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Episodic memory is the capacity to encode, store, and retrieve information of specific

past events. Several studies have shown that the decline in episodic memory

accompanies aging, but most of these studies assessed memory performance through

intentional learning. In this approach, the individuals deliberately acquire knowledge.

Yet, another method to evaluate episodic memory performance–receiving less attention

by the research community–is incidental learning. Here, participants do not explicitly

intent to learn. Incidental learning becomes increasingly important over the lifespan,

since people spend less time in institutions where intentional learning is required (e.g.,

school, university, or at work). Yet, we know little how incidental learning impacts episodic

memory performance in advanced age. Likewise, the neural mechanisms underlying

incidental learning in older age remain largely unknown. Thus, the immediate goal of this

review was to summarize the existing literature on how incidental learning changes with

age and how neural mechanisms map onto these age-related changes. We considered

behavioral as well as neuroimaging studies using incidental learning paradigms (alone

or in combination with intentional learning) to assess episodic memory performance in

elderly adults. We conducted a systematic literature search on the Medline/PubMed,

Cochrane, and OVID SP databases and searched the reference lists of articles. The

search yielded 245 studies, of which 34 concerned incidental learning and episodic

memory in older adults. In sum, these studies suggest that aging particularly affects

episodic memory after incidental learning for cognitively demanding tasks. Monitoring

deficits in older adults might account for these findings since cognitively demanding

tasks need increased attentional resources. On a neuronal level, dysregulation of

the default-mode-network mirrors monitoring deficits, with an attempt to compensate

through increased frontal activity. Future (neuroimaging) studies should systematically

evaluate retrieval tasks with diverging cognitive load and consider the influence of

attention and executive functions in more detail.
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INTRODUCTION

Whether we remember an episode or not depends on a set of
mental processes that occur during encoding of this episode,
its consolidation and its subsequent retrieval. The capacity to
encode, store and retrieve information of personally experienced
events is called episodic memory (Tulving, 2016). Episodic
memory is essential for daily life and many studies have shown
that its performance declines with advancing age (Shing et al.,
2010; Nyberg et al., 2012). In the clinical context (e.g., in a
memory clinic), episodic memory performance is typically tested
by prompting participants to learn (i.e., encode) and retrieve a list
of words (Rabin et al., 2005). In these tasks, older adults perform
worse during the cognitive demanding free recall of words; that is,
retrieval without cues (Rhodes et al., 2019). On the contrary, they
perform better during the cognitively less demanding cued recall
or recognition; that is, when they receive phonemic (i.e., first letter
of the word) or semantic (i.e., the category) cues in case of cued
recall or when they perform old/newmemory judgements in case
of recognition (Rhodes et al., 2019).

The initial encoding of information—be it a word list or
other–happens either intentionally or incidentally (Figure 1).
During intentional encoding, participants are instructed to
memorize and deliberately direct attention to the stimuli (Ferr
et al., 2015). During incidental learning, on the other hand,
participants are not aware of the learning situation (i.e., they
do not receive the instruction to memorize; McLaughlin, 1965).
Their attention is directed to the stimuli because of another task
(e.g., categorizing words according to certain criteria) and they
encode stimuli “along the way” without the specific intention
to do so (Zhou et al., 2012). Although incidental learning
becomes increasingly relevant during aging–as people spent less
time in institutions where intentional learning is required–most
of episodic memory studies in older age focus on intentional
learning. Thus, the influence of incidental learning on episodic
memory performance in older age remains largely unknown.

One important theory for incidental learning is the level of
processing framework (Craik and Lockhart, 1972): It postulates
that deep (i.e., semantic) compared to shallow (i.e., perceptual)
encoding benefits later retrieval (Galli, 2014) and that the
retrieval can be further facilitated by using emotional content
(either positive or negative; Ferr et al., 2015). In older adults,
however, the facilitating effect of deep compared to shallow
encoding is under debate. The processing deficit hypothesis states
that cognitive processing resources are limited in older age
and thus, older adults fail to use deeper encoding (Eysenck,
1974). Consequently, their memory performance is worse than
in younger adults. On the contrary, the production deficiency
hypothesis states that older adults are less likely to self-
initiate deep encoding (Mitchell and Perlmutter, 1986) but if
they are told to use it, they perform comparable to younger
adults (Light, 1991).

Irrespective of intentional or unintentional encoding, the
interaction between the medial temporal lobe and the prefrontal
cortex is crucial for later memory retrieval (Simons and Spiers,
2003)—at least at younger age. In the medial temporal lobe,
the hippocampus and its surrounding areas are particularly

important for memory consolidation and later retrieval (Simons
and Spiers, 2003). The perirhinal cortex is specifically engaged
in item encoding (that is, the what information; Davachi, 2006)
and the right parahippocampal cortex is central for source and
associative encoding (that is, contextual details like where, when,
and how; Wheeler and Ploran, 2008). In the prefrontal cortex,
the left dorsolateral part coordinates and controls the storing of
brain activity patterns via monitoring and verification (Simons
and Spiers, 2003), while the right prefrontal cortex is engaged
during retrieval processes (Tulving, 2002). Additionally, the left
inferior frontal gyrus, the left anterior prefrontal cortex, and
the bilateral posterior middle frontal gyrus are active during
demanding retrieval task (Wheeler and Ploran, 2008). These
regions might provide additional resources to overcome task
difficulty and thus, increased activity in these areas may represent
compensation in older adults.

In general, aging is accompanied by functional alterations in
the brain: Spreading activation (Cabeza, 2002), decreased activity
in the medial temporal lobe (Reuter-Lorenz and Park, 2010),
and default mode network (DMN) dysregulations (Grady et al.,
2010). The DMN is a network of brain regions, which is typically
inhibited during cognitive tasks and active during rest as well
as mind wandering (Damoiseaux et al., 2008). In older adults,
however, the DMN seems to be active also during cognitive
tasks (Grady et al., 2010). Because the DMN usually inhibits
regions related to attention and control (Broyd et al., 2009), a
dysregulation causes higher vulnerability to distractors with a
negative effect on memory performance (Lustig et al., 2010).
The medial temporal lobe is also strongly affected by age-related
alterations (e.g., hippocampal atrophy; Reuter-Lorenz and Park,
2010; Adler et al., 2018). Because of its crucial role for memory
encoding, consolidation, and retrieval, these alterations strongly
affect memory processing (Simons and Spiers, 2003; Davachi,
2006). For spreading activation, there are different theories: In
view of the dedifferentiation theory, spreading activation is due to
loss of specificity of neural representations in older adults (Baltes
et al., 1980). In the increased noise theory, dedifferentiation is
caused by alternations in neuronal transmission by dopaminergic
decline leading to a less distinct neuronal representation
(Bäckman et al., 2006). In the hemispheric asymmetry reduction
in older adults (HAROLD) model, spreading activation is a
compensatorymechanism. This theory proposes that older adults
tend to show less left lateralized prefrontal activity than younger
adults do, in order to meet task demands (Cabeza, 2002).
Likewise, prefrontal over-activation is part of the posterior–
anterior shift in aging (PASA) model, which states that under-
activation in posterior regions (i.e., the medial temporal lobe)
is typically accompanied by prefrontal over-activation to aid
performance (Davis et al., 2008). In a broader sense, the
compensation-related utilization of neural circuits hypothesis
(CRUNCH) states that older adults engage more neuronal
circuits than younger adults do, in order to compensate their
declining neuronal efficiency–especially for tasks requiring more
effort and attention (Reuter-Lorenz and Cappell, 2008). A theory
combining dedifferentiation, recruitment of alternative neuronal
regions (i.e., prefrontal regions), decreased activation in the
medial temporal lobe and DMN dysregulation is the scaffolding
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FIGURE 1 | The influence of incidental or intentional encoding on the three stages of episodic memory. During encoding, both deep incidental as well as intentional

learning lead to a strong memory trace. During storage, weak memory traces following shallow encoding are more vulnerable to interference than strong memory

traces after deep encoding. The disadvantage of shallow incidental encoding on later memory performance is mostly visible during free and cued recall and is almost

eliminated during recognition.

theory of aging and cognition (STAC) (Reuter-Lorenz and Park,
2010). STAC postulates that these processes are adaptations of the
brain to different neuronal age-related challenges like amyloid
deposition, atrophy, white matter deterioration and dopamine
receptor depletion (Park and Reuter-Lorenz, 2009).

Even though all these theories try to relate functional
brain alterations to cognitive performance changes in older
adults, none of them provides a specific statement for memory
performance. It might be that age-related alterations like
decreased activity in the medial temporal lobe as well as
dysregulation of the DMN lead to an impaired episodic
memory performance, while spreading activation, particularly
in the prefrontal cortex, might be beneficial (since more
attentional resources are available). Yet, these assumptions still
need verification.

Thus, the goals of this review were to survey the literature
on how incidental learning changes with advancing age as
well as which neural correlates underlie incidental learning in
elderly adults.

METHODS

For the present systematic review, we followed the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) guidelines (Moher et al., 2009). We systematically
searched for published studies in English with no date restriction

across the following databases: Cochrane Central Register of
Controlled Trials, MEDLINE, Books@Ovid, Ovid Journals,
PsycARTICLES, Ovid MEDLINE(R), Epub, PsycINFO, and
PSYNDEXplus. We used the following search terms: “incidental
learning AND episodic memory AND older adults NOT child
NOT animal NOT Alzheimer NOTMCI.” For the neuroimaging
part, we applied an additional literature search with the

following search terms: “brain AND age AND [incidental/level
of processing/categorical decision] NOT children NOT patients
NOTworkingmemory NOTAlzheimer NOTMCINOT animals

NOT dementia NOT Parkinson NOT infants NOT incidental
findings NOT alcohol NOT stimulation NOT motor NOT
STROOP NOT depression NOT syndrome NOT smoking NOT
stress NOT diabetes NOT tinnitus NOT eye-tracking.”

To be eligible for inclusion, studies needed to: (1) investigate
incidental learning (preferably, but not necessarily, in

conjunction with intentional learning) in cross-sectional or
longitudinal designs, (2) focus on episodic memory, (3) include
older adults or compare older adults’ performance to that of
younger participants. To reduce the risk of bias, two authors
(CW and KW) independently screened abstracts and titles and
analyzed studies that met inclusion criteria, as suggested by

the PRISMA guidelines. We also screened the reference lists of
included studies to identify any additional studies.

The search yielded 726 studies, of which 33 met criteria for

the final review. Figure 2 reports the four phases of the selection
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FIGURE 2 | Flow chart of the identification and inclusion of studies in the current review.

process (identification, screening, eligibility, and inclusion—as
suggested by PRISMA).

RESULTS

Table 1 gives an overview on the included studies (see also
Table 2 for a summary on the behavioral findings). The majority
of these studies found comparable or decreased episodic memory
performance in older adults compared to younger participants,
while only one study evidenced superior performance. Age-
related changes were more evident in retrieval tasks with high

cognitive load (i.e., free recall) than in less demanding retrieval
tasks (i.e., recognition). For less demanding tasks, older adults
showed higher false alarm rates compared to younger adults but

hit rates and reaction times were comparable. Fifteen studies

examined age-related changes in neural correlates of incidental
learning and observed less activity in hippocampal regions as well

as more activity in right frontal regions. Likewise, regions related

to the DMN tended to be more active in older adults compared
to younger adults (see Figure 3 for a summary). In the following,
we will describe the reviewed studies in more detail. We will
first concentrate on studies, which applied incidental learning
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TABLE 1 | Overview of all included studies.

Methods

References Participants Condition Imaging Stimuli Encoding type Retrieval Results

Eysenck, 1974 N = 100

(n = 50 o, n = 50 y)

Incidental +

intentional

No Words Deep and shallow Free recall y = o for shallow items

y > o for deep items

y > o for intentional condition

Mason, 1979 N = 498

(n = 190 o, n = 136

mo, n = 172 y)

Incidental +

intentional

No Words Deep and shallow Free recall and

recognition

o = y for shallow items

y > o for deep items

y > o for intentional condition

Duchek, 1984 N = 64

(n = 32 o, n = 32 y)

Incidental No Words Deep and shallow Cued recall y > o for deep and shallow condition

Mitchell and Perlmutter,

1986

N = 64

(n = 32 o, n = 32 y)

Incidental +

intentional

No Words Deep and shallow Free recall and

recognition

y = o for shallow and deep condition

y > o for intentional condition

Mitchell, 1989 N = 96

(n = 48 y, n = 48 o)

Incidental No Line drawings Picture-naming Free Recall and

recognition

y > o

Stebbins et al., 2002 N = 30

(n = 15 y, n = 15 o)

Incidental fMRI Words Deep and shallow None y > o (activity in the left superior and

middle frontal gyrus)

Daselaar et al., 2003 N = 60

(n = 20 y, n = 40 o)

Incidental fMRI Words Emotional and

shallow

Recognition y > o (activity in the

perirhinal/parahippocampal region)

y < o (activity in the right

prefrontal cortex)

Aine et al., 2005 N = 20

(n = 10 y, n = 10 o)

Incidental MEG Words Deep Recognition y = o

y = o (time courses in the prefrontal

cortex)

y < o (higher amplitudes in the

prefrontal cortex)

Gutchess et al., 2005 N = 27

(n = 14 y, n = 13 o)

Incidental fMRI Pictures (scenes) Shallow Recognition y = o

y > o (activity in both parahippocampi)

y < o (activity in middle frontal cortex

and stronger negative connectivity

between parahippocampal and inferior

frontal cortex)

Troyer et al., 2006 N = 104

(n = 40 y, n = 64 o)

Incidental +

intentional

No Names and faces Deep and shallow Free recall and

recognition

y = o for incidental

y > o for intentional

Kensinger and

Schacter, 2008

N = 37

(n = 17 y, n = 20 o)

Incidental fMRI Pictures (objects) Deep Recognition y > o (negative and neutral items;

proportion of correctly recognized

“same” items)

y > o (activity in the hippocampus and

the parahippocampal gyrus)

y < o (activity in the medial, middle and

inferior frontal gyrus, the middle temporal

gyrus, and anterior cingulate gyrus)

(Continued)

F
ro
n
tie
rs

in
A
g
in
g
N
e
u
ro
sc

ie
n
c
e
|
w
w
w
.fro

n
tie
rsin

.o
rg

5
Ju

ly
2
0
1
9
|V

o
lu
m
e
1
1
|
A
rtic

le
1
7
3

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


W
a
g
n
o
n
e
t
a
l.

In
c
id
e
n
ta
lL

e
a
rn
in
g
in

O
ld

A
g
e

TABLE 1 | Continued

Murty et al., 2009 N = 60

(30 y, n = 30 o)

Incidental fMRI Emotional scenes Deep Recognition y > o (accuracy and reaction times)

y > o (activity in hippocampus and

amygdala)

y < o (activity in ventral visual stream,

prefrontal, and parietal cortex)

Naveh-Benjamin et al.,

2009

N = 47

(n = 24 y, n = 23 o)

N = 84

(n = 42 y, n = 42 o)

Incidental +

intentional

No Names and faces Face-name matching

or association

Recognition y = o for intentional except for

associations (here, y > o)

y > o for incidental

Fischer et al., 2010 N = 45

(n = 24 y, n = 21 o)

Incidental fMRI Emotional faces Emotional Recognition y = o (hits)

y < o (false alarm and discrimination)

y > o for fearful vs. neutral faces (activity

in right amygdala and bilateral

hippocampus)

y < o for fearful vs. neutral faces (activity

in left insular cortex and right superior

frontal gyrus)

Plancher et al., 2010 N = 160 (n = 82 y, n

= 78 o)

Incidental +

intentional

No Urban environment

in VR

Driving in VR Free recall and

recognition

y < o for incidental “what” details

y = o for intentional “what” details and

for incidental “when” details

y > o for ‘where’ details in

both conditions

Cho et al., 2012 N = 63

(n = 40 y, n = 23 o)

Incidental fMRI Words (auditory) Deep None y > o (inferior frontal gyrus and middle

temporal gyrus)

y < o (ventromedial prefrontal cortex,

right middle, and inferior frontal gyrus,

bilateral precuneus, left middle, and

superior temporal gyrus, bilateral

parahippocampus, and bilateral

posterior cingulate cortex)

Sambataro et al., 2012 N = 44

(n = 22 y, n = 22 o)

Incidental fMRI Pictures (scenes) Shallow Recognition y > o (left hippocampus)

y < o (bilateral prefrontal cortex,

precuneus, temporo-parietal junction,

and posterior cingulate regions)

Waring et al., 2013 N = 37

(n = 19 y, n = 18 o)

Incidental fMRI Emotional scenes Emotional Recognition y > o

y < o (stronger connectivity in frontal

regions and from frontal regions to

medial temporal lobe structures)

Greve et al., 2014 N = 48

(n = 24 y, n = 24 o)

Incidental +

intentional

sMRI Pictures (objects) Shallow Recognition y > o

Martins et al., 2014 N = 42

(n = 28 y, N = 14 o)

Incidental fMRI Words Deep and shallow None y > o for deep vs. shallow encoding

(left prefrontal cortex, left posterior

cingulate cortex, left precuneus

y < o for shallow vs. deep encoding

(left posterior cingulate cortex)

Kalenzaga et al., 2015 N = 35

(n = 19 y, n = 16 o)

Incidental fMRI Sentences Self-referential and

imagery

Free recall y = o for item memory

y > o for source memory

y < o (activity in fronto-parietal network)

(Continued)
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TABLE 1 | Continued

Carr et al., 2015 N = 71

(n = 47 y, n = 24 o)

Incidental No Faces Similarity and

distinctiveness

Recognition y > o for distinctiveness

y = o for similarity

Lindner et al., 2015 N = 55

(n = 36 y, n = 19 o);

N = 66

(n = 26 y, n = 30 o);

N = 43

(n = 24 y, n = 19 o)

Incidental +

intentional

No Sentences Source and

destination

Recognition y = o for source and destination in both

conditions

Ramanoël et al., 2015 N = 24

(n = 12 y, n = 12 o)

Incidental fMRI Pictures (scenes) Shallow None y < o (right middle frontal gyrus, right

inferior parietal lobule, left inferior parietal

lobule, and left middle temporal gyrus)

Saverino et al., 2016 N = 34

(n = 16 y, n = 18 o)

Incidental fMRI Pictures

(house/objects)

Shallow and deep Recognition y > o for association

y = o for categorization

y = o (parahippocampal gyrus, inferior

parietal lobe)

y > o (precentral gyrus, inferior temporal

gyrus, posterior cingulate

gyrus, precuneus)

Wang and Giovanello,

2016

N = 52

(n = 29 y, n = 23 o)

Incidental +

intentional

fMRI Sentences Reading Recognition y = o for incidental

y = o for intentional

y = o (hippocampus and

perirhinal cortex)

Fu et al., 2017 N = 46

(n = 23 y, n = 23 o)

Incidental No Words Deep and shallow Recognition y > o for shallow

y = o for deep

Kontaxopoulou et al.,

2017

N = 47

(n = 27 y, n = 20 o)

Incidental +

intentional

No Computer-

generated items

(i.e., speed limit

signs), words, and

geometric figures

Computer-generated

driving task, verbal

learning, and

visuospatial memory

Free Recall and

recognition

y > o for incidental free recall, intentional

visuospatial free recall, and incidental

recognition

y = o for intentional verbal free recall,

intentional verbal recognition, and

incidental visuospatial recognition

François et al., 2018 N = 39 (n = 20 y, n

= 19 o)

Incidental fMRI Drawings Deep Recognition y > o except for reaction times or new

items (here, y = o)

y < o (right frontal areas and regions

associated with the DMN)

Hämmerer et al., 2018 N = 50 (n = 28 y, n

= 22 o)

Incidental sMRI Pictures (scenes) Shallow Recognition y = o (hits, false alarms)

y = o (volume of the locus coeruleus)

Hennessee et al., 2018 N = 66

(n = 33 y, n = 33 o)

Incidental +

intentional

No Words with color

and point-value

Binding of color and

point-value or word

learning

Recognition y > o for intentional

y = o for incidental

Lugtmeijer et al., 2019 N = 59

(n = 30 y, n = 29 o)

Incidental No Pictures (objects) Object-location

binding

Recognition y > o for location

Meade et al., 2018 N = 144

(n = 72 y, n = 72 o)

Incidental No Words (objects) Drawing, writing, or

listing characteristics

of the objects

Free recall and

recognition

y > o except for encoding via drawing

(here, y = o for hit rate)

y, young; mo, middle-old; o, old; fMRI, functional Magnetic Resonance Imaging; sMRI, structural Magnetic Resonance Imaging; MEG, Magnetoencephalography; VR, virtual reality; DMN, default mode network.
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TABLE 2 | Summary of behavioral findings when comparing episodic memory performance following incidental or intentional learning in groups of healthy young and

elderly adults.

Performance measure Comparison of episodic memory performance

Young > old Young = old Young < old

Free recall Incidental Eysenck (deep)

Mason (deep)

Mitchell

Plancher

Kontaxopoulou

Eysenck (shallow)

Mason (shallow)

Mitchell & Perlmutter (shallow)

Mitchell & Perlmutter (deep)

Plancher

Plancher

Intentional Eysenck

Mason

Mitchell & Perlmutter Plancher

Kontaxopoulou

Plancher

Kontaxopoulou

Cued recall Incidental Duchek (shallow + deep)

Recognition (hit rate) Incidental Mason (deep)

Naveh-Benjamin

Carr

Saverino

Fu (shallow)

Francois

Waring

Greve

Meade

Kontaxopoulou

Murty

Kensinger

Mitchell

Mitchell & Perlmutter

Daselaar

Sambatoro

Carr

Kalenzaga

Lindner

Fu (deep)

Lugtmeijer

Hennessee

Hämmerer

Gutchess

Aine

Troyer

Wang

Meade

Kontaxopoulou

Fischer

Kensinger

Intentional Mitchell & Perlmutter

Hennessee

Troyer

Naveh-Benjamin

Lindner

Wang

Kontaxopoulou

Recognition (false alarm rate) Incidental Mitchell

Carr

Saverino

Francois

Gutchess

Fischer

Lugtmeijer

Hämmerer

Intentional Hennessee

Recognition (reaction times) Incidental Daselaar

Francois

Aine

Murty

Please note that some studies applied several experiments (e.g., Plancher et al., 2010). For false alarms, lower false alarm rates indicate better performance.

only, afterwards review studies that applied both incidental
and intentional learning and finally, we will focus on studies
that investigated the neural correlates of incidental learning in
older age.

Duchek (1984) tested incidental learning in a cued recall
task after a semantic (e.g., “is it a type of bird?”) or
rhyme (e.g., “does it rhyme with care?”) categorization task.
Older adults remembered fewer items than younger adults
did and were overall slower in their reactions. Younger
participants remembered significantly more yes-responses than
no-responses and were superior in recall of semantically
encoded words.

Kalenzaga et al. (2015) found no significant age difference
in free recall of autobiographical memories. In their task,
participants had to fill in sentences with one missing word and
think about an experience they made on this topic.

Several studies investigated the effect of deep vs. shallow
encoding on free recall of words but yielded contradicting results.
Eysenck (1974) and Mason (1979) found comparable memory
performance in both age groups after shallow encoding but
inferior retrieval in older adults following deep encoding. In
contrast, Mitchell and Perlmutter (1986) as well as Fu et al.
(2017) found elderly adults to benefit from deep encoding
with comparable performance during retrieval or recognition.
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FIGURE 3 | Figure of the most important functional magnetic resonance imaging results of the reviewed studies when applying incidental encoding in older compared

to younger adults. DMN, default mode network; fMRI, functional Magnetic Resonance Imaging.

However, the effect sizes in these studies were small (d = 0.25–
0.34), with the highest effect size observed by Eysenck (1974).
All of these studies additionally applied intentional encoding
and constantly found younger adults outperforming older adults
at retrieval.

Daselaar et al. (2003) applied encoding and recognition of
words rated according to their pleasantness (i.e., is the word
pleasant or unpleasant). During recognition, the participants had
to decide if a given word was old or new. The authors did not find
any significant difference between young and elderly individuals
regarding hit rate or reaction times.

Similarly, Sambataro et al. (2012) found no significant age
difference in recognition accuracy. In their task, the participants
had to decide if a given image represented an indoor or an
outdoor scene and in a subsequent recognition task, they had
to recognize if the images were old or new. On the contrary,
Murty et al. (2009) found superior performance of younger adults
compared to older adults for accuracy and reaction times during
a similar task (i.e., recognition of indoor and outdoor scenes).

Mitchell (1989) examined the effect of incidental learning on
subsequent free recall and recognition. Participants had to name
pictures, which appeared on a projection screen and, after a
short delay, recalled the names of the pictures in writing and
performed an old/new recognition task. Younger participants
freely recalled more pictures and had a lower false alarm rate
during recognition compared to older participants, but both
groups performed comparable for hit rates.

Carr et al. (2015) led participants decide if several faces were
distinct or similar to a given face. In the subsequent recognition

task, the group of younger participants outperformed the group
of older adults only for faces studied in the distinctness task but
not for faces studied in the similarity task. In a similar approach,
Fischer et al. (2010) led participants decide if a face was fearful
or neutral. They found no age effect for hits in the subsequent
recognition task, but younger adults outperformed older adults
with lower false alarm rates.

François et al. (2018) led participants decide if a given
line drawing would fit into a shoebox or not. In the
subsequent recognition task (remember/know/new), they found
no significant differences in reaction times between both groups.
However, they observed lower hit rates for remember items in
older adults compared to younger adults and an increased false
alarm rate for both remember and know items. No significant
differences were found for items declared as new (neither hit rate
nor false alarm rate). (Kensinger and Schacter, 2008) performed
a similar study by asking participants if several objects would fit
in a file cabinet drawer or not. Older adults showed lower hit
rates, particularly for negative and neutral items. However, they
recognized positive items comparable to younger adults. Thus,
older adults remember the positive material better, indicating
a well-preserved positivity effect in this population (Carstensen
and Mikels, 2005).

Comparable to Daselaar et al. (2003), Sambataro et al. (2012),
Kalenzaga et al. (2015), and Lugtmeijer et al. (2019) found no
age-related difference in recognition performance after incidental
learning. Similarly, Aine et al. (2005), Gutchess et al. (2005), and
Hämmerer et al. (2018) found no evidence of a recognition deficit
in older adults. In contrast, Waring et al. (2013), Greve et al.

Frontiers in Aging Neuroscience | www.frontiersin.org 9 July 2019 | Volume 11 | Article 173

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Wagnon et al. Incidental Learning in Old Age

(2014), and Meade et al. (2018) evinced impaired recognition
performance in older adults after both incidental and intentional
encoding. Meade et al. (2018) compared the effect of different
encoding strategies on word retrieval. They asked participants to
draw the to-be-remembered words, to create a mental image of
the object, or to write down as many characteristics of the object
as possible. Only drawing of the object increased performance in
older adults in a way that they performed similarly to younger
adults during recognition.

Saverino et al. (2016) tested item and associative encoding
under incidental conditions. For item encoding, participants
indicated if the style of a given house on a picture was modern or
traditional. During associative encoding, they decided if “based
on the style of an object, would it be likely to be found in
the house.” Later on, they administered an old/new recognition
task. The authors found no significant age differences for item
recognition but older adults performed significantly worse for
associative recognition with a lower number of hits and a higher
false alarm rate. This supports an associative memory deficit in
older adults, which was also found in a study by Naveh-Benjamin
et al. (2009). Here, participants were either asked to remember
face-name pairs (i.e., intentional condition) or to rate whether
a name fits to a face (i.e., incidental condition). The authors
found that younger and older adults had comparable memory
performance for faces and names in isolation, irrespective of
incidental, or intentional learning. However, an age-related
deficit appeared specific to associations under intentional—but
not incidental—learning. This was due to a higher false alarm rate
during the associative task.

Troyer et al. (2006) conducted two experiments with younger
and older adults. They applied three different levels of incidental
encoding (physical, phonematic, semantic) to surnames or face-
name pairs and administered intentional learning, too. Younger
participants outperformed older ones during free recall as well
as recognition of intentionally learned names but showed equal
performance during free recall and recognition of intentionally
learned face-name-pairs. For incidental learning, both groups
performed equally well during free recall and recognition of
both names and face-name pairs. On the contrary, Wang
and Giovanello (2016) found no significant age difference for
incidental encoding of word pairs that appeared together during
a sentence-reading task.

In a very recent study, Hennessee et al. (2018) asked
participants to imagine being in different states of physiological
need (e.g., hunger, thirst) as well as being in different locations
(e.g., kitchen, forest). Then, they should examine the congruence
of an item with the state of need and to rate how much they want
to have this item right now. After a delay, they applied an old/new
recognition task. The authors found comparable performance for
hit rates but older adults showed a significantly higher false alarm
rate. In a second experiment, they showed words in different
colors, associated with different point-values. They asked the
participants to memorize the words but they did not ask them to
memorize the color nor the value. Younger adults outperformed
older individuals for low value items but not for high value items.
The authors found no significant age difference for incidental
learning (color).

In a study by Lindner et al. (2015), participants had to listen
to sentences and to encode the source (i.e., who said something)
or the destination (i.e., to whom was said something); thus
they encoded the where details. During retrieval, they had to
decide whether sentences were spoken by/to a person and if
a sentence was old or new. They were either made aware of
the upcoming memory test (i.e., intentional learning) or not
(i.e., incidental learning). The authors observed no significant
differences in recognition performance between both age groups
in either learning condition. Similarly, Plancher et al. (2010)
were interested in where as well as in what and when details.
They asked participants to drive through a virtual town and to
pay attention to the surroundings (incidental condition) or to
try to remember the itinerary (intentional condition). After a
short delay, they first performed a free recall on what, where,
and when details associated with the itinerary and afterwards
applied a recognition task in which the participants decided
which item among three different ones appeared in the task. They
found an increased memory performance among older adults
under incidental learning and comparable performance under
intentional learning (but only for what details). In contrast to
Lindner et al. (2015), older adults scored less on recall of where
information, both under intentional and incidental encoding
using a free recall task. For the when information, young
participants outperformed older ones under intentional—but
not incidental—encoding. Likewise, Kontaxopoulou et al. (2017)
examined age effects for incidental encoding of what details
during a driving simulator task. They also applied intentional
encoding, by asking participants to learn line drawings in
different spatial locations as well as words. In contrast to the
results of Plancher et al. (2010), older adults showed worse
recall and recognition performance for incidentally learned what
details. For intentionally learned items, only the free recall
of line drawings revealed significant age differences as older
males performed worse than younger males did. Taken together,
the difficulty of the retrieval task seems to explain age-related
differences rather than the content of the remembered details
(i.e., what, where, or when information).

In the following, we will describe neuroimaging studies that
applied incidental encoding in young and elderly adults (see
Figure 3 for a summary of the findings).

Daselaar et al. (2003), Gutchess et al. (2005), Kensinger
and Schacter (2008), Murty et al. (2009), Fischer et al. (2010),
and Sambataro et al. (2012) found reduced activity in medial
temporal lobe structures as well as stronger activity in frontal
regions in older adults, which is in line with the PASA
model. According to the model, under-activation in posterior
regions in older adults is typically associated with prefrontal
over-activation; the latter representing additional resources to
overcome cognitive impairment (Davis et al., 2008). Murty
et al. (2009) investigated brain activity differences between
younger and older adults during encoding and retrieval of
indoor and outdoor scenes. They found decreased activity in
the hippocampus and the amygdala accompanied by increased
activity in frontal and parietal cortices during encoding and
retrieval in older adults. Gutchess et al. (2005) tested the
contrast between remembered and forgotten items during the
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encoding of indoor and outdoor scenes. Both age groups showed
comparable activity in bilateral inferior frontal regions, regions
of the dorsal and ventral stream, and fusiform areas. Older
adults exhibited less activity in the parahippocampus (both sides)
but more activity in the left middle frontal cortex compared
to younger adults. Increased activity in inferior frontal regions
was associated with lower parahippocampal as well as higher
middle frontal activity in older adults. Frontal connectivity
during encoding correlated significantly with later memory
performance. Daselaar et al. (2003) observed reduced activity
in the perirhinal/parahippocampal cortex during incidental
encoding of words in older participants. They further discovered
a trend for a reduced lateralization of prefrontal activity in
the older group. Activity in the perirhinal/parahippocampal
cortex during encoding is crucial for later retrieval (Strange
et al., 2002) and reduced activity in these regions in older
adults might indicate an encoding deficit (Daselaar et al., 2003).
Sambataro et al. (2012) observed decreased activity in the left
hippocampus as well as increased activity in bilateral prefrontal
cortical regions in older participants compared to younger ones
during incidental encoding of scenes. Similarly, Fischer et al.
(2010) found decreased hippocampal activity in older adults
compared to younger adults during encoding of fearful faces
accompanied by decreased activity in the right amygdala as
well as increased activity in the left insular cortex and the
right superior frontal gyrus. In Kensinger and Schacter (2008),
successful encoding was associated with increased activations in
the bilateral hippocampus and the bilateral parahippocampus in
younger adults, while it was associated with more activity in the
bilateral medial, the left middle and the right inferior frontal
gyrus, the right middle temporal gyrus, the right insula, and
the bilateral anterior cingulate gyrus in older adults. Again, this
speaks to the PASA model.

Waring et al. (2013) compared effective brain connectivity
during encoding of emotional items and their background and
observed stronger connectivity in frontal regions and from
frontal regions to medial temporal lobe structures in older adults.
These results correspond to the PASA model as well as the
CRUNCH model (since the findings were more prominent in
difficult tasks).

Wang and Giovanello (2016) observed similar activity in the
hippocampus and the perirhinal cortex in both age groups, but
the posterior part of the hippocampus was more active during
retrieval in older adults. Another study of the same group found
that the posterior hippocampus and the posterior medial cortex
were stronger functionally connected in older participants (Wang
et al., 2010).

Evidence for the HAROLD model provide the studies of
Stebbins et al. (2002), Sambataro et al. (2012), Kalenzaga et al.
(2015), and François et al. (2018). Kalenzaga et al. (2015) found
increased activity in fronto-parietal regions when comparing
older adults to younger ones after forming associations between
words out of a sentence-filling task and autobiographical
memories. Likewise, Stebbins et al. (2002) observed that older
adults show less left-lateralized activity during encoding than
younger adults did, especially in the superior and middle frontal
gyrus. They asked participants to decide if words were abstract

or concrete (deep encoding) or if the words were printed in
uppercase or lowercase letters (shallow encoding). François
et al. (2018) compared brain activity for remember vs. know
items after encoding of line drawings. Both age groups showed
increased activity during encoding in the right inferior frontal
gyrus and the pre-supplementary motor area for remember
compared to know items. For remember items, younger adults
showed increased bilateral activity in the inferior frontal gyri as
well as in the left middle temporal gyrus. Older adults showed
increased activity in the left and right precuneus, the right
superior temporal gyrus, and the right middle as well as superior
frontal gyri. Likewise, Sambataro et al. (2012) observed increased
activity in bilateral prefrontal regions in older participants
compared to younger ones during incidental encoding
of scenes.

Aine et al. (2005) used magnetoencephalography (MEG) to
identify time-dependent changes of the magnetic field in the
brain during incidental encoding processes. In their study, the
participants had to decide if presented objects were larger than
a television or not. The authors found similar time-dependent
changes in prefrontal regions in both age groups, but elderly
adults tended to produce stronger responses than younger
adults did.

Stronger activity in the precuneus and the superior temporal
gyrus in older adults as observed in a study by François et al.
(2018) might be an indicator for a less attenuated DMN as
well as an inhibited fronto-parietal network. Likewise, Sambataro
et al. (2012) observed that regions related to the DMN were
more active during incidental encoding of scenes in older
adults compared to younger ones. The authors stated that the
increased activity in the DMN reflects additional allocation
of attentional resources, which supports the STAC model.
Others favored increased activity in the DMN as a sign of
dysregulation leading to reduced ability to control attention
(Reuter-Lorenz and Park, 2010).

Saverino et al. (2016) found similar activity in the right middle
occipital gyrus and the left parahippocampus in both groups
during encoding of house pictures. For incidental associative
encoding of objects, elderly adults exhibited decreased activity
in the inferior frontal gyrus, the left precuneus, the right
inferior temporal gyrus, and the left middle as well as the
right posterior cingulate cortex. The authors suggested this
as a sign for dedifferentiation in older adults, which means
that older adults have less distinct neuronal representations
for associative encoding, indicating a breakdown of functional
specificity (Zelinski and Lewis, 2003). Cho et al. (2012) found
similar results when they let participants decide if auditory
presented words belong to a certain category or not. Older adults
showed broad activation in right frontal regions (middle and
inferior frontal gyrus and ventromedial prefrontal cortex) and in
the DMN but also in the bilateral parahippocampus. This favors
the dedifferentiation theory again, supporting that brain activity
in older adults is less lateralized than in younger adults. Likewise,
it might indicate that broader activity in older adults represents
compensatory mechanisms. Ramanoël et al. (2015) also found
more activity in older adults compared to younger adults during
the categorization of indoor and outdoor scenes. Again, they
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found that the DMN is more active in older adults compared to
younger adults during task execution.

Martins et al. (2014) assessed brain activity during semantic
and phonological decisions (i.e., deep and shallow encoding).
The contrast between these two encoding conditions revealed
increased left lateralized activation (prefrontal cortex, posterior
cingulate cortex, and precuneus) in younger participants.
Interestingly, these regions are typically more active in older
adults during compensation. Thus, when facing complex tasks
(i.e., deep encoding), younger adults show increased activity
in brain regions, which are associated with compensational
approaches in older adults. Yet, in older adults, the semantic
and phonological routes seem to merge into one single pathway.
Thus, older adults seem to encode similarly during shallow
and deep encoding, leading to better performance after shallow
encoding but worse performance after deep encoding.

DISCUSSION AND PERSPECTIVE

This review revealed several important findings on how
incidental learning changes with advancing age as well as how
these changes relate to episodic memory performance.

First, episodic memory following incidental learning seems
to be more impaired in older adults compared to younger
adults in retrieval tasks with high cognitive load (i.e., free recall)
compared to less demanding retrieval tasks (i.e., recognition;
Figure 1). This is in line with a former meta-analysis, which
summarized that age differences following incidental learning
are present during free recall, attenuated during cued recall and
are eliminated during recognition (Old and Naveh-Benjamin,
2008). There are several explanations for this finding: During
free recall, older adults do less often use search strategies
spontaneously to enhance retrieval (Lemaire, 2010; Cadar et al.,
2018). Even if such strategies are provided, they use them less
frequently than younger adults do and, consequently, their recall
ability is lower (Lemaire, 2010). Furthermore, they regularly
exhibit higher rates of intrusions (Kahana et al., 2005). During
recognition, search strategies are not that important, whichmight
explain why only few studies found age-related differences for
recognition tasks.

Second, older adults retrieve less during free recall but the
depth of processing influences the performance (at least in two
out of three studies): Older adults perform comparable after
incidental encoding with shallow processing (i.e., when focusing
on the appearance of stimuli), while younger participants mostly
outperform elderly participants after deep encoding (i.e., when
focusing on the meaning of stimuli). These findings might
be explained by impaired cognitive control processes in older
adults and, thus, loss of attentional resources (Mather and
Carstensen, 2005). Cognitive control is the ability to limit
attention to goal-relevant information and inhibit, or suppress,
irrelevant distraction (Houghton and Tipper, 1996). Deep
processing demands directed attention to the task and, therefore,
may be more affected by age-related attentional deficits than
shallow processing, which demands less attentional resources
(Craik and Lockhart, 1972). In sum, the results of this review

favor the processing deficit hypothesis over the production
deficiency hypothesis but further research might help to provide
a definite statement.

Third, in recognition tasks, worse performance in elderly
compared to younger participants is more likely for false alarms
than for hit rates or reaction times. A higher false alarm
rate in older adults also emerges after intentional encoding,
which is known as the false-recognition effect (Balota et al.,
1999): Older adults often intermingle distractor items for “old”
items, particularly if they are semantically, phonologically, or
orthographically related to previously shown items (Schmid
et al., 2010). Since old/new decisions require proper monitoring
abilities, a higher false alarm rate indicates a monitoring deficit.
Increasing attention toward stimuli does not substantially alter
the false-recognition effect (Koutstaal et al., 1999).

Fourth, we found evidence for an associative-memory deficit
in older adults after incidental encoding, which tended to be
larger after intentional encoding. Deficits in strategic processing,
which are not required for incidental encoding seem to be
responsible for this finding (Naveh-Benjamin et al., 2009).

When applying both incidental and intentional learning, age
effects were more prevalent in free recall as well as recognition
performance following intentional learning. There seems to be
an influence of stimulus material, at least for the free recall
performance: Older adults exhibit worse performance for the
recall of when and what information after intentional—but not
incidental—learning. However, they show impaired recall of
where information for both learning conditions.

In sum, older adults perform inferior to younger adults
following intentional learning as well as deep incidental learning,
but they perform similar after shallow incidental learning. Tasks
with high cognitive load (i.e., free recall) show more age-related
impairment than less demanding tasks (i.e., recognition). A
monitoring deficit in older adults seems to be responsible since
intentional learning as well as deep encoding require more effort
and attention (Troyer et al., 2007).

Regarding the neural correlates of incidental learning,
we also found a few important findings (see Figure 3 for
a summary). However, the interpretation might be limited
since only one study corrected for volume differences
(Stebbins et al., 2002).

First, most of the studies showed broader activity in older
adults than in younger adults, mostly in the right prefrontal
cortex. This is in line with the HAROLD model stating that
older adults additionally activate right prefrontal areas to meet
task demands (Cabeza, 2002). Since the prefrontal cortex is
related to attention, increased activity in this area indicates
that older participants require more attentional resources
(Shing et al., 2010).

Second, the DMN is active during tasks in older adults and
thus, inhibits brain areas involved in focusing and directing
attention during a task. The dysregulated DMN hinders memory
processes, which rely on focused attention (Shing et al., 2010).
According to the STAC model, activity in frontal brain regions
compensates dysregulation in order to maintain cognitive
functioning (Reuter-Lorenz and Park, 2010). Thus, increased
activity in the prefrontal cortex, which was continuously found
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in older adults, may compensate dysregulation in the DMN
(Shing et al., 2010).

Third, less activity in the hippocampus during incidental
encoding accompanies the broader frontal activity in older
adults. This is in line with the PASA model stating that under-
activation in the medial temporal cortex may be compensated
with over-activity in the prefrontal cortex (Davis et al.,
2008). During retrieval, older adults increasingly activate the
posterior hippocampus, which might also indicate compensation
(Gunning-Dixon et al., 2003).

Fourth, one study provides some indication why shallow
encoding is well-preserved in older adults in contrast to deep
encoding: Older adults show no significant brain activation
difference for shallow compared to deep encoding tasks,
while younger participants increase activity for the latter.
This might indicate that older adults do not adapt to tasks
that are more complex, which is why they show good
performance in shallow tasks but worse performance in deep
encoding tasks.

In sum, only few studies so far investigated how aging affects
incidental learning. These studies found superior performance of
younger adults in free recall tasks, particularly after intentional
learning. On the contrary, older adults performed similar to
younger adults in less cognitively demanding retrieval tasks (i.e.,
recognition), regardless of intentional or incidental encoding.
Monitoring deficits in older adults might account for these
findings since cognitively demanding free recall tasks need
increased attentional resources. Regarding the neural correlates
of incidental learning in older age, even less studies were
available. These found broader activity in prefrontal regions,
increased activity in the DMN during tasks, and less activity
in hippocampal regions in older adults. Dysregulation of the
DMNmight indicate problems with monitoring, while increased

prefrontal activity might signal compensation to account for
deficits in attention.

In the future, more studies should systematically manipulate
incidental encoding with different depths of processing and
subsequently evaluate its effect on retrieval tasks with diverging
cognitive load (i.e., free recall vs. recognition). Future studies
should also consider the influence of attention and executive
functions (i.e., monitoring) in more detail. We additionally
suggest including both incidental and intentional encoding in
future studies to allow for a direct comparison. More functional
neuroimaging studies might foster our understanding of the
age impact on the different stages of episodic memory and
the contribution of hippocampal subregions. Importantly, these
studies should account for age-related brain volume changes.
For the DMN, resting-state connectivity might disentangle if
increased activity is a sign of dysregulation.

DATA AVAILABILITY

No datasets were generated or analyzed for this study.

AUTHOR CONTRIBUTIONS

JP and SK contributed conception and design of the
study. CW and KW performed the statistical analysis.
CW wrote the first draft of the manuscript. All authors
contributed to manuscript revision, read, and approved the
submitted version.

FUNDING

CW was funded by the Novartis Foundation for medical-
biological research (Grant #17C195).

REFERENCES

Adler, D. H., Wisse, L. E. M., Ittyerah, R., Pluta, J. B., Ding, S., Xie, L., et al. (2018).

Characterizing the human hippocampus in aging and Alzheimer’s disease using

a computational atlas derived from ex vivoMRI and histology. Proc. Natl. Acad.

Sci. U.S.A. 115, 4252–4257. doi: 10.1073/pnas.1801093115

Aine, C. J., Adair, J. C., Knoefel, J. E., Hudson, D., Qualls, C., Kovacevic,

S., et al. (2005). Temporal dynamics of age-related differences in

auditory incidental verbal learning. Brain Res. Cogn. Brain Res. 24, 1–18.

doi: 10.1016/j.cogbrainres.2004.10.024

Bäckman, L., Nyberg, L., Lindenberger, U., Li, S., and Farde, L. (2006).

The correlative triad among aging, dopamine, and cognition. Current

status and future prospects. Neurosci. Biobehav. Rev. 30, 791–807.

doi: 10.1016/j.neubiorev.2006.06.005

Balota, D. A., Cortese,M. J., Duchek, J. M., Adams, D., Roediger, H. L.,McDermott,

K. B., et al. (1999). Verdical and false memories in healthy older adults

and in dementia of the Alzheimer‘s type. Cogn. Neuropsychol. 16, 361–384.

doi: 10.1080/026432999380834.

Baltes, P. B., Cornelius, S. W., Spiro, A., Nesselroade, J. R., and Willis, S. L. (1980).

Integration versus differentiation of fluid/crytallized intelligence in old age.

Dev. Psychol. 16, 625–635. doi: 10.1037/0012-1649.16.6.625

Broyd, S. J., Demanuele, C., Debener, S., Helps, S. K., James, C. J., and

Sonuga-Barke, E. J. S. (2009). Default-mode brain dysfunction in mental

disorders. A systematic review. Neurosci. Biobehav. Rev. 33, 279–296.

doi: 10.1016/j.neubiorev.2008.09.002

Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults. The

HAROLD model. Psychol. Aging 17, 85–100. doi: 10.1037//0882-7974.

17.1.85

Cadar, D., Usher, M., and Davelaar, E. J. (2018). Age-related deficits in

memory encoding and retrieval in word list free recall. Brain Sci. 8:211.

doi: 10.3390/brainsci8120211.

Carr, V. A., Castel, A. D., and Knowlton, B. J. (2015). Age-related differences

in memory after attending to distinctiveness or similarity during learning.

Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 22, 155–169.

doi: 10.1080/13825585.2014.898735

Carstensen, L. L., and Mikels, J. A. (2005). At the intersection of emotion and

cognition: aging and the positivity effect. Curr. Direct. Psychol. Sci. 14, 117–121.

doi: 10.1111/j.0963-7214.2005.00348.x

Cho, Y. W., Song, H. J., Lee, J. J., Lee, J. H., Lee, H. J., Yi, S. D., et al.

(2012). Age-related differences in the brain areas outside the classical language

areas among adults using category decision task. Brain Lang. 120, 372–380.

doi: 10.1016/j.bandl.2011.12.013

Craik, F. I. M., and Lockhart, R. S. (1972). Levels of processing. A

framework for memory research. J. Verb. Learn. Verb. Behav. 11, 671–684.

doi: 10.1016/S0022-5371(72)80001-X

Damoiseaux, J. S., Beckmann, C. F., Arigita, E. S., Barkhof, F., Scheltens, P., Stam,

C. J., et al. (2008). Reduced resting-state brain activity in the “default network”

in normal aging. Cereb. Cortex 18, 1856–1864. doi: 10.1093/cercor/bhm207

Daselaar, S. M., Veltman, D. J., Rombouts, S. A. R. B., Raaijmakers, J. G.

W., and Jonker, C. (2003). Neuroanatomical correlates of episodic encoding

Frontiers in Aging Neuroscience | www.frontiersin.org 13 July 2019 | Volume 11 | Article 173

https://doi.org/10.1073/pnas.1801093115
https://doi.org/10.1016/j.cogbrainres.2004.10.024
https://doi.org/10.1016/j.neubiorev.2006.06.005
https://doi.org/10.1080/026432999380834.
https://doi.org/10.1037/0012-1649.16.6.625
https://doi.org/10.1016/j.neubiorev.2008.09.002
https://doi.org/10.1037//0882-7974.17.1.85
https://doi.org/10.3390/brainsci8120211.
https://doi.org/10.1080/13825585.2014.898735
https://doi.org/10.1111/j.0963-7214.2005.00348.x
https://doi.org/10.1016/j.bandl.2011.12.013
https://doi.org/10.1016/S0022-5371(72)80001-X
https://doi.org/10.1093/cercor/bhm207
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Wagnon et al. Incidental Learning in Old Age

and retrieval in young and elderly subjects. Brain J. Neurol. 126, 43–56.

doi: 10.1093/brain/awg005

Davachi, L. (2006). Item, context and relational episodic encoding in humans.

Curr. Opin. Neurobiol. 16, 693–700. doi: 10.1016/j.conb.2006.10.012

Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., and Cabeza, R. (2008).

Que PASA? The posterior-anterior shift in aging. Cereb. Cortex 18, 1201–1209.

doi: 10.1093/cercor/bhm155

Duchek, J. M. (1984). Encoding and retrieval differences between young and

old. The impact of attentional capacity usage. Dev. Psychol. 20, 1173–1180.

doi: 10.1037/0012-1649.20.6.1173

Eysenck, M. W. (1974). Age differences in incidental learning. Dev. Psychol. 10,

936–941. doi: 10.1037/h0037263

Ferr,é, P., Fraga, I., Comesaña, M., and Sánchez-Casas, R. (2015). Memory for

emotional words. The role of semantic relatedness, encoding task and affective

valence. Cogn. Emot. 29, 1401–1410. doi: 10.1080/02699931.2014.982515

Fischer, H., Nyberg, L., and Bäckman, L. (2010). Age-related differences in brain

regions supporting successful encoding of emotional faces. Cortex 46, 490–497.

doi: 10.1016/j.cortex.2009.05.011

François, S., Angel, L., Salmon, E., Bastin, C., and Collette, F. (2018). The effect of

ageing on the neural substrates of incidental encoding leading to recollection

or familiarity. Brain Cogn. 126, 1–12. doi: 10.1016/j.bandc.2018.07.004

Fu, L., Maes, J. H. R., Varma, S., Kessels, R. P. C., and Daselaar, S. M. (2017).

Effortful semantic decision-making boosts memory performance in older

adults.Memory 25, 544–549. doi: 10.1080/09658211.2016.1193204

Galli, G. (2014). What makes deeply encoded items memorable? Insights into

the levels of processing framework from neuroimaging and neuromodulation.

Front. Psychiatry 5:61. doi: 10.3389/fpsyt.2014.00061

Grady, C. L., Protzner, A. B., Kovacevic, N., Strother, S. C., Afshin-Pour, B.,

Wojtowicz, M., et al. (2010). A multivariate analysis of age-related differences

in default mode and task positive networks across multiple cognitive domains.

Cereb. Cortex 20, 1432–1447. doi: 10.1093/cercor/bhp207

Greve, A., Cooper, E., and Henson, R. N. (2014). No evidence that ‘fast-mapping’

benefits novel learning in healthy older adults. Neuropsychologia 60, 52–59.

doi: 10.1016/j.neuropsychologia.2014.05.011

Gunning-Dixon, F. M., Gur, R. C., Perkins, A. C., Schroeder, L., Turner, T.,

Turetsky, B. I., et al. (2003). Age-related differences in brain activation

during emotional face processing. Neurobiol. Aging 24, 285–295.

doi: 10.1016/S0197-4580(02)00099-4

Gutchess, A. H., Welsh, R. C., Hedden, T., Bangert, A., Minear, M., Liu, L. L.,

et al. (2005). Aging and the neural correlates of successful picture encoding.

Frontal activations compensate for decreased medial-temporal activity. J. Cogn.

Neurosci. 17, 84–96. doi: 10.1162/0898929052880048

Hämmerer, D., Callaghan, M. F., Hopkins, A., Kosciessa, J., Betts, M., Cardenas-

Blanco, A., et al. (2018). Locus coeruleus integrity in old age is selectively related

to memories linked with salient negative events. Proc. Natl. Acad. Sci. U.S.A.

115, 2228–2233. doi: 10.1073/pnas.1712268115

Hennessee, J. P., Knowlton, B. J., and Castel, A. D. (2018). The effects of value on

context-item associative memory in younger and older adults. Psychol. Aging

33, 46–56. doi: 10.1037/pag0000202

Houghton, G., and Tipper, S. P. (1996). Inhibitory mechanisms of neural and

cognitive control. Applications to selective attention and sequential action.

Brain Cogn. 30, 20–43. doi: 10.1006/brcg.1996.0003

Kahana, M., Dolan, E. D., Sauder, C. L., and Wingfield, A. (2005). Intrusions in

episodic recall: age differences in editing of overt responses. J. Gerontol. B.

Psychol. Sci. Soc. Sci. 60, P92–P97. doi: 10.1093/geronb/60.2.p92

Kalenzaga, S., Sperduti, M., Anssens, A., Martinelli, P., Devauchelle, A.,

Gallarda, T., et al. (2015). Episodic memory and self-reference via semantic

autobiographical memory. Insights from an fMRI study in younger and older

adults. Front. Behav. Neurosci. 8:449. doi: 10.3389/fnbeh.2014.00449

Kensinger, E. A., and Schacter, D. L. (2008). Neural processes supporting young

and older adults’ emotional memories. J. Cogn. Neurosci. 20, 1161–1173.

doi: 10.1162/jocn.2008.20080

Kontaxopoulou, D., Beratis, I. N., Fragkiadaki, S., Pavlou, D., Yannis, G.,

Economou, A., et al. (2017). Incidental and intentional memory. Their relation

with attention and executive functions. Arch. Clin. Neuropsychol. 32, 519–532.

doi: 10.1093/arclin/acx027

Koutstaal, W., Schacter, D. L., Galluccio, L., and Stofer, K. A. (1999).

Reducing gist-based false recognition in older adults. Encoding and

retrieval manipulations. Psychol. Aging 14, 220–237. doi: 10.1037/0882-7974.1

4.2.220

Lemaire, P. (2010). Cognitive strategy variations during aging. Curr. Dir. Psychol.

Sci. 19, 363–369. doi: 10.1177/0963721410390354

Light, L. L. (1991). Memory and aging. Four hypotheses in search of data. Ann.

Rev. Psychol. 42, 333–376. doi: 10.1146/annurev.ps.42.020191.002001

Lindner, I., Drouin, H., Tanguay, A. F. N., Stamenova, V., and Davidson, P. S. R.

(2015). Source and destination memory. Two sides of the same coin? Memory

23, 563–576. doi: 10.1080/09658211.2014.911329

Lugtmeijer, S., de Haan, E. H. F., and Kessels, R. P. C. (2019). A

comparison of visual working memory and episodic memory performance

in younger and older adults. Neuropsychol. Dev. Cogn. 26, 387–406.

doi: 10.1080/13825585.2018.1451480

Lustig, C., Hasher, L., and Tonev, S. T. (2010). Inhibitory control over the present

and the past. Eur. J. Cogn. Psychol. 13, 107–122. doi: 10.1080/09541440126215

Martins, R., Simard, F., and Monchi, O. (2014). Differences between

patterns of brain activity associated with semantics and those linked

with phonological processing diminish with age. PLoS ONE 9:e99710.

doi: 10.1371/journal.pone.0099710

Mason, S. E. (1979). Effects of orienting tasks on the recall and recognition

performance of subjects differing in age. Dev. Psychol. 15, 467–469.

doi: 10.1037/0012-1649.15.4.467

Mather, M., and Carstensen, L. L. (2005). Aging and motivated cognition. The

positivity effect in attention and memory. Trends Cogn. Sci. 9, 496–502.

doi: 10.1016/j.tics.2005.08.005

McLaughlin, B. (1965). “Intentional” and “incidental” learning in human subjects.

The role of instructions to learn and motivation. Psychol. Bull. 63, 359–376.

doi: 10.1037/h0021759

Meade, M. E., Wammes, J. D., and Fernandes, M. A. (2018). Drawing as an

Encoding Tool. Memorial benefits in younger and older adults. Exp. Aging Res.

44, 369–396. doi: 10.1080/0361073X.2018.1521432

Mitchell, D. B. (1989). How many memory systems? Evidence from aging. J. Exp.

Psychol. Learn Mem. Cogn. 15, 31–49. doi: 10.1037/0278-7393.15.1.31

Mitchell, D. B., and Perlmutter, M. (1986). Semantic activation and episodic

memory. Age similarities and differences. Dev. Psychol. 22, 86–94.

doi: 10.1037/0012-1649.22.1.86

Moher, D., Liberati, A., Tetzlaff, J., and Altman, D. G. (2009). Preferred reporting

items for systematic reviews and meta-analyses. The PRISMA statement. PLoS

Med. 6:e1000097. doi: 10.1371/journal.pmed.1000097

Murty, V. P., Sambataro, F., Das, S., Tan, H. Y., Callicott, J. H., Goldberg, T.

E., et al. (2009). Age-related alterations in simple declarative memory and

the effect of negative stimulus valence. J. Cogn. Neurosci. 21, 1920–1933.

doi: 10.1162/jocn.2009.21130

Naveh-Benjamin, M., Shing, Y. L., Kilb, A., Werkle-Bergner, M., Lindenberger, U.,

and Li, S. (2009). Adult age differences in memory for name-face associations.

The effects of intentional and incidental learning. Memory 17, 220–232.

doi: 10.1080/09658210802222183

Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., and Bäckman, L. (2012).

Memory aging and brain maintenance. Trends Cogn. Sci. 16, 292–305.

doi: 10.1016/j.tics.2012.04.005

Old, S. R., and Naveh-Benjamin, M. (2008). Differential effects of age on item and

associative measures of memory. A meta-analysis. Psychol. Aging 23, 104–118.

doi: 10.1037/0882-7974.23.1.104

Park, D. C., and Reuter-Lorenz, P. (2009). The adaptive brain. Aging

and neurocognitive scaffolding. Ann. Rev. Psychol. 60, 173–196.

doi: 10.1146/annurev.psych.59.103006.093656

Plancher, G., Gyselinck, V., Nicolas, S., and Piolino, P. (2010). Age

effect on components of episodic memory and feature binding. A

virtual reality study. Neuropsychology 24, 379–390. doi: 10.1037/a00

18680

Rabin, L. A., Barr, W. B., and Burton, L. A. (2005). Assessment practices of

clinical neuropsychologists in the United States and Canada. A survey of INS,

NAN, and APA Division 40 members. Arch. Clin. Neuropsychol. 20, 33–65.

doi: 10.1016/j.acn.2004.02.005

Ramanoël, S., Kauffmann, L., Cousin, E., Dojat, M., and Peyrin, C. (2015).

Age-related differences in spatial frequency processing during scene

categorization. PLoS ONE 10:e0134554. doi: 10.1371/journal.pone.

0134554

Frontiers in Aging Neuroscience | www.frontiersin.org 14 July 2019 | Volume 11 | Article 173

https://doi.org/10.1093/brain/awg005
https://doi.org/10.1016/j.conb.2006.10.012
https://doi.org/10.1093/cercor/bhm155
https://doi.org/10.1037/0012-1649.20.6.1173
https://doi.org/10.1037/h0037263
https://doi.org/10.1080/02699931.2014.982515
https://doi.org/10.1016/j.cortex.2009.05.011
https://doi.org/10.1016/j.bandc.2018.07.004
https://doi.org/10.1080/09658211.2016.1193204
https://doi.org/10.3389/fpsyt.2014.00061
https://doi.org/10.1093/cercor/bhp207
https://doi.org/10.1016/j.neuropsychologia.2014.05.011
https://doi.org/10.1016/S0197-4580(02)00099-4
https://doi.org/10.1162/0898929052880048
https://doi.org/10.1073/pnas.1712268115
https://doi.org/10.1037/pag0000202
https://doi.org/10.1006/brcg.1996.0003
https://doi.org/10.1093/geronb/60.2.p92
https://doi.org/10.3389/fnbeh.2014.00449
https://doi.org/10.1162/jocn.2008.20080
https://doi.org/10.1093/arclin/acx027
https://doi.org/10.1037/0882-7974.14.2.220
https://doi.org/10.1177/0963721410390354
https://doi.org/10.1146/annurev.ps.42.020191.002001
https://doi.org/10.1080/09658211.2014.911329
https://doi.org/10.1080/13825585.2018.1451480
https://doi.org/10.1080/09541440126215
https://doi.org/10.1371/journal.pone.0099710
https://doi.org/10.1037/0012-1649.15.4.467
https://doi.org/10.1016/j.tics.2005.08.005
https://doi.org/10.1037/h0021759
https://doi.org/10.1080/0361073X.2018.1521432
https://doi.org/10.1037/0278-7393.15.1.31
https://doi.org/10.1037/0012-1649.22.1.86
https://doi.org/10.1371/journal.pmed.1000097
https://doi.org/10.1162/jocn.2009.21130
https://doi.org/10.1080/09658210802222183
https://doi.org/10.1016/j.tics.2012.04.005
https://doi.org/10.1037/0882-7974.23.1.104
https://doi.org/10.1146/annurev.psych.59.103006.093656
https://doi.org/10.1037/a0018680
https://doi.org/10.1016/j.acn.2004.02.005
https://doi.org/10.1371/journal.pone.0134554
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Wagnon et al. Incidental Learning in Old Age

Reuter-Lorenz, P. A., and Cappell, K. A. (2008). Neurocognitive aging

and the compensation hypothesis. Curr. Dir. Psychol. Sci. 17, 177–182.

doi: 10.1111/j.1467-8721.2008.00570.x

Reuter-Lorenz, P. A., and Park, D. C. (2010). Human neuroscience and the aging

mind. A new look at old problems. J. Gerontol. B Psychol. Sci. Soc. Sci. 65,

405–415. doi: 10.1093/geronb/gbq035

Rhodes, S., Greene, N. R., and Naveh-Benjamin, M. (2019). Age-related differences

in recall and recognition. Ameta-analysis. PsyArXiv. doi: 10.31234/osf.io/6pvjd

Sambataro, F., Safrin, M., Lemaitre, H. S., Steele, S. U., Das, S. B., Callicott,

J. H., et al. (2012). Normal aging modulates prefrontoparietal networks

underlying multiple memory processes. Eur. J. Neurosci. 36, 3559–3567.

doi: 10.1111/j.1460-9568.2012.08254.x

Saverino, C., Fatima, Z., Sarraf, S., Oder, A., Strother, S. C., and Grady, C.

L. (2016). The associative memory deficit in aging is related to reduced

selectivity of brain activity during encoding. J. Cogn. Neurosci. 28, 1331–1344.

doi: 10.1162/jocn_a_00970

Schmid, J., Herholz, S. C., Brandt, M., and Buchner, A. (2010). Recall-to-

reject. The effect of category cues on false recognition. Memory 18, 863–882.

doi: 10.1080/09658211.2010.517756

Shing, Y. L., Werkle-Bergner, M., Brehmer, Y., Müller, V., Li, S., and Lindenberger,

U. (2010). Episodic memory across the lifespan. The contributions of

associative and strategic components. Neurosci. Biobehav. Rev. 34, 1080–1091.

doi: 10.1016/j.neubiorev.2009.11.002

Simons, J. S., and Spiers, H. J. (2003). Prefrontal and medial temporal

lobe interactions in long-term memory. Nat. Rev. Neurosci. 4, 637–648.

doi: 10.1038/nrn1178

Stebbins, G. T., Carrillo, M. C., Dorfman, J., Dirksen, C., Desmond, J. E., Turner, D.

A., et al. (2002). Aging effects onmemory encoding in the frontal lobes. Psychol.

Aging 17, 44–55. doi: 10.1037/0882-7974.17.1.44

Strange, B. A., Otten, L. J., Josephs, O., Rugg, M. D., and Dolan,

R. J. (2002). Dissociable human perirhinal, hippocampal, and

parahippocampal roles during verbal encoding. J. Neurosci. 22, 523–528.

doi: 10.1523/JNEUROSCI.22-02-00523.2002

Troyer, A. K., Graves, R. E., and Cullum, C. M. (2007). Executive functioning as

a mediator of the relationship between age and episodic memory in healthy

aging. Aging Neuropsychol. Cogn. 1, 45–53. doi: 10.1080/09289919408251449

Troyer, A. K., Häfliger, A., Cadieux, M. J., and Craik, F. I. M. (2006). Name and

face learning in older adults. Effects of level of processing, self-generation,

and intention to learn. J. Gerontol. B Psychol. Sci. Soc. Sci. 61, 67–74.

doi: 10.1093/geronb/61.2.P67

Tulving, E. (2002). Episodic memory. From mind to brain. Ann. Rev. Psychol. 53,

1–25. doi: 10.1146/annurev.psych.53.100901.135114

Tulving, E. (2016). What is episodic memory? Curr. Dir. Psychol. Sci. 2, 67–70.

doi: 10.1111/1467-8721.ep10770899

Wang, L., Laviolette, P., O’Keefe, K., Putcha, D., Bakkour, A., van Dijk, K.

R. A., et al. (2010). Intrinsic connectivity between the hippocampus and

posteromedial cortex predicts memory performance in cognitively intact older

individuals. NeuroImage 51, 910–917. doi: 10.1016/j.neuroimage.2010.02.046

Wang, W., and Giovanello, K. S. (2016). The role of medial temporal lobe regions

in incidental and intentional retrieval of item and relational information in

aging. Hippocampus 26, 693–699. doi: 10.1002/hipo.22578

Waring, J. D., Addis, D. R., and Kensinger, E. A. (2013). Effects of aging on neural

connectivity underlying selective memory for emotional scenes. Neurobiol.

Aging 34, 451–467. doi: 10.1016/j.neurobiolaging.2012.03.011

Wheeler, M. E., and Ploran, E. J. (2008). “Episodic memory,” in Encyclopedia

of Neuroscience. eds M. D. Binder, N. Hirokawa (San Diego, CA:

Elsevier/Academic Press), 1167–1172. doi: 10.1016/B978-008045046-9.00760-9

Zelinski, E. M., and Lewis, K. L. (2003). Adult age differences in multiple

cognitive functions. Differentiation, dedifferentiation, or process-specific

change? Psychol. Aging 18, 727–745. doi: 10.1037/0882-7974.18.4.727

Zhou, W., Hohmann, A. G., and Crystal, J. D. (2012). Rats answer an

unexpected question after incidental encoding. Curr. Biol. 22, 1149–1153.

doi: 10.1016/j.cub.2012.04.040

Conflict of Interest Statement: The authors declare that this study received

funding from the Novartis Foundation for medical-biological research. The funder

had no role in study design, data collection and analysis, decision to publish, or

preparation of the manuscript.

Copyright © 2019 Wagnon, Wehrmann, Klöppel and Peter. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 15 July 2019 | Volume 11 | Article 173

https://doi.org/10.1111/j.1467-8721.2008.00570.x
https://doi.org/10.1093/geronb/gbq035
https://doi.org/10.31234/osf.io/6pvjd
https://doi.org/10.1111/j.1460-9568.2012.08254.x
https://doi.org/10.1162/jocn_a_00970
https://doi.org/10.1080/09658211.2010.517756
https://doi.org/10.1016/j.neubiorev.2009.11.002
https://doi.org/10.1038/nrn1178
https://doi.org/10.1037/0882-7974.17.1.44
https://doi.org/10.1523/JNEUROSCI.22-02-00523.2002
https://doi.org/10.1080/09289919408251449
https://doi.org/10.1093/geronb/61.2.P67
https://doi.org/10.1146/annurev.psych.53.100901.135114
https://doi.org/10.1111/1467-8721.ep10770899
https://doi.org/10.1016/j.neuroimage.2010.02.046
https://doi.org/10.1002/hipo.22578
https://doi.org/10.1016/j.neurobiolaging.2012.03.011
https://doi.org/10.1016/B978-008045046-9.00760-9
https://doi.org/10.1037/0882-7974.18.4.727
https://doi.org/10.1016/j.cub.2012.04.040
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles

	Incidental Learning: A Systematic Review of Its Effect on Episodic Memory Performance in Older Age
	Introduction
	Methods
	Results
	Discussion and Perspective
	Data Availability
	Author Contributions
	Funding
	References


