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Obesity is a risk factor for cognitive decline and gray matter volume loss in aging. Studies
have shown that different metabolic factors, e.g., dysregulated glucose metabolism
and systemic inflammation, might mediate this association. Yet, even though these
risk factors tend to co-occur, they have mostly been investigated separately, making it
difficult to establish their joint contribution to gray matter volume structure in aging. Here,
we therefore aimed to determine a metabolic profile of obesity that takes into account
different anthropometric and metabolic measures to explain differences in gray matter
volume in aging. We included 748 elderly, cognitively healthy participants (age range:
60 – 79 years, BMI range: 17 – 42 kg/m2) of the LIFE-Adult Study. All participants had
complete information on body mass index, waist-to-hip ratio, glycated hemoglobin, total
blood cholesterol, high-density lipoprotein, interleukin-6, C-reactive protein, adiponectin
and leptin. Voxelwise gray matter volume was extracted from T1-weighted images
acquired on a 3T Siemens MRI scanner. We used partial least squares correlation to
extract latent variables with maximal covariance between anthropometric, metabolic and
gray matter volume and applied permutation/bootstrapping and cross-validation to test
significance and reliability of the result. We further explored the association of the latent
variables with cognitive performance. Permutation tests and cross-validation indicated
that the first pair of latent variables was significant and reliable. The metabolic profile
was driven by negative contributions from body mass index, waist-to-hip ratio, glycated
hemoglobin, C-reactive protein and leptin and a positive contribution from adiponectin.
It positively covaried with gray matter volume in temporal, frontal and occipital lobe
as well as subcortical regions and cerebellum. This result shows that a metabolic
profile characterized by high body fat, visceral adiposity and systemic inflammation is
associated with reduced gray matter volume and potentially reduced executive function
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in older adults. We observed the highest contributions for body weight and fat mass,
which indicates that factors underlying sustained energy imbalance, like sedentary
lifestyle or intake of energy-dense food, might be important determinants of gray matter
structure in aging.

Keywords: obesity, leptin – adiponectin, aging, metabolic risk, multivariate analysis, VBM

INTRODUCTION

Obesity is associated with adverse health consequences (World
Health Organization [WHO], 2000). In particular, several studies
have suggested that higher body mass index (BMI) in mid-
and late life is associated with impairment in cognitive function
(Debette et al., 2011; Smith et al., 2011; Singh-Manoux et al.,
2012) and leads to a higher risk for dementia (Baumgart et al.,
2015; Emmerzaal et al., 2015).

Potential mediators, among others, include metabolic risk
factors, e.g., dysregulated glucose metabolism and chronic
inflammation (Shaw et al., 2017; Corlier et al., 2018; Warren
et al., 2018). Yet, these factors often co-occur and their individual
role is difficult to establish. Consequently, the neurobiological
mechanisms that link obesity and higher risk for cognitive decline
in aging remain poorly understood.

Recent neuroimaging studies have provided neurobiological
evidence of an association between the most common
anthropometric measure of obesity, BMI, and decreased
gray matter volume (GMV) (Gustafson et al., 2004; Enzinger
et al., 2005; Taki et al., 2012; Bobb et al., 2014; Debette et al., 2014;
Kharabian Masouleh et al., 2016).

Further studies have shown that waist-to-hip ratio (WHR),
an indicator of visceral adiposity, might be a better predictor
of GMV loss compared to BMI (Debette et al., 2010; Debette
et al., 2014; Janowitz et al., 2015). This finding is in analogy
with the increased cardiovascular risk associated with visceral fat
accumulation (Lee et al., 2008).

Visceral adiposity often goes along with dyslipidemia, e.g.,
increased levels of triglycerides and low-density lipoproteins
along with reduced levels of high-density lipoproteins (Klop et al.,
2013). While dyslipidemia increases the risk for cardiovascular
disease, its association with brain structure is still unclear
(Assessment, 2009). Some studies showed that higher levels of
total cholesterol and lower levels of high-density lipoprotein are
associated with reduced GMV or cortical thickness (Ward et al.,
2010; Walhovd et al., 2014), yet other studies have failed to
replicate these findings (Leritz et al., 2011; Cox et al., 2019).

A vast amount of literature suggests that disturbances in
glucose metabolism, ranging from hyperglycemia and insulin
resistance to manifest diabetes, are associated with decreased
GMV in middle-aged and older adults (Benedict et al., 2012;
Kerti et al., 2013; Moran et al., 2013; Biessels and Reijmer, 2014;
Reitz et al., 2016; Shaw et al., 2017; Repple et al., 2018). Insulin
resistance might be one mediator of this association given the
role of insulin in memory facilitation and regulation of amyloid-
β (Craft, 2005; Blázquez et al., 2014; Cheke et al., 2017) in the
brain. Accordingly, several studies have reported lower GMV
in key memory regions like hippocampus and temporal lobe

related to disturbances in glucose regulation (Benedict et al.,
2012; Cherbuin et al., 2012; Kerti et al., 2013).

Systemic inflammation is another important metabolic
factor with potential implications for brain health. Visceral
adipose tissue secrets inflammatory cytokines which have been
shown to impair the blood-brain-barrier and might thereby
promote neuro-inflammation (Yaffe et al., 2004; Hsuchou et al.,
2012). Accordingly, previous neuroimaging studies showed
that circulating levels of pro-inflammatory cytokines such as
C-reactive protein (CRP) and interleukin-6 (IL6) predict gray
matter volume decline (Marsland et al., 2008; Papenberg et al.,
2016; Corlier et al., 2018).

Other obesity-related metabolic factors that might have direct
or indirect effects on brain function are adipose-tissue derived
signaling hormones like leptin and adiponectin.

Leptin has multiple effects in the brain beyond its known
role in the hypothalamic control of food intake. For instance,
leptin signaling in the hippocampus plays an important role for
memory (Paz-Filho et al., 2010; Irving and Harvey, 2013). First
evidence from neuroimaging indicated that higher leptin levels
might be neuroprotective and help to maintain memory function
in older adults, mediated by hippocampus structure (Lieb et al.,
2009; Narita et al., 2009; Witte et al., 2016). However, in obesity,
leptin is often chronically elevated resulting in central resistance
to the effects of the molecule (Myers et al., 2008).

Adiponectin is an adipokine originally known for its insulin-
sensitizing and anti-inflammatory properties in the periphery
(Lihn et al., 2005). Moreover, it was also suggested to exert
beneficial effects on brain function, e.g., by modulating glucose
metabolism (Cisternas et al., 2018) but to date, neuroimaging
studies have not shown a consistent association of adiponectin
and GMV (García-Casares et al., 2016; Hayakawa et al., 2018).

Taken together, different mechanisms might link obesity and
related metabolic disturbances with brain health and cognitive
function in aging. Most studies so far have focused on single,
mostly anthropometric measures of obesity without taking into
account related metabolic factors. Here, we use a multivariate
method, called partial least squares correlation (PLSC) to derive
informative patterns of covariation between anthropometric
(overall and visceral adiposity) and metabolic measures (markers
of energy metabolism, systemic inflammation and adipose-tissue
derived hormones) of obesity and GMV in a sample of cognitively
healthy older adults (McIntosh et al., 1996). PLSC is well-suited
for data sets with highly correlated variables (e.g., neuroimaging
data) and allows to jointly model behavioral and neuroimaging
data. In particular, we chose PLSC over other multivariate
methods such as canonical correlation analysis as it performs
better in terms of predictive power when a high number of voxel
are investigated (Grellmann et al., 2015).
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We hypothesized a metabolic profile, which highlights
detrimental aspects of obesity-related metabolic dysregulation
to be associated with a pattern of GMV loss including medio-
temporal areas (Cherbuin et al., 2012; Cheke et al., 2017).
Furthermore, we aimed to explore the association of this profile
with cognitive function.

MATERIALS AND METHODS

Sample Selection
The study sample was selected from the LIFE-Adult study
(Loeffler et al., 2015). The study was carried out in accordance
with the Declaration of Helsinki and approved by the
institutional ethics board of the Medical Faculty of the University
of Leipzig. All subjects gave written informed consent.

We included 1222 older participants (≥60 years) with
head magnetic resonance imaging (MRI) and without stroke,
major brain pathology, cancer in the last 12 months or
intake of centrally active medication. Out of these, we selected
all participants with complete anthropometric and blood
plasma measurements.

We measured body weight, height, waist and hip
circumference with a precision of 0.01 kg and 0.1 cm, respectively,
and calculated BMI and WHR.

Markers of long-term glucose metabolism (HbA1c), lipid
metabolism (total cholesterol and high-density lipoprotein,
HDL), systemic inflammation (CRP and IL6) were obtained
after overnight fasting according to standard procedures
(Loeffler et al., 2015).

Immunoreactive leptin and adiponectin concentrations were
measured from fasted serum samples using immunoreactive kits
(sensitive ELISA, Mediagnost, Reutlingen).

We excluded participants who scored below 27 in the Mini
Mental State Examination (MMSE) (O’Bryant et al., 2008) to
obtain a cognitively healthy sample. From these 754 participants,
six had to be excluded due to failed MRI preprocessing.

We log-transformed IL6, CRP, adiponectin and leptin values
to ensure normality and regressed age and sex from all
predictors prior to PLSC.

Magnetic Resonance Imaging
Anatomical T1-weighted images were acquired using a 3 Tesla
Siemens Verio MRI scanner (Siemens Healthcare, Erlangen,
Germany) with a 3D MPRAGE protocol (inversion time, 900 ms;
repetition time, 2300 ms; echo time, 2.98 ms; flip angle, 9◦;
field of view, 256 mm × 240 mm × 176 mm; voxel size,
1 mm× 1 mm× 1 mm).

We performed voxel-based morphometry (VBM)
implemented in SPM 12 to obtain voxelwise estimates of GMV.
First, a study-specific template was created from 1186 healthy
participants of the LIFE-Adult study aged 60 years or older using
DARTEL. After non-linear, iterative registration of the white
and gray matter segmentations to this template, the resulting
flowfields were applied to the gray matter segmentation. Finally,
the images were modulated by the amount of spatial distortion
and smoothed with a Gaussian kernel of 8 mm FWHM.

As we were interested in the association of GMV, metabolic
and anthropometric measures, we aimed to remove the
confounding effect of age, sex and total intra-cranial volume
(TIV). Therefore, we regressed age, sex and TIV from the GMV
using SPM’s implementation of the General Linear Model. To
limit the number of voxels included in the analysis, we only
included voxels with gray matter probability of 0.3 and larger in
the averaged GMV image. The number of voxels included per
participant was 295365.

Statistical Analysis
PLSC Analysis
After preprocessing, the anthropometric and metabolic measures
were organized in a matrix X with dimensions N × p. The GMV
data was stored in a matrix Y with dimensions N × v. Here, N is
the number of participants, p the number of anthropometric and
metabolic measures and v the number of GMV voxels. The data
matrices were columnwise centered and normalized to eliminate
influence of variance differences between measures.

PLSC aims to create latent variables (LV) from the
two data sets that maximize their pairwise correlation
(Krishnan et al., 2011).

maximize(Cov(Xu,Yv)) = maximize(uTX × Yv)

The solution of this maximization problem is obtained by
singular value decomposition (SVD). This operation decomposes
the p× v matrix XTY into three matrices U(p× R), V(v× R)
and 1(R× R) (Abdi, 2007). R is the rank of XTY , e.g., maximally
R pairs of latent variables can be extracted (here R = 9).

XTY = U1VT

U contains the R left singular vectors, 1 is a R-by-R diagnoal
matrix containing the R singular values and V contains the R
right singular vectors. The singular vectors, or weights, define the
latent variables as linear combinations of the original data.

Specifically, Lx = Xu are the LV describing the
anthropometric and metabolic measures and Ly = Yv are
the latent variables describing the GMV. The first pair of LV
explains the largest possible correlation between the two data
sets; the second pair reveals the largest possible correlation under
the constraint that the latent variables are uncorrelated to the
first pair, and so on. In the following, the weights defining the
obesity LV are referred to as metabolic profile and the obesity
and GMV LV are called metabolic and brain score, respectively.

Statistical Inference
Significance of the resulting decomposition was tested with two
approaches: classical permutation-bootstrap inference (Efron
and Tibshirani, 1986; McIntosh and Lobaugh, 2004) and a cross-
validation framework (Smith et al., 2015).

In the permutation-bootstrap inference, we first determined
the significance of the pairs of LV, starting with a full
decomposition, e.g., the maximal number of 9 LV pairs. We
randomly permuted the rows of the obesity data matrix X
while leaving the row order of the imaging data matrix Y
unchanged. This process was repeated 2000 times and for each
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permutation, the SVD was performed and null-distributions
of singular values were built for the pairs of LV. Based on
these distributions, a p-value was attributed to the original,
unpermuted singular values.

p =
N(permutedsingularvalue > originalsingularvalue)

Npermutations

A pair of LV was considered significant at a level of α = 0.05.
The amount of explained covariance was calculated as the
singular value of the significant LV pair divided by the sum of
all singular values.

When we considered a pair of latent variables generalizable
based on the permutation-derived p-value, the reliability of the
individual weights was estimated by using bootstrap sampling
with replacement. We bootstrapped 2000 times from the
participants data in the X and Y matrices and calculated the
SVD. Dividing the weights by their standard error derived from
bootstrapping yielded a Z-like score, which indicated stable
weights when Z > 2.3 (Krishnan et al., 2011).

In order to visualize most stable regions, we performed a
cluster-forming procedure using FSL’s cluster-command with an
arbitrary threshold of Z > 5.

We also implemented a cross-validation framework according
to Smith et al. (2015). First, we randomly selected 80% of
the sample for a training set (N∼499) and 20% for a test set
(N∼149). Then, we estimated the SVD in the training set and
calculated the LV for the test data set by multiplying the resulting
weights for brain and obesity-related measures with the raw
values of the test data set. This yielded a metabolic and a brain
score for each individual. Then, we calculated the correlation of
metabolic and brain scores across participants for the test set.
In order to establish a null distribution, we randomly permuted
the metabolic data matrix within the test set and reprojected the
weights derived from the training set onto the permuted raw data
(N = 1000). Then we compared the correlation of the resulting
“random” scores to the original correlation and derived a p-value.

We repeated this procedure twenty times, e.g., twenty different
training-test datasets, and calculated the average correlation
of the true projection, the average correlation of the random
projections and the number of significant permutation tests.

The analyses were implemented in python 2.7, based
on previously published scripts for PLSC1. All code is
openly available under https://github.com/fBeyer89/metabolic_
VBM_PLSC.

Comparison of BMI and Metabolic Score
We assessed whether a LV based on anthropometric and
metabolic measures was a better predictor of GMV than BMI
alone. To do so, we compared two models predicting the total
GMV, adjusted for intracranial volume, derived by Freesurfer
segmentation software, version 5.3.0. Model 1 comprised age, sex
and BMI as predictors, and Model 2 additionally included the
metabolic score. The model comparison was performed with the
function anova in R version 3.2.3.

1https://libraries.io/github/chrisfilo/pypls

Sensitivity Analyses
We performed sensitivity analyses using the permutation-
bootstrap approach (9 LV, 2000 permutations, 2000 bootstraps)
to assess the effect of different confounding factors.

First, we excluded N = 240 participants with IL6 values
below the detection threshold (<1.5 pg/ml) to ensure that the
skewed distribution arising from this threshold did not affect the
result. Then, we repeated the analysis excluding 25 participants
with markedly high CRP values (>10 mg/l, Macy et al., 1997).
Similarly, we repeated the analysis excluding one participant with
an outlier value in adiponectin (<average value – 5σ).

Medication intake, specifically antidiabetic and
antihyperlipidemic treatment, might have confounded the
laboratory measures of HbA1c and total cholesterol/HDL
in our analysis. Therefore, we derived medication-adjusted
HbA1c and total cholesterol/HDL values by regressing out
the intake of antidiabetic or antihyperlipidemic treatment.
A binary definition of antidiabetic treatment was used
based on self-reported diagnosis or medication intake. For
antihyperlipidemic treatment we only took into account
self-reported medication intake. Then, we repeated the
permutation-bootstrap analysis (9 LV, 2000 permutations,
2000 bootstraps) with the medication-adjusted HbA1c and total
cholesterol/HDL values.

Higher BMI is closely linked to higher blood pressure,
which is itself linked to GMV differences (Beauchet et al.,
2013). Therefore, we investigated the contribution of systolic
blood pressure to the metabolic score. We performed another
permutation-bootstrap analysis (10 LV, 2000 permutations, 2000
bootstraps) with the previous metabolic and anthropometric
measures and additionally including systolic blood pressure,
adjusted for age and sex. This measure was available in
N = 740 participants.

Cognitive Function
Cognitive function was assessed with the Consortium to Establish
a Registry for Alzheimer’s Disease (CERAD) neuropsychological
test battery. We calculated three composite scores for executive
function, memory and processing speed according to previous
studies (Kharabian Masouleh et al., 2016; Zhang et al., 2018).

Verbal fluency tests “Animals” and “S”-words and the
ratio of Trail-making Test (TMT) parts B and A were
used to define executive function (Zexecutive = z(number of
Animals VF) + z(number of S-words VF) – z(TMT(part B -
part A)/part A)/3).

Memory was based on the 10-item CERAD word learning
task. The composite score was calculated from the number of
learnt words over three consecutive learning trials, the number
of correctly recalled words after a delay of about 5 min and the
number of correctly recognized word from a list of 20 mixed
words [Z memory = (z(number of learned words) + z(number
of recalled words)+ z(number of recognized words)/3)].

Processing speed was estimated by the inverse value of
the time needed to complete TMT part A [Z processing = -
z(TMT part A)].

One participant missed data for the TMT.
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RESULTS

Demographics
See Table 1 for demographic and obesity-related characteristics
of the study and Supplementary Figure S7 for bivariate
correlations of the anthropometric and metabolic measures used
for PLS analysis.

Main Analysis
In the main analysis, we included BMI, WHR, HbA1c,
total cholesterol, HDL, CRP, IL6, adiponectin and leptin as
anthropometric and metabolic measures, and VBM-based GMV
as brain morphometric measure.

Based on the permutation-bootstrap approach, the first two
pairs of LV were significant (LV1: p < 0.001, LV2: p = 0.0075)
and explained 44.9%/14.6% of the covariance of anthropometric,
metabolic and GMV measures, respectively.

The first pair of LV represents an association of higher
metabolic risk and lower GMV in different regions of the
brain. The metabolic profile was mainly driven by positive
contributions of BMI, WHR, HbA1c, CRP and leptin and
a negative contribution of adiponectin. BMI (0.50), leptin
(0.39), and CRP (0.33) had the highest weights (see Figure 1).
These contributions were stable based on the bootstrapped
Z-value of Z > 2.3.

For the GMV, a distributed pattern in temporal, frontal and
occipital lobe as well as subcortical regions and cerebellum
had reliable negative weights (Z > 2.3) (see Figure 2,
upper row). Based on an arbitrary threshold of Z > 5,
thalamus, left cerebellum (Crus VI), bilateral insular cortex,

TABLE 1 | Demographics of the sample.

Mean Standard
deviation

Minimum Maximum

Age [years] 68.4 4.8 60.00 79.00

Sex [males/females] 416/332 (55.6%/44.4%)

BMI [kg/m2] 27.7 4.1 16.8 42.3

WHR 0.96 0.08 0.73 1.17

HbA1c [%] 5.53 0.59 3.84 12.38

Diabetes diagnosis or
intake of anti-diabetic
medication [no/yes]

642/106 (85.8/14.2%)

Total Cholesterol [mmol/l] 5.86 1.08 2.26 10.76

HDL [mmol/l] 5.85 1.10 1.66 10.76

Anti-hyperlipidemic
medication [no/yes]

565/183 (75.5%/24.5%)

CRP [mg/l] 2.95 7.40 0.16 146.92

IL6 [pg/ml] 3.76 3.88 1.50 64.74

Adiponectin [ng/ml] 7710.4 4662.6 2.0 34744.5

Leptin [ng/ml] 12.187 12.135 0.000 88.290

Systolic blood pressure
[mmHg]

134.44 16.24 86.33 195.67

Given is mean ± standard deviation (min, max). BMI, body mass index; WHR,
waist-to-hip ratio; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; IL6,
interleukin-6; CRP, C-reactive protein.

left amygdala/hippocampus, right temporal pole, right planum
polare and right postcentral gyrus were identified as most reliable
regions (see Table 2 and Figure 2, lower row).

The correlation of the GMV and metabolic LV was r = 0.246
(p < 0.001, N = 748).

FIGURE 1 | Weights (blue, left y-axis) and Z-scores (red, right y-axis) of the metabolic latent variables (LV) from the first pair of LV. Red line indicates the threshold of
bootstrapped Z-score = 2.3 All measures with a Z-score < 2.3 are shown as transparent. a.u., arbitrary unit; BMI, body mass index; WHR, waist-to-hip ratio;
HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; IL6, interleukin-6; CRP, C-reactive protein.
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FIGURE 2 | (First row) Sagittal view of the gray matter volume (GMV) weight map of first latent variables (LV). White lines indicate axial slices shown in second row.
(Second row) Axial view of GMV weight map of first LV. (Third row) Axial view of clusters derived from bootstrapped Z > 5. MNI-coordinates are given in mm for
axial orientation (Z). Legend refers to clusters shown in third row. L, left; R, right.

The second pair of LV had positive and reliable weights
for total cholesterol and HDL (see Figure 3). Three clusters
of reliable, positive weights were found in the posterior
cingulate and bilateral lateral occipital cortex (see Figure 4). The
correlation of the second pair of latent variables was r = 0.22
(p < 0.001, N = 748).

We applied a cross-validation framework to assess the
reliability of the first two pairs of LV.

The mean and standard deviation of the correlation between
the first LV in the test data sets was 0.241 ± 0.074 (N = 149).

TABLE 2 | Significant clusters of gray matter volume (GMV) weight map of the first
set of latent variables (LV) according to multivariate partial least squares correlation
(PLSC) analysis, according to bootstrapped Z with an arbitrary threshold of Z > 5.

Region Number of
voxels

MNI coordinates
of peak voxel

(X,Y,Z)

Bootstrapped
Z at peak

voxel

Weight
at peak
voxel

Thalamus (Th.) 1408 55, 71, 57 6.94 0.0045

Left cerebellum
(Crus VI)

756 68, 40, 40 5.83 0.0037

Left insular cortex 419 83, 84, 50 5.9 0.0031

Left amygdala/
hippocampus

353 75, 80, 35 5.66 0.0031

Right insular cortex 347 37, 84, 50 5.53 0.0032

Right temporal pole 343 46, 90, 26 7.27 0.0044

Right planum
polare

139 30, 80, 43 5.82 0.0034

Right Postcentral
gyrus

101 34, 71, 80 6.3 0.0039

Out of 20 training-test data sets, the first LV did not reach
nominal significance of p < 0.05 in two data sets where p-values
were 0.13 and 0.094.

The mean and standard deviation of the correlation between
the second LV in the test data sets was 0.10± 0.07 (N = 149). Out
of 20 training-test data sets, the second LV did not reach nominal
significance of p < 0.05 in thirteen data sets.

While in the permutation-bootstrap approach the amount
of variance explained in the original dataset was significant,
the correlation of the second pair of LV was not stable in the
cross-validation approach. In PLSC, the second pair of LV is
constrained by its orthogonality to the first pair. This means
that the second pair of LV represented an orthogonal mode
of variation within the anthropometric and metabolic measures
that might, given the relative low amount of variance explained
(∼15%), have a limited interpretation. For the following analysis,
we thus focus on the results for the first pair of LV.

Comparison of BMI and Metabolic Score
In Model 1, age, sex and BMI were all significant predictors
of total GMV adjusted for TIV (see Table 3). Yet, model 2
which additionally included the metabolic score, predicted total
GMV slightly better (see Table 3, model comparison: F = 4.1,
p < 0.042). This indicates metabolic measures explain additional
variance compared to anthropometry when investigating GMV
differences related to higher BMI.

Sensitivity Analysis
We performed sensitivity analysis to detect possible confounding
effects on the first pair of LV.
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FIGURE 3 | Weights (blue, left y-axis) and Z-scores (red, right y-axis) of the metabolic latent variables (LV) from the second pair of LV. Red line indicates the threshold
of bootstrapped Z-score = 2.3. All measures with a Z-score < 2.3 are shown as transparent. a.u., arbitrary unit; BMI, body mass index; WHR, waist-to-hip ratio;
HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; IL6, interleukin-6; CRP, C-reactive protein.

FIGURE 4 | (Left) Sagittal view of the gray matter volume (GMV) saliency weight map of second latent variables (LV). White lines indicate axial slices shown on the
right. (Right) Axial view of GMV weight map of second LV. MNI-coordinates are given in mm for axial orientation (Z). R, Right.

IL6 Below Detection Threshold
When excluding participants with IL6 values below the detection
threshold, the first pair of LV was similar to the main analysis
(p < 0.001, explained covariance = 0.41). BMI and leptin had
negative weights. Adiponectin had a stable positive contribution
as well as HDL and cholesterol which reached the threshold
of Z > 2.3 in this analysis (see Supplementary Figure S1).
WHR and CRP did not contribute reliably to the metabolic
score of the first LV. The weights of the GMV score remained
essentially unchanged.

Outliers in CRP and Adiponectin
Here, we excluded participants with markedly high CRP values
(>10 mg/l, N = 25) who might have had an acute infection
or another reason for elevated CRP at the time of the
assessment. The first pair of LV were very similar to the

main analysis, except that the bootstrapped Z-value of CRP
dropped to 2.26 below the pre-defined threshold of 2.3 (see
Supplementary Figure S2). The pattern of the GMV score was
essentially unchanged.

When removing one participant with an outlying value in
adiponectin (N = 1), we did not see any differences in the
metabolic and GMV scores (see Supplementary Figure S3).

Systolic Blood Pressure as Additional Predictor
We added systolic blood pressure as another important
cardiovascular risk factor to see whether it explained additional
variance in the obesity-GMV association. There was no reliable
contribution of systolic blood pressure to the first obesity LV (see
Supplementary Figure S4) but the positive contribution of total
cholesterol and HDL to the metabolic score became significant.

The GMV score did not change.
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TABLE 3 | Statistics according to linear regression models predicting total gray
matter volume (GMV).

Total GMV
adjusted for
head size

Model 1 (R2
adj = 0.207) Model 2 (R2

adj = 0.213)

st. β T p st. β T p

Age −0.27 −8.3 < 0.0001 −0.27 −8.3 < 0.0001

Sex 0.30 9.3 < 0.0001 0.31 9.4 < 0.0001

BMI −0.17 −5.4 < 0.0001 −0.09 −1.73 0.084

Metabolic score
(LV1)

0.11 2.1 0.042

Model 1 included age, sex, and body mass index (BMI). Model 2 additionally
included the metabolic score from the first set of latent variables (LV) according
to multivariate partial least squares analysis (see text for details). st. β, standardized
ß-coefficient of the linear regression; R2

adj, adjusted R2.

Analysis Adjusting for Intake of Antidiabetic and
Antihyperlipidemic Medication
To see whether the observed mode of covariation was driven by
manifest metabolic disease, like diabetes or hyperlipidemia, we
regressed the treatment of those conditions from the respective
variables HbA1c and total cholesterol/HDL. After this correction,
HbA1c did not contribute to the first obesity LV anymore,
indicating that the heightened levels of HbA1c in diabetic patients
might have driven the involvement of HbA1c in the first obesity
LV (see Supplementary Figure S5). The weights of the GMV
LV were unchanged.

Association of the Metabolic Score and
Cognitive Function
We performed linear regression to determine the association
of the brain and metabolic scores and three sum scores of
cognitive function.

For executive function, we found a significant positive
association of brain and metabolic score with the sum score
(standardized βob = 0.084, p = 0.021; standardized βbrain = 0.098,
p = 0.007). Higher score on the brain LV and higher
score in the metabolic LV (with negative loadings of BMI
and WHR) both predicted better executive function (see
Figure 5). When excluding one participant with outlying value
in adiponectin, the pattern was even more pronounced (see
Supplementary Figure S6).

No association between brain or metabolic LV was found for
the memory sum score.

Processing speed was positively associated with the brain LV
but not the metabolic LV (standardized βob = −0.019, p = 0.59;
standardized βbrain = 0.132, p < 0.001).

DISCUSSION

In this study, we showed that a metabolic profile of obesity
predicted lower GMV in a large population-based sample of
older adults. Higher BMI, WHR, leptin, HbA1c, CRP and lower
adiponectin levels were jointly associated with reduced GMV
in cortical, subcortical and cerebellar brain regions, including
the thalamus, insular cortex and temporal pole. We used

FIGURE 5 | The gray matter volume (GMV) score was positively associated
with the sum score of executive function. A higher metabolic score
(corresponding to lower BMI and indicated by the color coding shown in the
legend) was associated with both higher GMV score and higher executive
function. Black line indicates the locally smoothed average.

two inference schemes and performed sensitivity analysis for
potential confounding of outliers, detection thresholds and
medication intake. Higher scores in the metabolic score and the
GMV score predicted better executive function performance.

The Metabolic Profile
The metabolic profile of the first LV represents common
metabolic dysregulations in obesity (Van Gaal et al., 2006).

Leptin and BMI had the highest weights in the metabolic
profile. BMI is the ratio of body weight to height and an indirect
estimate of body fat (Frankenfield et al., 2001). Yet, due to age-
related changes in body composition, BMI might lack sensitivity
to detect individuals with excess body fat in the older population
(Romero-Corral et al., 2008; Stenholm et al., 2008). Here, leptin
levels are a more accurate estimator of total body fat, as they
increase with the amount of overall adipose tissue in the body
(Considine et al., 1996; Ostlund et al., 1996).

In the present sample, the high weights of leptin and BMI
in the profile indicate that the overall amount of adipose tissue
is a strong predictor of reduced GMV in older adults. This
suggests that factors underlying a sustained energy imbalance,
like sedentary lifestyle or intake of energy-dense food, might
be important determinants of gray matter structure in aging
(Erickson et al., 2010; Dingess et al., 2017; Kreutzer et al., 2017).

Considering the central effects of leptin, it is also possible
that leptin levels are directly associated with brain structure. Yet,
previous studies showed mixed results in that both lower and
higher leptin levels predicted reduced GMV in older individuals
(Narita et al., 2009; Rajagopalan et al., 2013). To reconcile
these contradictory findings it is important to consider the
BMI distribution of the study population. Obesity goes along
with elevated leptin levels and leptin resistance, which may
lead to central deficiency and impaired beneficial action of this
hormone in the brain (Paz-Filho et al., 2010). Therefore, both low
and chronically elevated leptin levels might be associated with
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structural brain differences, especially in the hippocampus (Lieb
et al., 2009; Witte et al., 2016).

In line with the literature, adiponectin was inversely related
to leptin and BMI in the metabolic profile of LV1 (Havel, 2002).
As adiponectin might have positive effects on brain function
related to its insulin-sensitizing and anti-inflammatory properties
(Lihn et al., 2005), reduced levels of adiponectin might indirectly
contribute to reduced GMV.

Smaller weights were found for WHR and CRP in the
metabolic profile. WHR – in contrast to BMI and leptin –
reflects the distribution of adipose tissue and is considered
a measure of visceral adiposity. Having a higher amount of
visceral adipose tissue is linked to a higher risk for cardiovascular
disease (Lee et al., 2008) due to specific functions of this fat
tissue. Visceral fat tissue releases pro-inflammatory cytokines,
like IL6, and short-chain fatty acids, factors involved in the
development of the metabolic syndrome and arteriosclerosis
(Després and Lemieux, 2006; Bergman Richard et al., 2012; Item
and Konrad, 2012). In line with these findings, the inflammation
marker CRP contributed to the metabolic profile, even though
the association is attenuated when excluding participants with
extremely elevated CRP-levels. This points to the low specificity
of CRP which is a measure of both localized and systemic
inflammation and might therefore be confounded by participants
with acute infections in the sample.

IL6, a pro-inflammatory cytokine secreted by visceral adipose
tissue (Fontana et al., 2007), had no significant weight in the
metabolic profile although it added to the profile in a similar
direction as CRP. This might be due to the reduced sensitivity of
the laboratory assessment and the resulting skewed distribution.
When excluding participants with IL6 values below the detection
threshold, CRP no longer contributed to the metabolic profile.
This indicates that in participants with IL6 values below the
detection threshold, relevant variance regarding inflammatory
processes is captured in the high-sensitivity CRP we assessed.

Overall, the contribution of WHR and CRP to the metabolic
profile shows that beyond increased whole-body fat mass
(measured by BMI and leptin), visceral adipose tissue and
related systemic inflammation play a role in obesity-related
GMV reductions. Pro-inflammatory cytokines can cross the
blood-brain barrier (Hsuchou et al., 2012) and thereby promote
inflammatory reactions in the central nervous system (Erickson
et al., 2012; Spielman et al., 2014). One example is the chronic
activation of microglia, that triggers the production of reactive
oxygen species (ROS) and pro-inflammatory cytokines, and
may lead to neuronal loss (Spielman et al., 2014; Colonna and
Butovsky, 2017).

Long-term glucose marker HbA1C had a significant and
reliable weight in the metabolic profile, indicating that disturbed
glucose and insulin metabolism is another pathway linking
obesity to reduced GMV. High blood glucose levels enchain the
production of advanced glycation end-products (AGEs) which
trigger the production of ROS and may lead to inflammatory
reactions (Yan et al., 2008). Thereby, elevated glucose levels
might damage vasculature or enhance neuroinflammation (Yan
et al., 2008). Insulin resistance may also damage the brain, given
the importance of insulin for neuromodulatory and –protective

processes as well as memory and cognition (Craft and Watson,
2004; Blázquez et al., 2014).

Our sample included around 100 individuals with diabetes
and when we adjusted for intake of antidiabetic medication,
HbA1c no longer contributed to the metabolic profile. This
result indicates that the contribution of HbA1c might have been
driven by GMV difference in diabetic patients. In line with this
interpretation, pronounced GMV differences have been reported
in diabetic patients while more subtle associations, mostly limited
to the hippocampus, have been reported in the range of normal
glucose metabolism (Benedict et al., 2012; Moran et al., 2013;
Shaw et al., 2017).

Regarding the lipid metabolism, we did not find a stable
contribution of total or HDL cholesterol to the metabolic
profile in the main analysis. Still, we found that total and HDL
cholesterol positively covaried with the metabolic profile, this
effect was more pronounced when we excluded participants
with IL6 below the detection threshold or included systolic
blood pressure. In the literature, no or negative associations
have been reported for total cholesterol and GMV (Enzinger
et al., 2005; Chen et al., 2006; Walhovd et al., 2014) while one
study found a positive association of HDL and GMV (Ward
et al., 2010). Adjusting for intake of lipid-lowering medication
did not change the result. Interestingly, in our sample, total
cholesterol and HDL were highly correlated, and against our
expectations, total cholesterol was negatively correlated with BMI
(standardized β = −0.13, p < 0.001, adjusted for age and sex).
This might explain why the lipid measures were not reliably
included into the profile.

Chronically elevated blood pressure is commonly found in
older age and strongly associated with obesity. Elevated blood
pressure is a strong predictor of brain damage, in form of lacunar
infarcts, white matter hyperintensities and GMV loss (Beauchet
et al., 2013; Suzuki et al., 2017; Haight et al., 2018). Still, systolic
blood pressure did not contribute to the metabolic profile when
it was included along with the other predictors. We noticed
that BMI was weakly negatively associated with systolic blood
pressure in this sample (standardized β = −0.075, p = 0.04,
adjusted for age and sex) which might explain why systolic blood
pressure was not included into the profile.

The GMV Pattern Associated With the
Metabolic Profile
We found a consistent association of the metabolic profile
and lower GMV in thalamus, bilateral insular cortex, left
amygdala-hippocampus, temporal pole and the cerebellum.
These findings are in line with the literature where mostly
negative associations between obesity and GMV are reported
(Willette and Kapogiannis, 2015). More specifically, a recent
meta-analysis reported BMI-associated reductions of GMV in
temporal pole and cerebellum (Garcia-Garcia et al., 2018).
The cerebellum not only contributes to the planning of
motor actions but also plays an important role for cognition
(Buckner et al., 2011). Importantly, atrophy patterns related to
neurodegenerative disease reflect cerebellar-cortical connectivity
patterns, e.g., the cerebellar regions which are functionally
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connected to the default mode network show atrophy in
Alzheimer’s disease (Guo et al., 2016). It is therefore plausible that
obesity-associated metabolic factors, associated with differences
in specific brain networks, might also contribute to cerebellar
atrophy (Haight et al., 2015; Beyer et al., 2017; Kharabian
Masouleh et al., 2018).

Differences in thalamic, insula and amygdalar-hippocampal
GMV have not been reported in the meta-analysis, but were
found in univariate analysis of obesity-related factors such as
CRP (Corlier et al., 2018), HbA1c (Reitz et al., 2016), and
BMI (Kharabian Masouleh et al., 2016). The current study
investigated the univariate association of BMI and GMV in
a partly overlapping sample with Kharabian Masouleh et al.
(2016) (N = 412 or 55% overlap with the present sample) and
found similar clusters in thalamus, parahippocampal gyrus and
temporal lobe. These regions show a decline in GMV over the
adult life span, and possibly, obesity and related metabolic factors
enhance this effect, as proposed by the increased brain age
observed in white matter of obese participants (Storsve et al.,
2014; He et al., 2015; Ronan et al., 2016).

In contrast to previous studies, the metabolic profile was not
predominantly associated with frontal GMV in our analysis. Still,
medial orbitofrontal and superior frontal cortex were reliably
(Z > 2.3) linked to the metabolic profile. Studies suggested
that reduced GMV in obesity might not only be a consequence
but also a potential genetic risk factor for developing obesity
(Opel et al., 2017). Thus, genetic factors, among others, might
have contributed to the observed GMV differences in our study.
Possible mediators include executive functions and impulsive
behavior which might impact eating behavior and thereby lead
to weight gain (Chuang et al., 2015). However, as our analysis
did not include genetic or behavioral traits, in addition to its
cross-sectional design, interpretation of causes and consequences
underlying GMV differences is limited.

Expanding the study by Kharabian Masouleh et al. (2016),
we used a multivariate strategy to characterize the association
of obesity and GMV in older adults. Accordingly, the individual
metabolic profile score explained more variance in total GMV
than BMI alone. This analysis was independent of the actual
pattern of GMV associated with the metabolic score. Yet, the
overall amount of variance in total GMV explained by the
metabolic score is relatively small (∼3%) compared to the
variance explained by age and sex (∼18%).

Cognitive Function
Regarding the relevance of our findings for cognitive function,
exploratory analyses suggested that executive function was
gradually decreased along the axis of the first obesity-brain
LV. Both lower metabolic LV and higher GMV LV were
associated with increased performance in the domain of executive
function. This result expands previous findings of reduced
executive function related to increased BMI reported in a partly
overlapping sample by Kharabian Masouleh et al. (2016), and
shows that reduced GMV in distributed brain regions might
mediate this effect.

We did not find an association of memory performance
and the GMV pattern of the first LV. While there was no

direct association of BMI and memory performance, (Kharabian
Masouleh et al., 2016) found an indirect effect, mediated by GMV
in frontal and thalamic clusters. Our analysis was possibly not
suited to replicate this region-specific association between brain
and cognition, given that we derived a wide-spread GMV pattern
which, among others, included frontal and thalamic clusters.

We found a positive association of the GMV pattern and
processing speed, but not obesity-related LV and processing
speed. This might reflect the fact that both executive function and
processing speed sum scores are derived from the trail-making-
test, and therefore are partly collinear.

These exploratory results are largely in line with the literature,
where mid-life obesity has been linked to reduced cognitive
function in various cognitive domains (van den Berg et al., 2009;
Prickett et al., 2015). More specifically, our results support the
view that executive function might be more affected by vascular
risk factors than other cognitive domains, such as verbal memory
(Wolf et al., 2007; Debette and Markus, 2010) and that metabolic
disturbances linearly add to obesity-related cognitive decline
(Singh-Manoux et al., 2012).

Strengths and Limitations of the Current
Study
Strengths of this study include a large, well-characterized
participants sample and a comprehensive multivariate analysis
employing two validation schemes. Additionally, we performed
sensitivity analysis and assessed cognitive function of the
participants with a standardized neuropsychological test battery.

The main limitation of this study is that we cannot draw causal
inferences based on our cross-sectional data.

We reported a relatively specific metabolic profile and a
widespread pattern of GMV loss. Yet, due to our multivariate
approach we cannot conclude whether certain metabolic factors,
e.g., pro-inflammatory cytokines, mediate the association or if
they have independent effects on GMV loss. Furthermore,
we cannot test regionally specific associations of single
metabolic factors with GMV loss. This problem might be
partly overcome by using sparse PLSC techniques in future
studies (Monteiro et al., 2016). Introducing a sparsity constraint
to the PLSC decomposition reduces the number of features,
e.g., voxels, and forces many features to have zero weights.
This may aid interpretability especially for high-dimensional
MRI data. Another drawback of the PLSC approach was
the limited interpretability of higher-order latent variables
which are constrained to be orthogonal to previous LV
(Krishnan et al., 2011).

CONCLUSION

Taken together, we provided evidence that a metabolic obesity
profile characterized by increased body fat, visceral adiposity
and systemic inflammation was associated with a widespread
pattern of decreased GMV. The brain-obesity covariation was
stable in two validation schemes and predicted executive function
in a large sample of older adults without diagnosis of cognitive
impairment. We suggest that this unfavorable metabolic profile
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might contribute to reduced executive function via damage to the
gray matter in widespread brain regions.

Following our study, further research is needed to establish
the causal relationship between obesity, decreased gray matter
volume and cognitive function in aging. Our results indicated
a main contribution of overall fat mass and visceral adiposity,
which should be tested in longitudinal studies. Given the
importance of lifestyle factors in mid-life for cognitive function
later in life, these studies might benefit from considering body
weight trajectories or using cumulative measures of metabolic
burden such as “obesity pack years” (Abdullah et al., 2011;
Pedditizi et al., 2016).

Furthermore, investigating measures of brain health beyond
gray matter structure, such as imaging markers of cerebral small
vessel disease and white matter microstructure, might help to
understand the complete picture linking obesity, cardiovascular
risk and cognitive decline in aging.
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