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Deep neural networks have led to state-of-the-art results in many medical imaging tasks

including Alzheimer’s disease (AD) detection based on structural magnetic resonance

imaging (MRI) data. However, the network decisions are often perceived as being

highly non-transparent, making it difficult to apply these algorithms in clinical routine.

In this study, we propose using layer-wise relevance propagation (LRP) to visualize

convolutional neural network decisions for AD based on MRI data. Similarly to other

visualization methods, LRP produces a heatmap in the input space indicating the

importance/relevance of each voxel contributing to the final classification outcome. In

contrast to susceptibility maps produced by guided backpropagation (“Which change in

voxels would change the outcome most?”), the LRP method is able to directly highlight

positive contributions to the network classification in the input space. In particular, we

show that (1) the LRP method is very specific for individuals (“Why does this person

have AD?”) with high inter-patient variability, (2) there is very little relevance for AD in

healthy controls and (3) areas that exhibit a lot of relevance correlate well with what is

known from literature. To quantify the latter, we compute size-corrected metrics of the

summed relevance per brain area, e.g., relevance density or relevance gain. Although

these metrics produce very individual “fingerprints” of relevance patterns for AD patients,

a lot of importance is put on areas in the temporal lobe including the hippocampus.

After discussing several limitations such as sensitivity toward the underlying model and

computation parameters, we conclude that LRP might have a high potential to assist

clinicians in explaining neural network decisions for diagnosing AD (and potentially other

diseases) based on structural MRI data.

Keywords: Alzheimer’s disease, MRI, visualization, explainability, layer-wise relevance propagation, deep learning,
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1. INTRODUCTION

In the 2018 World Alzheimer Report, it was estimated that 50
million people worldwide were suffering from dementia and
this number was projected to rise to more than 152 million
people until 2050. The most common reason for dementia is
Alzheimer’s disease (AD) accounting for around 60–70% of
dementia cases (WHO, 2017). AD is characterized by abnormal
cell death, primarily in the medial temporal lobe. This cell death
is thought to be rooted in protein plaques and neurofibrillary
tangles, which restrict normal neural function (Bondi et al.,
2017). The resulting atrophy is visible in structural magnetic
resonance imaging (MRI) data, and derived markers (such as
hippocampal volume or gray matter density) have been used
to diagnose AD and predict disease progression (Frisoni et al.,
2010; Rathore et al., 2017). In the last decade, those markers
have frequently been employed in machine learning settings
to allow for predictions on an individual level (Klöppel et al.,
2008; Orrù et al., 2012; Weiner et al., 2013; Ritter et al., 2015,
2016). However, those expert features usually reflect only one
part of disease pathology and the combination with standard
machine learning methods, such as support vector machines,
do not allow for finding new and potentially unexpected
hidden data characteristics that might also be important to
describe a disease.

By extracting hierarchical information directly from raw or
minimally processed data, deep learning approaches (LeCun
et al., 2015) can help to fill a gap here and offer a great
potential for improving automatic disease diagnostics. One
family of algorithms that perfectly lends itself to perform non-
linear feature extraction from image data and their respective
classification into disease categories are convolutional neural
networks (CNNs), a type of (deep) neural networks optimized
for image data. The key idea behind CNNs is inspired by the
mechanism of receptive fields in the primate’s visual cortex
and relates to the application of local convolutional filters for
extracting regional information (LeCun and Bengio, 1995). They
typically consist of a sequence of convolutional and pooling layers
which allow for summarizing key characteristics into feature
maps. These feature maps can then be used by a fully-connected
layer or any other classifier for solving the primary supervised
learning problem (e.g., AD classification). CNNs have been
proven to be very successful in a wide range of medical imaging
applications (Litjens et al., 2017), including AD detection based
on neuroimaging data (e.g., Gupta et al., 2013; Suk et al., 2014;
Payan and Montana, 2015; Sarraf and Tofighi, 2016; Korolev
et al., 2017; for a review, see Vieira et al., 2017).

Despite this success, automatically learning the features comes
at a cost: the decisions of neural networks are notoriously hard
to interpret in retrospect. Therefore, deep learning methods,
including CNNs, often face the criticism that they are “black-
box” (Castelvecchi, 2016). In contrast to some simpler learning
algorithms, in particular decision trees, they do not offer a simple
and comprehensible explanation; their architecture is complex
and consists of several tomany layers with hundreds of thousands
parameters that need to be trained. In the medical domain,
however, it is imperative to base diagnoses and subsequent

treatments on an informed decision and not on a single yes/no
answer of an algorithm. Therefore, if CNNs should support
clinicians in their daily work, ways have to be found to visualize
and interpret the network’s “decision” (see Figure 1). In the last
years, a number of suggestions have been made to visualize what
is actually learned by a CNN. Besides straightforward methods
such as the extraction of activations during convolution or the
visualization of weights, among the most well-known techniques
for visualization are the sensitivity analysis by Simonyan et al.
(2013), guided backpropagation by Springenberg et al. (2014),
the deep visualization toolbox of Yosinski et al. (2015) based on
regularized optimization, and the deconvolution and occlusion
method by Zeiler and Fergus (2014). In Alzheimer’s research
only a very few studies exist that looked into such visualization
methods (Esmaeilzadeh et al., 2018; Rieke et al., 2018;
Yang et al., 2018).

Most promising for the use in the medical imaging domain
is the generation of an individual heatmap for each patient,
which lies in the same space as the input image and indicates the
importance of each voxel for the final (individual) classification
decision. By allowing for a human-guided, intuitive investigation
of what drives the classifier to come to a certain classification
decision, individual heatmaps hold great potential in assisting
and understanding diagnostic decisions performed by deep
neural networks. However, for any visualization method that
produces heatmaps, it is very important to understand how
they are computed and what their limitations are. In natural
images, for example, it has been argued that methods relying on
gradients (e.g., sensitivity analysis or guided backpropagation)
only measure the susceptibility of the output to changes in
the input and might not necessarily coincide with those areas
on which the network bases its decision. A powerful method
to overcome this limitation is layer-wise relevance propagation
(LRP, Bach et al., 2015), which decomposes the network’s output
score (e.g., for AD) into the individual contributions of the
input neurons while keeping the total amount of relevance
constant across layers (conservation principle). In contrast to
showing “susceptibility maps” as gradient-based methods, the
heatmap does not rely on gradients, but takes into account model
parameters (i.e., weights) and neuron activations (Bach et al.,
2015; Samek et al., 2015). By this, the heatmaps are less prone
to group effects in the data. Intuitively, LRP has the potential
to answer the question “what speaks for AD in this particular
patient?” as opposed to “which change in voxels would change
the outcome most?” addressed in gradient-based approaches. In
terms of explainability, LRP has been shown to be superior to
those gradient methods and deconvolution methods in three
natural imaging data sets (Samek et al., 2015). In cognitive
neuroscience, the LRP method has been recently applied to
single-trial EEG and functional MRI classification (Sturm et al.,
2016; Thomas et al., 2018). To the best of our knowledge, it has
so far not been applied in clinical disease classification based on
structural MRI data.

In this study, we use LRP to explain individual classification
decisions for AD patients and healthy controls (HCs) based
on a CNN trained on structural MRI data (T1-weighted
MPRAGE) from the Alzheimer’s Disease Neuroimaging Initiative

Frontiers in Aging Neuroscience | www.frontiersin.org 2 July 2019 | Volume 11 | Article 194

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Böhle et al. LRP for MRI-Based AD Classification

FIGURE 1 | Illustration of the benefit of visualization in a deep learning framework for diagnosing Alzheimer’s disease (AD) based on structural MRI data. Deep neural

networks are often criticized for being non-transparent, since they usually provide only one single class score as output and do not explain what has led to this

particular network decision; in this example, the MRI input is classified as belonging to the group of AD patients with a probability of 89%. When no further information

is given, the medical expert is not able to base any medical treatment on this number, since the underlying reasons are unclear. The layer-wise relevance propagation

method (LRP) might alleviate this problem by additionally providing a heatmap in which the positive contributions to the class score (89% AD) are highlighted. Here,

the class score is supplemented by the additional information that in this particular subject AD relevance has been found in the hippocampus, an area known to be

affected in AD. By providing a visual explanation, the LRP framework allows the medical expert to make a much more informed decision.

(ADNI1). Based on the trained CNN model, we generated LRP
heatmaps for each subject in the test set. Importantly, each
heatmap indicates the voxel-wise relevance for the particular
classification decision (AD or HC). To spot the most relevant
regions for AD classification, we computed average heatmaps
across AD patients and HCs, which we then further split into
correct and wrong classification decisions (i.e., true positives,
false positives, true negatives, false negatives). To analyze the
relevance in different brain areas according to the Scalable
Brain Atlas by Neuromorphometrics Inc. (Bakker et al., 2015),
we suggest size-corrected metrics and compared these metrics
between LRP and guided backpropagation. We have chosen
guided backpropagation as a baseline method because (1)
sensitivity analysis is the most common method for generating
heatmaps, (2) it results in more focused heatmaps compared
to only using backpropagation (Rieke et al., 2018) and (3) it is
better comparable to LRP than occlusionmethods with respect to
our relevance measures. On an individual level, we analyzed the

1http://adni.loni.usc.edu/

heatmap patterns of single subjects (“relevance fingerprinting”)
and correlate them with the hippocampal volume as a key
biomarker of AD. We show that the LRP heatmaps succeeded
in depicting individual contributions to AD diagnosis and might
hold great potential as a diagnostic tool.

2. MATERIALS AND METHODS

2.1. Data and Preprocessing
Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI,
RRID:SCR_003007) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W.Weiner, MD. The primary goal of ADNI
has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD). For up-
to-date information, see www.adni-info.org.
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We included structural MRI data of all subjects with
Alzheimer’s disease (AD) and healthy controls (HCs) listed in
the “MRI collection - Standardized 1.5T List - Annual 2 year”.
The subjects in the data set are labeled as AD if the Clinical
Dementia Rating (CDR) score (Morris, 1993) was greater than
0.5. HCs are selected as those subjects with a CDR score of 0.
In total, we included 969 individual scans (475 AD, 494 HC)
of 193 AD patients and 151 HCs (up to three time points). All
scans were acquired with 1.5 T scanners at various sites and
had undergone gradient non-linearity, intensity inhomogeneity
and phantom-based distortion correction. We downloaded T1-
weightedMPRAGE scans and non-linearly registered them to the
1mm resolution 2009c version of the ICBM152 reference brain
using Advanced Normalization Tools (ANTs2). This has been
done to (1) ensure a relative alignment across subjects, (2) allow
the convolutional neural network to extract more robust features,
and (3) be able to analyze the heatmaps in a common space.
For the region-wise analysis of heatmaps, we used the Scalable
Brain Atlas by Neuromorphometrics Inc. (Bakker et al., 2015)
available in SPM123. A list of all areas included can be found in
the SPM12 package.

2.2. Convolutional Neural Network
Architecture
Convolutional neural networks (CNNs) are neural networks
optimized for array data including images or videos (LeCun et al.,
2015). In addition to input and output layer, they consist of
several hidden layers including convolutional and pooling layers.
In convolutional layers, in contrast to fully-connected layers, the
weights and the bias terms are shared between all neurons in a
given layer for a given filter. This means that each of the neurons
applies the same filter or kernel to the input, but at a different
position, usually with a displacement (often called stride) of 1–
3 between neighboring neurons. Since these filters are learned
via the backpropagation algorithm, CNNs do not rely on hand-
crafted features, but can be applied to minimally processed data
(LeCun et al., 2015). CNNs have been very successfully applied
to a large number of applications including image and speech
recognition (Krizhevsky et al., 2012; Abdel-Hamid et al., 2014;
Long et al., 2015) as well as medical imaging andAD classification
based on MRI data (Gupta et al., 2013; Suk et al., 2014; Payan
andMontana, 2015; Sarraf and Tofighi, 2016; Korolev et al., 2017;
Litjens et al., 2017; Vieira et al., 2017).

The model in the present study consists of four convolutional
blocks followed by two fully-connected layers. Each block
features a convolutional layer with f filters (f = 8, 16, 32, 64) and
filter sizes of 3 × 3 × 3. Every convolutional layer is followed by
batch normalization and max pooling with window sizes wxwxw
(w = 2, 3, 2, 3). The fully-connected layers contain 128 and 2
units respectively and dropout (p = 40%) is applied before each.
The final fully-connected layer, which is activated by a softmax
function serves as the network output, providing the class scores
for HCs (first unit) and AD (second unit) respectively. As an
optimizer Adam (Kingma and Ba, 2015) was used with an

2http://stnava.github.io/ANTs/
3http://www.fil.ion.ucl.ac.uk/spm/software/spm12/

initial learning rate of 0.0001 and a weight decay of 0.0001.
The data was split into a training data set (163 AD patients,
121 HCs; 797 images in total), a validation set for optimizing
the hyperparameters (18 AD patients, 18 HCs; 100 images in
total) and a test set (30 AD patients, 30 HCs; 172 images in
total). To ensure independence between training and test data,
we performed the split of the data on the level of patients instead
of images. The data was augmented during training by flipping
the images along the sagittal axis (p = 50%) and translated
along the sagittal axis between –2 and 2 voxels. When the model
did not improve for 8 epochs on the validation set, training was
stopped. The training epoch (i.e., model checkpoint) with the best
validation accuracy (91.00%) was then applied to the test data,
resulting in a classification accuracy of 87.96%.

2.3. Visualization Methods
2.3.1. Layer-Wise Relevance Propagation (LRP)
In the following, we will introduce the Layer-wise Relevance
Propagation (LRP) algorithm by Bach et al. (2015). The core
idea underlying the LRP algorithm for attributing relevance to
individual input nodes is to trace back contributions to the final
output node layer by layer. While several different versions of the
LRP algorithm exist, they all share the same principle: the total
relevance—e.g., the activation strength of an output node for a
certain class—is conserved per layer; each of the nodes in layer
l that contributed to the activation of a node j in the subsequent

layer l + 1 gets attributed a certain share of the relevance R
j

l+1
of that node. Overall, the sum over the relevances of all nodes i
contributing to neuron j in layer l must sum to R

j

l+1
, such that

the total relevance per layer is conserved:

∑

i

R
i→j

l,l+1
= R

j

l+1
(1)

There are different ways in which the relevance can be distributed
over the input nodes i and different rules for how to distribute the
relevances have been proposed. In this paper, we used the β-rule
(as described in Binder et al., 2016b):

R
i→j

l,l+1
=

(

(1+ β)
z+ij

z+j
− β

z−ij

z−j

)

R
j

l+1
. (2)

Here, z
+/−
ij refers to the amount of positive/negative input that

node i contributed to node j. The individual contributions are
divided by the sum over all positive/negative contributions of the

nodes in layer l, z
+/−
j =

∑

i z
+/−
ij , such that the relevance is

conserved from layer l + 1 to layer l. We have chosen this rule,
as it allows for adjusting how much weight is put on positive
contributions relative to inhibitory contributions that benefit
the AD score. LRP with a β value of zero allows only positive
contributions to be shown in the heatmap, whereas non-zero β

values additionally correct for the inhibitory effects of neuron
activations. When diagnosing AD, the network needs to balance
structural evidence speaking for and against AD. Any given local
area that looks healthy to the network, might have inhibitory
effects on the AD score, as it correlates more with HC patients.
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As the network increases its receptive field size throughout the
layers, healthy areas within this receptive field might inhibit
the contribution of affected areas to the final class score of
AD. By reversing this process with LRP, positive contributions
lying closer to healthy areas will thus obtain a lower relevance
score, as they overlap with inhibited receptive fields. This leads
to sparser heatmaps, see also Binder et al. (2016a), and might
disproportionately affect small structures surrounded by “healthy
areas.” As AD—especially in the early stages of the disease—can
affect brain areas in a highly localizedmanner, heatmaps obtained
with lower β values might therefore be more meaningful, as
they highlight all positive contributions, irrespective of their
surroundings. Accordingly, we focus in the present study on
β = 0, but additionally test the robustness for varying values of
β (β = 0, 0.25, 0.5, 0.75, 1).

For a more detailed description of the LRP algorithm, we
kindly refer the reader to Bach et al. (2015); Montavon et al.
(2018). A PyTorch implementation of the LRP algorithm has
been developed for the current work and is available on github4.

2.3.2. Guided Backpropagation (GB)
In order to emphasize and point out the advantages of LRP as
a diagnostic tool, we compared it to a gradient-based method,
the guided backpropagation (GB) algorithm (Springenberg et al.,
2014). In GB, the absolute values of the gradient of the output
with respect to the input nodes is shown as a heatmap, with
the additional twist that negative gradients are set to zero at the
rectification layers of the network. As was shown by Rieke et al.
(2018), “rectifying” the gradients in the backward pass leads to
more focused heatmaps.

2.4. Analyzing the Classification Decisions
The CNN model was evaluated on each MR image from the test
set and, subsequently, both the LRP as well as the GB algorithm
were used to produce a heatmap for each MR image. In the
case of LRP, we produced separate heatmaps for each β value.
We analyzed the resulting heatmaps (1) group-wise to distill
those regions, which are particularly “important” for the AD
classification and (2) individually to understand the network
decisions per sample and find differences between subjects. For
the former, we computed an average AD heatmap (obtained from
all AD subjects) and an average HC heatmap (obtained from all
HCs), which we then further split into a true positive heatmap
(i.e., average heatmap of clinically validated AD patients, who are
classified as AD), a false positive heatmap (i.e., average heatmap
of HCs classified as AD), a true negative heatmap (i.e., average
heatmap of HCs classified as HC) and a false negative heatmap
(i.e., average heatmap of clinically validated AD patients classified
as HC). For GB, these heatmaps highlight those areas to which
the network is on average most susceptible. For LRP, they show
the average relevance of each voxel for contributing to the AD
score. All LRP heatmaps show the average relevance for the
same class (AD), such that they can be compared on the same
scale (relevance for AD diagnosis). As the AD scores of HCs

4https://github.com/moboehle/Pytorch-LRP

typically range between 0 and 0.5, there will be relevance for AD
in HCs, too.

2.5. Atlas-Based Importance Metrics
To quantitatively analyze the heatmaps and the underlying CNN
model, we assessed the importance of different brain areas—
as defined by the Neuromorphometrics brain atlas (Bakker
et al., 2015)—by using the following three metrics for both LRP
and GB.

2.5.1. Sum of AD Importance per Area
As a first metric of importance, the resulting heatmap values
were simply summed per area. While this can already be taken
as a measure of importance, the resulting importance scores
are highly correlated to the area size, see Figure 4. Therefore,
two size-independent metrics for importance were additionally
analyzed inmore detail: the size-normalized sum, and the average
gain (ratio) when comparing to the average HC patient.

2.5.2. Size-Normalized AD Importance Metric
For diagnostic purposes, it can be particularly interesting
to identify areas that over their entire volume carry a lot
of information, i.e., areas with high relevance density or, in
GB, susceptibility density. Therefore, we divided here the sum
of AD importance per area by the size of the area (i.e.,
number of voxels), which corresponds to the regional mean
relevance/susceptibility. While low values over large areas might
be due to statistical fluctuations in the data, clusters of relevance
(LRP) or susceptibility (GB) in a very confined area could be
indicative of the presence of certain biomarkers for AD.

2.5.3. Gain—Ratio of Values With Respect to the

Average HC
Lastly, it is important to note that HCs are not “relevance-
free” under the LRP algorithm: HCs might exhibit certain
structural elements in their brains that are correlated with the
AD diagnosis. While the network might still classify them as HC,
these structures lead to a class score greater than zero for virtually
every subject. Thus, as an additional metric, we will look at the
“gain” in relevance (LRP) and susceptibility (GB) per area, i.e.,
the ratio to the average HC in that area. By doing this, those
areas that differ most between the two cases will be attributed the
highest importance.

3. RESULTS

In section 3.1, we compare the heatmaps generated by GB and
LRP qualitatively with respect to different β values and different
sets of data (AD, HC, true positives, false positives etc., see
Figures 2, 3). In section 3.2, we quantitatively compare the
heatmaps with respect to the different atlas-based importance
metrics (see Figures 4–7). In section 3.3, we present and discuss
the LRP heatmaps of two individual patients (see Figure 8) and
investigate the association between LRP relevance scores and
hippocampal volume as one of the neurobiological key markers
of AD (see Figure 9).
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FIGURE 2 | Average heatmaps for AD patients and healthy controls (HCs) in the test set are shown separately for LRP with β = 0, 0.5, 1 (Left) and GB (Right). The scale for the heatmap is chosen relative to the

average AD patient heatmap for LRP and GB respectively. Hence, values in the average heatmaps that are higher than the 50th percentile and lower than the 99.5th percentile are linearly color-coded as shown on

the scale. Values below (above) these numbers are black (white).
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FIGURE 3 | The average heatmaps over all subjects in the test set are plotted for the following cases (Left to Right): true positives, false positives, true negatives, and false negatives; separately for LRP with β = 0

(Left) and GB (Right). For each heatmap, the color-coding is the same as in Figure 2, i.e., with all values smaller than the 50th percentile of the average AD patient in black, increasing values going over red to

yellow, and all values greater than the 99.5th percentile in white.
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FIGURE 4 | Absolute sum of relevance (LRP, Top) and absolute sum of susceptibility (GB, Bottom) is shown for different brain areas. Susceptibility refers to the

absolute value of the GB gradients. Only the top 25 most important areas under this metric are shown for LRP and GB respectively. The circles show the average sum

for each area over all AD patients (orange) and all healthy controls (HCs, green) in the test set. By setting the metric to linearly scale with the corresponding brain area

size, it becomes clear that this metric is correlated with the size of the brain areas.

3.1. Average Heatmap Comparison
In Figure 2, we show the average heatmaps for AD patients and
HCs, separately for LRP with different β values (β = 0, 0.5, 1)
and GB. The AD pattern between LRP and GB is relatively
similar, which is reasonable because all heatmaps are extracted

from the same CNN model. However, whereas GB heatmaps
are very susceptible for both AD and HCs, LRP heatmaps show
much more relevance in AD patients than HCs. This indicates
that LRP heatmaps might be more valuable in assessing why
a certain person has been classified as AD patient as opposed
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FIGURE 5 | Size-normalized relevance (LRP, Top) and size-normalized susceptibility (GB, Bottom) is shown for different brain areas. Only the top 25 most important

areas under this metric are shown for LRP and GB respectively. We show the average density for all AD patients (orange circles) and all healthy controls (HCs, green

circles) in the test set along with a density estimation of the distribution of values per area (orange and green shaded area for AD and HCs respectively). Moreover, two

patients were selected to emphasize the diversity in relevance distributions for LRP; the patients were selected as those with the highest cosine distance in the

relevance-density space of the 25 areas between each other among those patients that were classified as AD with a class score >90%.

to which voxels should be changed to increase the likelihood
for AD diagnosis. Concerning the different β values, it is noted
that the heatmaps look qualitatively similar, but that sparseness
increases with higher β values (which is due to a larger effect
of inhibitory contributions, see also Binder et al., 2016a). Since
β values close to 0 focus on positive AD contributions and are

thus clinically better interpretable, we focus on β = 0 in the
remaining analyses.

In Figure 3, we show the average heatmaps for the distinct
classification cases (true positives, false positives etc.), separately
for LRP (β = 0) and GB. In particular, the false positives
lead to an interesting insight: For LRP, the false positives
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FIGURE 6 | Gain ofrelevance (LRP, Top) and gain of susceptibility (GB, Bottom) is shown for different brain areas. The gain per area is defined as the average sum of

relevance (LRP) or susceptibility (GB) in a given area divided by the average sum in this area over all healthy controls (HCs) in the test set. Again, only the top 25 most

important areas under this metric are shown for LRP and GB respectively. To provide an estimate of gain in correctly classified subjects, we show here the mean and

density estimations only for true positive (TP) and true negative (TN) classifications. As an additional visual aid, the identity gain (gain of 1) is shown as a dashed line.

exhibit less relevance than the true positives, but generally
in similar areas. This could indicate that in these patients
structures that are correlated with AD were found, albeit
that overall the positive contribution was less compelling
than for true AD patients. For GB, on the other hand,
the false classifications (mostly false positives, but also false

negatives) seem to exhibit the highest gradient values of all
cases. This exemplifies well what GB truly measures: in the
case of false positives (and negatives), the network might be
“unsure” and more easily influenced to change its decision;
the outcome is unstable. The highlighted areas that could
change the outcome are very broadly distributed and need
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FIGURE 7 | Comparison of the effect of different β values on the regional ordering in Figures 4–6. The intersection between the top 10 regions of the three metrics is

shown for different LRP β values in %.

not necessarily represent areas with positive contributions
for AD.

3.2. Atlas-Based Importance Metrics
In Figure 4, we show the sum of AD importance per area,
separately for LRP (β = 0) and GB. Although this metric
seems to be dominated by the size of the respective brain area,
one important qualitative difference between LRP and GB is
visible: in the LRP results, the mean importance values per
area are consistently much higher for AD patients than for
HCs. For GB, this clear split is not present; moreover, the
average sum of gradients in several brain regions, including
the cerebral white matter and cerebellum, is even higher for
HC than for AD. This exemplifies well that the heatmaps for
GB cannot directly be interpreted as showing the relevance
for AD classification, but instead show the sensitivity of the
outcome to certain areas, which does not have to be AD or
HC specific. As the absolute sum of importance correlates with
the size of the respective brain area, the following metrics,
in which we controlled for the brain area size, might be
better interpretable.

In Figure 5, the total sum of importance is normalized by
the size of the respective brain area. Here, the aforementioned
difference in the distributions between HCs and AD patients
becomes even more apparent: while the distributions are very
heavily overlapping for GB, this is not the case for LRP. Notably,
the variance in the AD distributions is much higher in the
AD case than in the HC case. This could indicate that the
network has learned to differentiate between subtypes of AD and
bases its decision on different structural elements for different
patients; the existence of different subtypes of AD has been
investigated in recent work, see for example (Ferreira et al.,
2017; Park et al., 2017). In contrast, for HCs the relevance
density is consistently very low. As an example of the diversity
in importance assessments according to this metric, we added the
“individual fingerprints” of two AD patients to Figure 5; for these

patients the individual heatmaps will be compared in section 3.3
and Figure 8.

In Figure 6, the results for the gain metric for different cases—
true positives and true negatives—are visualized. This metric
allows for plotting the LRP and the GB results on the same scale
and emphasizes once again the stronger distinction between AD
patients and HCs under the LRP algorithm. Most gain for LRP
has been found in areas of temporal lobe including transversal
temporal gyrus, hippocampus, planum temporale and amygdala.

In Figure 7, we compare the regional overlap of the top 10
regions between the β values 0, 0.25, 0.5, 0.75, 1, separately for
the three importance metrics. It is shown that (1) the regional
overlap is strongest for relevance sum followed by relevance
density and relatively unstable for gain of relevance especially for
large and more distant β values and (2) the regional overlap is–
as expected–stronger for neighboring β values. The instability
of the gain metric for higher β values is probably due to the
associated sparsity leading to very low relevance scores for HCs
(which might—in some cases—inflate the gain metric).

3.3. Individual Heatmaps—Fingerprinting
and Neurobiological Relevance
Since the LRP heatmaps take into account the individual filter
activations and therefore highlight positive contributions to the
class score of AD, they might serve as “individual fingerprints”
in a diagnostic tool. In Figure 8, we show several slices of the
relevance heatmaps for two patients in order to highlight the
diversity in those heatmaps. The two patients were selected from
the test set as those with the highest cosine distance in the
relevance-density space between each other among those patients
that were classified as AD with a class score > 90% (their
individual trajectories of region-wise relevance are shown in
Figure 5). It can be seen that the areas, which mainly contributed
to the network decision, are rather different for the two patients.
For one patient (patient B), the class score of the network
is heavily influenced by areas of the temporal lobe, such as
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FIGURE 8 | Three brain slices are shown for patient A and patient B, whose individual slopes in relevance density have been shown in Figure 5. The highlighted areas

are the hippocampus, temporal pole, amygdala, parahippocampal gyrus, medial temporal gyrus (MTG), superior temporal gyrus (STG), triangular part of the inferior

frontal gyrus (TrIFG) and frontal pole. The scale for the heatmap is chosen relative to the average AD patient heatmap. Hence, values in the individual patients that are

higher than the 90th percentile and lower than the 99.5th percentile are linearly color-coded as shown on the scale. Values below (above) these numbers are

transparent (yellow).
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FIGURE 9 | Correlation between hippocampal volume and LRP relevance/GB susceptibility in hippocampus for correctly classified AD patients (true positives; Left:

LRP, Right: GB). For illustration, we show additionally the false positive classifications.

parahippocampal gyrus, entorhinal area, hippocampus, inferior
temporal gyrus and amygdala, while for the second patient
(patient A), frontal areas, including triangular part of inferior
frontal gyrus, superior frontal gyrus and frontal pole, in addition
to superior temporal gyrus seem to be most informative.

To investigate whether higher importance scores correspond
to stronger anatomical deviations (e.g., atrophy) in correctly
classified AD patients (true positives), we performed a
correlation analysis between hippocampal volume and LRP
relevance/GB susceptibility scores (see Figure 9). We show
that the LRP relevance score (β = 0) in the hippocampus is
significantly (negatively) correlated with hippocampal volume
(−0.560, p < 10−3, permutation test), whereas the GB score
is not (0.096, p = 0.77). To rule out that false positives
are outliers in terms of association between hippocampal
volume and LRP relevance, we included them in Figure 9.
Interestingly, for larger β values the correlation tends to
decrease (−0.560, −0.562, −0.525, −0.457, −0.361 for
β = 0, 0.25, 0.5, 0.75, 1 respectively) supporting our notion of a
higher neurobiological relevance in case of β values close to 0.

4. DISCUSSION

In this study, we introduced LRP as a powerful method for
explaining individual CNN decisions in AD classification. After
training a CNN to separate AD patients and HCs based
on structural MRI data, individual heatmaps—indicating the
importance for each voxel for the respective classification
decision—were produced for the test subjects. We analyzed the
heatmaps with respect to different classification subgroups (AD
patients, HCs, true positives, false positives etc.) and different
β values. The relevance of brain regions contained in the
Neuromorphometrics atlas was evaluated using three different
importance metrics, namely the sum of importance per area, the
size-normalized AD importance, and the gain as ratio between

AD and HC importance. We demonstrated that LRP-derived
heatmaps—in contrast to GB—provide (1) high specificity for
individuals and (2) little relevance for AD in HCs. Additionally,
areas that exhibit a lot of relevance correlate well with what
is known from literature. Importantly, these LRP heatmaps
were produced without the need for expert annotations on
the presence or absence of biomarkers throughout the learning
process. This combination of a simple classification task (AD vs.
HC) and in-depth network analysis by LRPmight be a promising
tool for diagnostics. Additionally, it could allow for discovering
new and unknown biomarkers for a variety of diseases and might
help distinguishing subtypes of AD by analyzing the diversity in
“relevance hot-spots” across all AD patients. Furthermore, the
size-corrected metrics (“relevance density” and “relevance gain”)
seem to correlate well with what is known from AD research,
indicating that the most discriminating features for classifying
an input image as AD can be found in the temporal lobe. We
therefore think that a well-trained neural network, analyzed
by means of the LRP algorithm, can become a useful tool for
practitioners and increase the trust in computer-aided diagnoses,
as an interpretable explanation of the decision can be produced.

4.1. Regional Specificity of LRP
We quantitatively evaluated the heatmaps, obtained by either
GB or LRP, toward different brain areas according to the
Neuromorphometrics atlas (Bakker et al., 2015) by summarizing
the importance (AD relevance in case of LRP, susceptibility in
case of GB) for each brain area separately. Both types of heatmaps
mostly identified regions known to be important in disease
progression of AD, such as structures in the medial temporal
lobe including hippocampus, amygdala, parahippocampal gyrus,
and entorhinal cortex (Du et al., 2001; Desikan et al., 2009;
Frisoni et al., 2010; Velayudhan et al., 2013; Weiner et al., 2013;
Klein-Koerkamp et al., 2014; Long et al., 2017) as well as frontal
and parietal areas (Casanova et al., 2011; Quiroz et al., 2013;
Kilimann et al., 2017; Park et al., 2017; Liu et al., 2018). For
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all these regions morphometric changes including global and
local atrophy (e.g., smaller volumes of hippocampus or amygdala,
reduced cortical thickness or gray matter density) or deviations
in shape have been shown and related to disease progression
and cognitive decline (Desikan et al., 2009; Frisoni et al., 2010;
Weiner et al., 2013; Hidalgo-Muñoz et al., 2014; Long et al., 2017;
Ledig et al., 2018). These changes seem to be utilized by our CNN
framework for making individual predictions and are highlighted
in the heatmaps of both LRP and GB. However, the contrast in
importance scores between AD patients and HCs is much higher
for LRP than GB (in GB, the average heatmaps for AD patients
and HCs are quite similar). This supports the notion that LRP
heatmaps reflect AD-specific relevance, whereas GB emphasizes
areas which the network more generally is sensitive to. Regarding
other structures found to be important in our network, it might
be interesting to see if also other neural networks find relevance in
these areas and if predictions about finding significant structural
changes in these areas might be possible at some point. In this
respect, the decisions of such networks can be treated as a “second
opinion” and a reciprocal learning process with medical experts
might be initiated.

4.2. Fingerprinting and Neurobiological
Relevance
In addition to heatmap differences between AD patients and
HCs, we noticed a high variability between the heatmaps of
individual AD patients for the LRP method. This variability
was not only reflected in a high variance of important scores
within regions, but also in individual trajectories (“fingerprints”),
which we exemplary depicted for two AD patients, see Figure 8.
For future work, it might be very interesting to see if these
fingerprints reflect different disease stages of AD (Braak and
Braak, 1991; Casanova et al., 2011) or allow for identifying
subtypes of AD, in which brain areas are affected differently
(Murray et al., 2011; Noh et al., 2014; Scheltens et al., 2016;
Zhang et al., 2016; Ferreira et al., 2017; Park et al., 2017). Zhang
et al. (2016), for example, identified a temporal, a subcortical
and a cortical atrophy factor associated with impairment in
different cognitive domains. Another important question is
whether the relevance found by the LRP method reflect some
true evidence in the sense of biomarkers. By showing that
the hippocampal volume is significantly correlated to the LRP
relevance scores (but not to the GB susceptibility scores), we
argue that LRP—at least partially—succeeded here in breaking
down the relevance to the level of voxels in a meaningful
way. Interestingly, we found higher correlations for lower β

values speaking for a higher neurobiological relevance of β

values close to 0. Further studies are needed to more carefully
relate LRP relevance measures to other clinical markers of AD
including biomarkers and neuropsychological test scores, also in
dependency of different CNN models and parameter settings.
Moreover, our metrics should be evaluated in patients with mild
cognitive impairment (MCI).

4.3. Related Work
Visualization of deep neural networks is a fairly new research
area and different attempts have been made to provide intuitive

explanations for neural network decisions. However, there is
not yet a state-of-the art visualization method as saliency maps
for example have been shown to be misleading (Adebayo et al.,
2018). In Alzheimer’s research, there are only a couple of
studies that looked into different visualization methods based on
MRI and/or PET data. Most of these studies either visualized
filters and activations of the first or last layer (Sarraf and
Tofighi, 2016; Lu et al., 2018; Ding et al., 2019) or used the
occlusion method to exclude some parts (e.g., with a black
patch) of the input image and recalculate the classifier output
(Korolev et al., 2017; Esmaeilzadeh et al., 2018; Liu et al.,
2018). Based on visual impression, they found that the networks
focus primarily on areas known to be involved in AD, such
as hippocampus, amygdala or ventricles, but occasionally also
other areas such as thalamus or parietal lobe appear. Importantly,
in contrast to our study, they did not quantitatively analyze
the data, e.g., with respect to brain areas contained in an
atlas or underlying neurobiological markers. Additionally, they
did not compare different visualization methods or looked
for inter-individual differences. One study, however, used
gradient-weighted classification activationmapping (grad-CAM)
and compared it to sensitivity analysis for AD classification
(Yang et al., 2018). They demonstrate that these different
visualization methods capture different aspects of the data and
show high variability depending e.g., on the resolution of the
convolutional layers. In Rieke et al. (2018), gradient-based and
occlusion methods (standard patch occlusion and brain area
occlusion) were qualitatively and quantitatively compared for
AD classification. High regional overlaps between the methods,
mostly inferior and middle temporal gyrus, were found but
for gradient-based methods the importance was more widely
distributed. Regarding the LRP method, we are only aware
of one application in the neuroimaging field: Thomas et al.
(2018) introduce interpretable recurrent networks for decoding
cognitive states based on functional MRI data and demonstrate
that the LRPmethod is capable of identifying relevant brain areas
for the different tasks and different levels of data granularity.

4.4. Limitations
Although LRP heatmaps seem to be a promising tool for
visualizing neural network decisions, we would like to point out
several limitations of LRP and other heatmap methods in the
context of this study.

First, heatmap methods are limited by the lack of a ground
truth. Most commonly, heatmaps are qualitatively evaluated
based on visual assessment, but there are also studies proposing
sanity checks (Adebayo et al., 2018) or more objective quality
measures such as region perturbation (Samek et al., 2015). In
Lipton (2018), the interpretability of models has been generally
investigated and questioned. In medical research, heatmaps
can be qualitatively evaluated based on prior knowledge
(e.g., hippocampus is known to be strongly affected in AD,
therefore it seems reasonable to find relevance there). Given
that in the specific case of heatmaps for MR images the input
space is highly structured, we proposed here additional ways for
assessing the quality of explanations by using a brain atlas. Future
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studies might assess the neurobiological validity by removing
presumably important brain areas and re-training the classifier.

Second, it is largely acknowledged that heatmaps are quite
sensitive to the specific algorithms (and its parameters, e.g., the β

value in case of LRP) used to produce them. However, regarding
the β values in LRP, we have shown that the heatmaps are
relatively robust toward this parameter, only sparsity increases as
a function of β . Additionally, we demonstrated that the regional
ordering is relatively stable for relevance sum and density, but
unstable for the gain metric—especially in the case of large and
more distant β values.

Third, heatmaps just highlight voxels that contributed to a
certain classifier decision, but do not allow making a statement
about the underlying reasons (e.g., atrophy or shape differences)
or potential interactions between voxels or brain areas. For
example, it is difficult to disentangle interactions between
different regions (certain patterns in the hippocampusmight only
be considered as positive evidence if structure Y is found in area
Z) nor do we know whether the network developed specific filters
for atrophy or the shapes of different structures. Although we
found in this study a significant correlation between hippocampal
volume and LRP relevance measures, we can not make any claim
about causal relationships here. Future studies are necessary
to more systematically investigate the relationship between
manifested neurobiological markers and LRP explanations.

Fourth, heatmaps strongly depend on the type and quality
of the classifier, whose decisions are sought to be explained.
Therefore, each heatmap should be read as an indication of
where the specific networkmodel sees evidence. For badly trained
networks, this does not have to correlate at all with the presence
of actual biomarkers. Nevertheless, the better the classifier, the
more likely it becomes that the classifier uses meaningful patterns
as a basis for its decision and that the heatmaps correlate with
“true” evidence for AD. However, heatmaps are also useful in
cases, where classification performance is low or sample size is
rather small, e.g., for better understanding if the classifier picks
up relevant or irrelevant features (e.g., noise or imaging artifacts)
and if there are any biases present in the data set (Lapuschkin
et al., 2016; Montavon et al., 2018). It would be very interesting
to investigate how the heatmaps change for different networks, as
those which yield stronger classification results should also base
their decisions on better “evidence”.

And finally, it should be stressed that when we refer to
brain areas throughout this work, we refer to the location
that the areas are assigned in the brain atlas and not to the
individual anatomical structures of any patient. Due to inter-
individual differences, the match between the atlas and the
individual patient’s anatomical realities will not be perfect; this
is most likely further aggravated by the presence of atrophy in
AD patients.

5. CONCLUSION

In conclusion, we introduced the LRP method for explaining
individual CNN decisions in MRI-based AD diagnosis. In
contrast to GB, LRP heatmaps can be interpreted as providing

individual AD relevance (“What speaks for AD in this particular
subject?”) as opposed to a general susceptibility for small
variations in the input data. Additionally, we provided a
framework and specific metrics (i.e., “relevance density” and
“relevance gain”) to quantitatively compare heatmaps between
different groups, brain areas or methods. We demonstrated
that these metrics correlate well with clinical findings in AD,
but also vary strongly between AD patients. By this, the
LRP method might be very useful in a clinical setting for a
case-by-case evaluation. However, we would like to point out
that (1) our metrics should be evaluated in different network
architectures and (2) other (individual) brain atlases might be
used for the evaluation of regions. Future studies should evaluate
the LRP method on patients with mild-cognitive impairment
(MCI) and relate findings to known biomarkers in AD. We are
convinced that our framework might also be very useful for other
disease classification studies in helping to understand individual
network decisions.
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