderate white matter
hyperintensities burden (as measured by the Fazekas score)
did not impact on the cognitive fate of the present cases.
This finding is consistent with a recent study by Moon and
collaborators (Moon et al., 2017) who showed that baseline
white matter hyperintensities did not predict cognitive decline
at follow-up to 3 years in non-demented older adults with
memory complaints. Importantly and unlike our cases, the
positive association between white matter hyperintensities and
neuropsychological decline reported in earlier studies mainly
concerned individuals with high Fazekas scores (Son et al.,
2012; Arvanitakis et al., 2016). In the same line, ASL values
did not predict continuous cognitive score in any of the areas
studied. Contrasting with this observation, two recent studies
showed that ASL decrease in medial frontal, anterior and
posterior cingulate cortex predicts cognitive function in healthy
elderly controls (Xekardaki et al., 2015; De Vis et al., 2018).
Taken together, these observations imply two distinct MRI
correlates of subtle cognitive deficits prior to MCI status: GM
loss in the hippocampus and amygdala but also white matter
microstructure and brain perfusion changes in neocortical
areas outside the mesial temporal and parietal lobes. Such
hierarchical pattern of MRI changes in brain aging is consistent
with the idea that early GM damage in the hippocampus
and amygdala is evident long before the emergence of the
very first signs of cognitive failure in brain aging whereas
more subtle white matter and functional changes, usually not
detected in routine clinical settings, are present in neocortical
association areas at the same time period (Younes et al., 2014;
Zanchi et al., 2017).

Strengths of the present study include its longitudinal design
in a community-based setting, detailed neuropsychological
testing at inclusion and follow-up, use of continuous cognitive
score that takes into account both improvement and worsening
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of cognitive performances in each neuropsychological test,
consideration of major confounders such as amyloid burden,
APOE genotyping and MMSE score at baseline, and inclusion of
ASL measures of cerebral perfusion. However, some limitations
should also be considered. In the absence of longer follow-
up, the decrease of the continuous cognitive score does not
represent a marker of incipient dementia. No CSF measures
of tau and Aβ protein were available in this work so that
the real extent of AD pathology remains unknown. Our
multivariate model explains only 7% of the cognitive variability.
When interpreting this modest percentage, one should keep
in mind that, in contrast to MCI and AD cases, healthy
controls display an impressive variability in MRI parameters
(Lauriola et al., 2017; Perrotin et al., 2017). The combination
of multiple MRI modalities including ASL and DTI data
in other neocortical areas but also CSF or PET assessment
of tau pathology is warranted to improve the performance
of imaging-based models of cognitive prediction in normal
brain aging.
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