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Aging is consistently reported as the most important independent risk factor for
neurodegenerative diseases. As life expectancy has significantly increased during the
last decades, neurodegenerative diseases became one of the most critical public health
problem in our society. The most investigated neurodegenerative diseases during aging
are Alzheimer disease (AD), Frontotemporal Dementia (FTD) and Parkinson disease (PD).
The search for biomarkers has been focused so far on cerebrospinal fluid (CSF) and
blood. Recently, exosomes emerged as novel biological source with increasing interest
for age-related neurodegenerative disease biomarkers. Exosomes are tiny Extracellular
vesicles (EVs; 30–100 nm in size) released by all cell types which originate from
the endosomal compartment. They constitute important vesicles for the release and
transfer of multiple (signaling, toxic, and regulatory) molecules among cells. Initially
considered with merely waste disposal function, instead exosomes have been recently
recognized as fundamental mediators of intercellular communication. They can move
from the site of release by diffusion and be retrieved in several body fluids, where
they may dynamically reflect pathological changes of cells present in inaccessible
sites such as the brain. Multiple evidence has implicated exosomes in age-associated
neurodegenerative processes, which lead to cognitive impairment in later life. Critically,
consolidated evidence indicates that pathological protein aggregates, including Aβ, tau,
and α-synuclein are released from brain cells in association with exosomes. Importantly,
exosomes act as vehicles between cells not only of proteins but also of nucleic acids
[DNA, mRNA transcripts, miRNA, and non-coding RNAs (ncRNAs)] thus potentially
influencing gene expression in target cells. In this framework, exosomes could contribute
to elucidate the molecular mechanisms underneath neurodegenerative diseases and
could represent a promising source of biomarkers. Despite the involvement of exosomes
in age-associated neurodegeneration, the study of exosomes and their genetic cargo in
physiological aging and in neurodegenerative diseases is still in its infancy. Here, we
review, the current knowledge on protein and ncRNAs cargo of exosomes in normal
aging and in age-related neurodegenerative diseases.
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INTRODUCTION

The growing increase of lifespan has implemented the research
in aging processes and in age related pathologies like Alzheimer’s
Disease (AD), Frontotemporal Dementia (FTD) and Parkinson’s
disease (PD). Aging encloses multiple and complex processes
where cellular senescence is the critical one. Senescent phenotype
is characterized by three phenomena: the permanent cell
growth arrest; the resistance to apoptosis; the acquisition of
altered and differentiated functions (Campisi and d’Adda Di
Fagagna, 2007; Campisi, 2012). Several evidence associates
senescence to an increase in exosome release introducing a new
phenotype named Senescence-Associated Secretory Phenotype
(SASP) observed in vitro after genotoxic stress in different
kinds of cells (Lehmann et al., 2008; Takasugi et al., 2017).
Exosomes are tiny Extracellular vesicles (EVs) sizing from
30 nm to 100 nm, shed from almost all the cells, including the
nervous ones (Zhang and Yang, 2018). Exosomes were thought
to serve as cellular garbage but now there are many evidence
that support their role in the intercellular communication
(Rashed et al., 2017) pouring their content, through different
mechanisms, to the recipient cells in the neighborhood as
well as in the periphery even passing through the blood brain
barrier (BBB; Alvarez-Erviti et al., 2011; Ridder et al., 2014).
Indeed exosomes were detected in many biological fluids as
in serum, plasma, urine, cerebrospinal fluid (CSF) and others
(Caby et al., 2005; Franzen et al., 2015; Yagi et al., 2016).
The growing interest in the last decade on exosome research
is linked to their composition that represents a ‘‘mirror’’
of the physiological as well as the pathological state of the
donor cells (Willms et al., 2016). Exosome cargo consists
of lipid, proteins, mRNAs and ncRNAs, mostly microRNAs,
whose sorting is regulated from the cell of origin with
complex mechanisms that are not fully understood (Simons
and Raposo, 2009). Instead, it is not clear, if the recipient
cell can have an active role to select the exosome cargo or
if it depends only from the parental cell. Not only their
content but also markers on their membrane surface reflect
their origin. Therefore, besides general exosome markers useful
to discriminate exosomes from other EVs (e.g., CD81, CD9,
ALIX, TSG101), the detection of neural derived exosomes
(NDEs) is possible due to the presence of L1CAM (L1- cell
adhesion molecule), that is a Central Nervous System (CNS)-
specific exosome marker (Kenwrick, 2002; Fauré et al., 2006;
Lachenal et al., 2010). Therefore, the investigation of the
impressive variety of NDEs cargoes, especially proteins and
microRNAs, could open a ‘‘window into the brain’’ creating a
direct thread between the CNS and the periphery (Shi et al.,
2019). To support this assumption, more and more findings
have reported the presence of proteins and microRNAs critical
for age-related disorders inside NDEs (Rajendran et al., 2014;
Soria et al., 2017). This review article, is intended to explore the
current understanding on the exosome’s role in physiological
aging comparing to pathological aging in the most relevant
elderly neurological disorders, such as AD, FTD and PD
emphasizing the emerging discoveries on proteins and ncRNAs
inside exosomes.

EXTRACELLULAR VESICLES (EVs)

EVs are membrane surrounded structures released outside the
cells. To date, these vesicles have been cataloged-based on
their dimension and origin. Among those exosomes, originating
from the endosomal compartment, are the most investigated.
They have small dimensions (30–100 nm) and round shape
(Mashouri et al., 2019). The biochemical content of exosomes
consists of lipid, proteins but also microRNA and mRNAs.
Several studies reported that mRNAs delivered by exosomes to
target cells were translated in functional proteins (Pegtel et al.,
2010); in the same way miRNAs regulated gene expression in
recipient cells (Figure 1; Hu et al., 2019). Moreover, it has
been reported the presence of genomic and mitochondrial DNA
(Hough et al., 2018). Exosome contents not only reflect the
donor cell composition but also reflect a sophisticated sorting
mechanism. Analysis of exosome proteome revealed that some
proteins specifically arise from cell and tissue of origin, and
some are characterisitic for all exosomes (Figure 2A; Mashouri
et al., 2019). The lipid content of exosomes is cell-specific or
conserved. Indeed lipids protect exosome shape, take part in
exosome biogenesis, and regulate homeostasis in the recipient
cells (Vidal et al., 1989). Noteworthy, exosomes are present
in several body fluids such as blood, urine, breast milk, saliva
and also CSF (Urbanelli et al., 2016). Given that, they appear
potentially useful biomarkers for the diagnosis of several diseases,
including neurodegenerative diseases.

Exosomes in Aging and Cellular
Senescence
The increasing number of aged individuals in the global
population will likely lead to an increase of costs accounting on
health care system. Thus, it is of crucial importance improving
the comprehension of the mechanisms underneath ageing
processes and developing new therapeutic strategies in order to
reduce the effects of age-related morbidities. The goal standard
will promote an improvement in health lifespan and a reduction
of age-related co-morbidities conditions.

Aging is defined as a loss of physiological function during
the time and is regulated by specific molecular pathways (Xu
and Sun, 2015). Aging process leads to an increased risk of
several chronic diseases such as cancer, cardiovascular disease,
and autoimmune disease, but also dementia. It is associated
with the body’s altered capacity to face up stress caused by
metabolism, infection, and damage to cellular macromolecules.
The comprehension of molecular mechanisms driving aging will
help the scientific community to figure out why aged individuals
are more vulnerable to those diseases and why they may be less
stress-resistant (Panagiotou et al., 2018).

Aging is considered conserved across taxia and it is
characterized by nine hallmarks comprising: genomic instability,
telomere shortening, epigenetic alterations, loss of proteostasis,
deregulated nutrient sensing, mitochondrial dysfunction,
senescence, stem cell exhaustion and alteration in intercellular
communication (Shiels et al., 2017). Moreover, the so-called
‘‘inflammaging,’’ a chronic inflammatory status, represents the
main feature of aging process (Salvioli et al., 2013).
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FIGURE 1 | Interaction mechanisms between exosome and recipient cell. Exosomes secreted from a donor cell can move through biological fluids to reach the
recipient cell close or distant to the site of their origin. The interaction mechanisms with recipient cell are various: (1) membrane fusion with transfer of exosomal
cargo to recipient cell; (2) internalization of whole exosome by endocytosis and release of the cargo by fusion with endosomal membrane; (3) activation of signaling
pathways through ligand/receptor interaction. For more details, see review by Jan et al. (2017, 2019).

While aging involves the entire organism, not all cell types
age at the same rate and it is conceivable that senescent
cells may contribute to spread senescence to young cells
(Olivieri et al., 2015).

Senescence is a particular phenotype of eukaryotic cells
leading to a loss of replication ability in response to several
stimuli that induce DNA damage (Campisi and d’Adda Di
Fagagna, 2007).

The major component in the signal transmission from
senescent cells to the surrounding tissue is the SASP that
can facilitate the removal of senescent and remodeling of
tissue by attraction of phagocytic immune cells (Urbanelli
et al., 2016). Beside previously known SASP components, many
Wnt ligands have been counted. Wnt is a secreted signaling
molecule extremely conserved playing critical roles in many
processes including stem cell proliferation and maintenance of
homeostasis in the canonical pathway (β-catenin dependent)
and transcriptional and non-transcriptional cellular responses
in the non-canonical ones (β-catenin independent) triggered
by calcium or other Wnt ligands, as Frizzled receptors (Nusse,
2005). It should be noted that these two different pathways
interact with each other and other multiple pathways, including
the NF-κB, MAPK, and JNK pathways making Wnt signaling
extremely complex and articulated (Zhang et al., 2014; Ma and
Hottiger, 2016). It is not surprising that Wnt is involved in
aging too (Nusse, 2005). Indeed some sources suggest that Wnt
signaling decays with aging in brain impairing adult neurogenesis
(Okamoto et al., 2011) and lung (Hofmann et al., 2014 but at

the same time it may increase in an age-dependent manner
(Brack et al., 2007; Liu et al., 2014). Furthermore, the key
members of Wnt pathways involved in SASP are secreted in
the extracellular space by exosomes. These vesicles carrying
Wnt proteins on their surface have been reported to active
Wnt signaling in target cells. These findings highlighted a new
role of exosomes in mediating the cell-to-cell transmission
of senescence signals, suggesting that exosomes represent a
new SASP component (Urbanelli et al., 2016). For the first
time in 2008, Lehmann et al. (2008) described an increase of
exosomes secretion by senescent cells. This increase seems to be
a general feature of cellular senescence and has been observed
in fibroblasts, epithelial cells, and cancer cells (Takasugi, 2018).
On the contrary, Eitan et al. (2017) in cross-longitudinal
study showed that plasma exosomes concentration decreased
with human age, at least from the early 30s to late 60s.
Monocytes and B cells internalized more exosomes rather
than T cells, even if these ones are the most representative
kind of PBMC in bloodstream. In addition, exosomes were
more incorporated in B cells and monocytes of aged donors
suggesting that exosomes internalization not only is cell-specific
but age-dependent. Moreover, aging can alter RNA and protein
composition of exosomes. For example Galectin-3, which plays
a role in osteoblast maturation, was reduced in the plasma
exosomes of elderly people, presumably as consequence of
the stem cell functionality loss in the skeleton, classical of
aging process (Weilner et al., 2016). Plasma exosomes isolated
from young but not elderly donors promoted the osteogenic
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FIGURE 2 | (A) Exosome structure and cargo. Exosomes are surrounded by a phospholipid bilayer and their content reflects the cell of origin. So besides to
generic molecules that identify all exosomes as Tetraspanins, Lipid rafts, MVB formation proteins, membrane transport and fusion proteins, there are other molecules
specific to their origin, as L1CAM for neural exosomes as well as proteins related to aging and neurological diseases such as β-amyloid, p-Tau, LRKK2, insulin
receptor substrate 1 (IRS-1), a-synuclein, amyloid precursor protein (APP), TDP-43, depeptide protein repeats (DPRs) and many others. In addition, there is also a
nucleic component consisting of DNA, mRNA and different kinds of non-coding RNAs (ncRNAs; miRNAs, lncRNAs, circRNAs, piwi-RNA, etc. . .). (B) Exosomes: a
double-edged sword in neurodegenerative disease. Exosomes could favorite and/or trigger the spreading of the disease leading to neurodegeneration or they could
sequester neuro-toxic components from neural cells protecting them.

differentiation of mesenchymal stem cells in a galectin-3-
dependent manner (Weilner et al., 2016). In particular, this
protein, belonging to the lectin family, consists of carbohydrate
recognition and collagen α-like domains. This chimeric structure
allows Galectin-3 to interact with a multitude of intra-and
extracellular proteins, in the nucleus as well as in the cytoplasm
or on the membrane and in the extracellular space, after its
secretion from different types of cells and tissues. Interacting with
a myriad of proteins, Galectin-3 is involved in multiple biological
processes, physiological and pathological, such as development,
neuronal functions, immune reactions, endocytosis, neoplastic
transformation and metastasis, and osteoblastogenesis, which
impairing seems to contribute to age-related bone frailty
(Dumic et al., 2006).

Exosomal miRNAs are also involved in brain aging (Pusic
and Kraig, 2014). Peripheral exosomes isolated from young
Wistar rats promoted differentiation in primary oligodendrocyte
precursor cell (OPC) differentiation and remyelination in
slice cultures. Moreover, nasal administration of EVs from
young rats increased myelination in aged rat brain due to
the presence of high levels of miR-219, which reduced the
expression of inhibitory regulators of OPC differentiation
(Pusic and Kraig, 2014). Recently, it has been described that the
activity of acetylcholinesterase protein (AChE) was increased in
young as well as old Wistar rats. An age-related increase was
observed in CD63 levels in CSF exosomes but a decrease was

observed in plasma vesicles of the older group. The authors
showed that the young adult rats had significantly higher
circulating IL-1β levels in the exosomes compared to the
aged ones, without any effect on central content. These data
suggest that the normal aging process caused different changes
in the profiles of central and circulating exosomes. Altered
IL-1β levels in circulating EVs could be linked, at least partly,
to age-related inflammatory conditions, and a disruption of
the CSF exosomes in aged rats, evaluated by CD63 levels,
could be related to susceptibility to neurodegenerative
disorders (Gomes de Andrade et al., 2018).

Cellular senescence triggered by specific conditions as
irradiation, DNA-damaging reagents, and oncogenic RAS
expression, all enhance exosomes secretion. This increase is
mediated by p53 (Lehmann et al., 2008) and one of its
targets, Tumor suppression-activated pathway 6 (TSAP6), but
the mechanism whereby TSAP6 regulates exosomes secretion is
not well understood. Nevertheless, it has been demonstrated that
exosomes creating pro-inflammatory environment accelerate
the aging process (Biran et al., 2017). Interestingly, exosomes
contain various lengths of genomic DNA fragments and seem
to be one of the major routes of DNA secretion (Fernando
et al., 2017) and DNA secretion from exosomes increases
upon cellular senescence (Takasugi, 2018). Intriguingly, cH2AX
positive cytoplasmic chromatin fragments appear in senescent
cultured cells (IMR90 and HEMa-LP); suggesting that damaged
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DNA may be the major source of exosomes associated DNA
in senescent cells (Ivanov et al., 2013). Exosomes are involved
also in promoting genomic instability, another aging hallmark,
thought the transfer of retrotransposons that are DNA elements
able to create and insert multiple copies of themselves into
host genomes. It is interesting to note that retrotransposons
expression has been found to increase in senescent mouse cells
(strain C57BL/6; De Cecco et al., 2013).

The deposition of toxic proteins is another event correlated
with aging. To date, it is demonstrated that exosomes are
involved in the transport of pathogenic proteins in the
brain and in the progression of neurodegenerative diseases
(Bellingham et al., 2012). Recently, the NDE levels of six
neuronal proteins have been quantified in cognitively intact
older subjects. Except for Phosphorylated tau-S396, the exosomal
levels of Phosphorylated tau P-181, Beta Amyloid 42 (Aβ1–42),
chatepsin D, repressor element 1-silencing transcription factor
(REST) and neurogranin are significantly modified with aging
(Goetzl et al., 2016).

The Role of Exosome miRNAs in Aging and
Cellular Senescence
MicroRNAs are short non-coding RNAs that regulate negatively
gene expression at post-transcriptional level. It has been
reported that several miRNAs are involved in aging and cellular
senescence (Urbanelli et al., 2016). The importance of exosomal
miRNAs analysis lies in the fact that these molecules could
potentially transmit signals to surrounding tissues with a good
impact, but also with a detrimental role. Moreover, exosomal
miRNAs are interesting in the context of aging biomarker search
(Sprott, 2010). MiRNAs released from senescence cells in the
extracellular environment by exosomes have been reported that
are able to spread senescence in surrounding cells.

For example, miR-433 promoted the induction of senescence
in ovarian cancer cells (A2780) and when overexpressed,
miR-433 was released in association with exosomes (Weiner-
Gorzel et al., 2015). MiR-34a and miR-29 can induce cell cycle
arrest in colon carcinoma cell line (HCT116 cells) contributing to
the stabilization of p53/p21 by targeting proteins relevant for its
regulation such as Sirtuin 1 (SIRT1; Yamakuchi and Lowenstein,
2009). The miR17–92 cluster is down regulated in several cell
aging models as endothelial cells, replicated CD8+ T cells, renal
proximal tubular epithelial cells, and skin fibroblasts and they
can target p53/p21 (Weilner et al., 2013). Another miRNA
involved in cellular senescence is miR-146, whose expression
was increased in senescent human fibroblasts (HCA2) when
compared with proliferating quiescent ones. It is important
to underlie that miRNA-146 targets IL-6 and IL-8, SASP
components with pro-inflammatory function, suggesting a role
for miR-146 as senescence-associated inflammation modulator
(Bhaumik et al., 2009). On the other hand, miRNAs encapsulated
in exosomes are able to suppress cellular senescence; this is
the case of miR-214, involved in angiogenesis, that plays a
role in vesicle-mediated signaling between endothelial cells.
Exosomes derived from human microvascular endothelial
cell line (HMEC-1) stimulated migration and angiogenesis
in recipient cells, whereas exosomes from miR-214-depleted

endothelial cells failed to stimulate these processes preventing
senescence and allowing blood vessel formation (van Balkom
et al., 2013). A recent microarray study performed on salivary
exosomes miRNAs from young and old healthy subjects
has identified mir-24-3p as a possible peripheral aging biomarker
(Machida et al., 2015). Exosomes isolated from the bone marrow
of young and aged C57BL/6 mice showed a similar concentration
and size distribution. However, bioanalyzer data indicated that
exosomes from young and agedmice were differently enriched in
miRNAs. The amount of miR-183-5p was increased in aged bone
marrow exosomes, and its overexpression detected also in bone
marrow stromal cells, mimicked the effects of aged bone marrow
exosomes (Davis et al., 2017).

EXOSOMES IN ELDERLY NEUROLOGICAL
DISORDERS: NEUROPROTECTIVE OR
NEURODEGENERATIVE ROLE?

Although there are, still few evidence on the role of exosome in
the healthy aged brain, as we discussed before, it is known that
exosomes have a role in the pathogenesis and in the progression
of many neurodegenerative diseases (Soria et al., 2017). However,
it is not established if they play a positive or negative role because
the literature is controversial defining them like a double-edged
sword in the neurodegenerative disease (Lee and Kim, 2017).
The discovery that exosomes carry functional biomolecules as
key pathogenic proteins (e.g., Aβ-amyloid, tau and α-synuclein)
and miRNAs (Figure 2A) led to consider their involvement in
neurological disorders (Thompson et al., 2016). Dysregulation
of intercommunication between neurons or between neurons
and glial cells mediated by exosomes could trigger the disease
(Lee and Kim, 2017). On the contrary, exosomes could sequester
neuro-toxic components from neural cells and flow neuro-
protective ones (Figure 2B). This means that they can favorite
the spreading of the disease or they can inhibit it (Lee and Kim,
2017). This section is intended to give an overview of the double
roles of exosome proteins and microRNAs proposed for AD,
FTD and PD.

Exosomes in Alzheimer’s Disease (AD)
AD is considered the most frequent cause of dementia. It is
characterized, clinically, by cognitive and behavioral disorders
and, pathologically, by the extracellular deposit of insoluble
Aβ-amyloid and intracellular neurofibrillary tangles (NFTs),
consisting of tau fibrils. The amyloid plaques derived from
impaired processing of the APP leading to the formation of
the toxic Aβ-amyloid. APP is translocated into the endoplasmic
reticulum (ER) and matures through Golgi apparatus. The
mature form of APP is transported to the cell membrane
where it undergoes to further proteolytic cleavage from
β- and γ-secretases acting together to produce fibrils of the
toxic Aβ-amyloid that accumulates with age in human AD
brains (Busciglio et al., 1993; Takahashi et al., 2002). The
dosage of Aβ-amyloid, total tau and phosphorylated tau in
the CSF is recognized as the ‘‘core’’ of AD biomarkers in
the clinical practice (Molinuevo et al., 2018). Interestingly,
the first link between exosomes and AD proposed that Aβ-
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amyloid was released in association with exosomes. Moreover,
the presence of other specific exosomal proteins as Alix and
Flotillin-1 were also found accumulating into the AD brain
(Rajendran et al., 2006; Sharples et al., 2008). A prion-like
mechanism to explain how aggregates of Aβ-amyloid seem to
self-propagate and spread to cells out of CNS is confirmed in
AD mouse models. Seeding of Aβ was observed when extracts
of AD human brain were injected in healthy mice that express
the human wild-type APP gene causing the formation of the
plaques in the site of injection and adjacent brain region
(Morales et al., 2011). In addition, tauopathy was inducted
in ALZ17 transgenic mice injecting aggregated of tau protein
(Clavaguera et al., 2009). In the light of these findings, the
hypothesis that exosomes could use a prion-like mechanism to
disseminate toxic proteins associated with AD is taking hold
(Coleman and Hill, 2015; Thompson et al., 2016). Exosomes
could be involved in the trafficking of amyloid aggregates because
Tg2576 mouse brain mice and post-mortem human AD brains
were enriched in exosome markers within amyloid plaques
(Kokubo et al., 2004; Rajendran et al., 2006). Phosphorylated
tau was also detected in the exosomes from CSF of early-onset
AD patients (Saman et al., 2012). ADAM10, Beta-secretase 1
(BACE1), nicastrin, and presenilin 1 and 2 (PSEN1 and 2)
are other examples of AD pathogenic proteins found inside
exosomes of transgenic mouse brain (Tg2576) and cell culture
APP models, as CHO cell line (Sharples et al., 2008; Perez-
Gonzalez et al., 2012). More recently, researchers have found
that exosomes could stimulate aggregation of Aβ-amyloid and
tau in vivo models, 5XFAD and rTg4510 transgenic mice
(Dinkins et al., 2014; Polanco et al., 2016). In other words,
exosomes, removing the excess of intracellular Aβ, shuttled
it outside the cells concurring to plaque formation (Joshi
et al., 2015). On the other hand, a neuroprotective role is
also proposed. Neural exosomes could uptake Aβ-amyloid
reducing the Aβ load in the brain as seen in the brains of
mouse models (C57BL/6, KM670/671NL and V717F) where
after the injection of exosomes, a decrease of Aβ and amyloid
deposition was observed (Yuyama et al., 2015). Furthermore,
extracellular tau could arise by secretion through exosomes
in SH-SY5Y and COS-7 cell lines (Simón et al., 2012). Even
if there is a body of literature arguing the role of exosomes
in aggregate transmission, the fact remains that this theory
assumes the presence of pathogenic proteins within exosomes
about which the functional evidences are few or controversial
(Lim and Lee, 2017). Nevertheless, the exosome hypothesis is
appealing and partly explains the intercellular transmission of
proteinopathies. Worth mentioning also, a research field that
proposes exosomes as source of biomarkers for CNS disorders
(Figure 3) due to their interesting characteristics suitable to
the clinic (e.g., presence in many biological fluids, crossing the
BBB, protection of the biomolecules inside them, etc.). Goetzl
et al. (2015, 2018) measured the levels of different pathogenic
proteins, Aβ-amyloid, total tau and p-tau isoforms inside NDEs
immunoprecipitated with L1CAM to isolate specifically neuronal
exosomes from blood of AD, Mild Cognitive Impairment (MCI)
and controls (Kapogiannis et al., 2015). They found higher levels
of these proteins vs. controls able to predict the development

of AD 10 years before clinical onset (Fiandaca et al., 2015)
or the progression from MCI to dementia (Winston et al.,
2016). Instead, a contrary study showed no difference in NDEs
total tau levels for AD patients (Shi et al., 2017). It is known
that type-2 diabetes is an AD risk factor thus AD brains have
markers of insulin resistance as Insulin Receptor Substrate-1
(IRS-1). Altered forms of IRS-1 were detected in NDEs of AD
plasma patients and at lower levels compared to controls and
to patients with type 2 diabetes with intermediate levels. This is
interesting because NDEs IRS-1 protein levels could contribute
to discriminate MCI/AD to controls and patients with type-2
diabetes at the same time (Kapogiannis et al., 2015). Pathological
proteins were also found in exosomes extracted from CSF. In
the work of Saman et al. (2012), the tau phosphorylated at
threonine 181 (pT181) was more concentrated in CSF exosomes
than in the total CSF and in early stage of AD, while it was
absent in other dementing conditions as vascular or Lewy
body diseases. This exosomal tau detected so early in AD
suggests that CSF tau could be secreted, not shed from dead
neurons (Saman et al., 2012).

The Role of Exosome miRNAs in AD
Not only proteins but also ncRNAs, mostly miRNAs, are
detected within exosomes and are different from those of donor
cell. These so named ‘‘exosomal RNAs’’ are shuttled between
donor and recipient cells becoming ‘‘exosomal shuttle RNA’’
(esRNA). They are protected from the degradation and are
functionally active suggesting the esRNAs as a novel mechanism
of intercellular genetic transfer and communication (Valadi et al.,
2007). Exosomal miRNAs have been isolated from exosomes
derived from different kinds of cells (from C57BL6 primary
cultures) including neurons and primary astrocytes (prepared
using cortices obtained from neonatal rat) and fluids as blood
and CSF (Caby et al., 2005; Guescini et al., 2010; Goldie et al.,
2014; Liu et al., 2014; Cheng et al., 2015; Lugli et al., 2015). The
relevance of miRNAs in the CNS is now widely documented
with almost 70% of all miRNAs expressed in the human brain
(Nowak and Michlewski, 2013) hypothesizing that neuronal
miRNAs may regulate the transcription of more than a third of
genes (Kosik, 2006). Therefore, it is not surprising that altered
blood/CSF exosomal miRNAs signature could be related to
neurodegenerative disease, in particular to AD (Cheng et al.,
2015; Gui et al., 2015; Lugli et al., 2015). Cheng et al. (2015)
profiled miRNAs from serum exosomes to determine a set of
miRNAs differentially expressed in AD. They found a specific
miRNAs signature consisting of 16 miRNAs, along with risk
factors, and many of them were identified as implicated in
AD pathogenesis in several mouse and cell models. In detail,
mir-1306-5p, that targets ADAM10, was the microRNA with
the best sensitivity and specificity to predict AD. Lugli et al.
(2015) found another interesting microRNA signature in plasma
exosomes using Illumina deep sequencing technology. The
researchers identified 20 microRNAs downregulated among
which the lowest expressed miRNA in AD group compared
to controls was the miR-342-3p. This is a brain-enriched
miRNAs and its expression was highly correlated across
individuals. Interestingly, the failure of proteasomal machine in
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FIGURE 3 | Exosomes are able to pass through blood brain barrier (BBB) in both directions. This means that specific exosomes (i.e., the neural ones with L1CAM
on their surface) detected in the cerebrospinal fluid (CSF) can be released into bloodstream and vice versa. This feature makes exosomes appealing in the research
of new sources of biomarkers suitable for use in clinical practice, as liquid biopsy that could replace current invasive diagnostic methods.

tauopathies was supposed to bemodulated bymiRNA expression
(Carrettiero et al., 2009). Indeed, hyperphosphorylation of tau
was linked to up-regulation of ERK kinases after downregulation
in AD brains of mir-15a, specifically dysregulated in
AD (Hébert et al., 2010).

AD-related exosomal microRNAs were also investigated in
the CSF. The overexpression of mir-193b in the hippocampus
of AD C57BL/6J double transgenic mice could inhibit the
expression of APP involving it in neurodegenerative process
like an unique biomarker of AD (Liu et al., 2014). Gui et al.
(2015) performed another study on exosomes from CSF. They
isolated exosomes in CSF from AD patients and healthy controls,
and used microarray analysis in order to identify microRNAs
differentially abundant between AD, and normal group. AD
exosomes showed fewer differences with healthy controls, with
only six miRNAs showing significantly altered levels. In the
same study, it was interesting to notice that also several mRNAs
were differentially expressed in CSF exosomes in AD subjects.
The levels of APP mRNA, SNCA (α-synuclein) mRNA, DJ-
1/PARK7 (Deglicase) mRNA, and CX3CL1 (Fractalkine) mRNA
were lower in AD exosomes, while the levels of neurofilamentL
(NEFL) mRNA were higher. Interestingly, MAPT (Tau) mRNA
was unchanged while the lncRNAs RP11- 462G22.1 and
PCA3 were enriched in CSF exosomes from AD (Figure 4; Gui
et al., 2015).

The potential therapeutic utility of exosomes is nowadays
increasing. For example, siRNAs inside exosomes could use to
target specific genes. Alvarez-Erviti et al. (2011) demonstrated
that exosomes with exogenous siRNA anti-BACE1 were able

to reduce the levels of BACE1 mRNA and protein in
C57BL/6 mouse model brains. As well as the number of
researches proposing one or more exosomal miRNAs as a
potential biomarker to prognostic and/or diagnostic AD is
growing. Recently, Yang et al. (2018) reported that serum
exosome miR-135a and miR-384 were up-regulated while
miR-193b was down-regulated in the serum of AD patients
compared with normal controls, whereas exosomal miR-384
was the best among the three miRNAs to discriminate AD,
Vascular Dementia (VaD), and PD with dementia (PDD).
Receiver Operating Characteristic (ROC) curve to estimate the
diagnostic utility of a biomarker or a set of them showed
that the combination of miR-135a, -193b, and -384 was better
than the single one to diagnose early-onset AD (Yang et al.,
2018). Another study analyzed a limited subset of miRNAs
involved in neuroinflammation, miR-137, miR-155 and miR-223
(Figure 4). They found that the median level of serum
exosomal miR-223 was significantly reduced in patients with
AD and was significantly correlated with Mini-Mental State
Examination (MMSE) scores, Clinical Dementia Rating (CDR)
scores, magnetic resonance spectroscopy (MRS) spectral ratios
and serum concentrations of IL-1b, IL-6, TNF-a, and CRP.
Authors concluded that exosomal miR-223 could be a promising
biomarker for AD diagnosis although the sample size was limited
and miRNAs screened are only three (Wei et al., 2018). Although
both works are certainly interesting, they should be considered
with attention because they lack the correlation with CSF values
of β-amyloid, tau and P-tau. Anyway, they are pioneering for
future studies.
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FIGURE 4 | Comprehensive expression profile patterns of ncRNAs differentially expressed in patients with Alzheimer’s disease (AD), frontotemporal dementia (FTD)
and Parkinson’s disease (PD) extracted from serum or CSF exosomes.

It should be mentioned that exosomes have inside them
other categories of ncRNA species as long noncoding
RNAs (lncRNAs), circular RNAs (circRNAs), small nucleolar
RNA (snoRNAs), small nuclear RNAs (snRNAs), transfer RNA
(tRNAs), ribosomal RNAs (rRNAs), and piwi-interacting RNAs
(piRNAs) identified comprehensively using high-throughput
RNA-Seq (Kim et al., 2017). Although the role for some of them
is emerging as critical for gene expression, their involvment in
AD related to exosomes is still in the infancy.

Exosomes in Frontotemporal Dementia
(FTD)
FTD is the most common form of dementia in the presenium
accounting for up to 20% of patients with an onset before
65 years. Three clinically different syndromes characterize
FTD: behavioral variant (bv) FTD, Progressive Non Fluent
Aphasia (PNFA), and Semantic Dementia (SD). These different
subtypes are related to different clinical features but mostly
patients present a profound alteration in the behavior and
personality, often associated with cognitive and executive
impairment, except for PNFA and SD where the language
impairment is prevalent (Snowden et al., 2007). All of
these syndromes at pathological level are characterized by
Frontotemporal lobar degeneration (FTLD). Histopathologically
FTLD is defined on the type of protein depositing
into FTLD-Tau, FTLD-TAR DNA Binding protein (TDP)-43,
and FTLD-Fused in Sarcoma (FUS; Fenoglio et al., 2018).

Up to 40% of patients have a history of familial transmission
with nearly 10% of patients showing an autosomal dominant
inheritance pattern. The majority of familial FTLD account
mutations in themicrotubule associated protein tau (MAPT) and
progranulin (GRN) genes, and the pathologic expansion of the

hexanucleotide GGGGCC repeat in the first intron of C9ORF72
gene (Rademakers and Hutton, 2007).

As discussed above for AD, also for FTD, the involving
of exosomes in the pathology has been investigated although
the current knowledge is still limited. FTD is characterized
by TDP-43 aggregates accumulation throughout the nervous
system. As for AD pathogenic proteins, also TDP-43 protein can
be exchanged via exosomes between neuronal cells (Neuro2a
cells and primary neurons) leading to propagation of TDP-43
proteinopathy in a ‘‘prion-like’’ manner (Iguchi et al., 2016).
Indeed the uptake of exosomal TDP-43 oligomers from recipient
cells induces higher toxicity than free TDP-43 in murine
primary cortical neuron cell culture (C57Bl76J; Feiler et al.,
2015). Furthermore, exosomes derived from ALS-FTD-CSF
cell model showed a high concentration of full length and
TDP-43 C-terminal fragments (CTFs). The latter lead to the
formation of cytoplasmic inclusions within cells, so authors
suggest that aberrant cleavage of TDP-43 in these exosomes
acting as ‘‘seed’’ induces the formation of TDP-43 aggregates in
the ALS-FTD-CSF-cultured cells (Ding et al., 2015). Not only
TDP-43, but also dipeptide repeat proteins (DPRs) produced
by aberrant translation of C9ORF72 FTD patients throughout
CNS seem to spread between cells via exosome-dependent
pathways (Westergard et al., 2016).

As was the case for AD patients, levels of Aβ and pT181 were
increased in FTD as well (Fiandaca et al., 2015). Interestingly,
the levels of synaptophysin, synaptopodin, synaptotagmin-2, and
neurogranin dosed in NDEs were decreased in patients with FTD
compared to controls, probably because of reduced functionality
of synaptic proteins in senile dementias. These levels were low
years before dementia making synaptic NDEs proteins useful for
preclinical diagnosis of dementia (Goetzl et al., 2016). Instead,
the Repressor Element 1 Silencing Transcriptor factor (REST)
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was significantly high in FTD over controls and AD representing
a potential marker to discriminate FTD patients from AD
(Goetzl et al., 2015). The IRS-1 phosphorylated in serine 312 was
able to distinguish at 84% of accuracy between FTD patients and
controls (Kapogiannis et al., 2015).

Lastly, Benussi et al. (2016) studied human primary
fibroblasts without GRN null mutations. They conclude that
the glycosylated form of PGRN was released with exosomes
and in the presence of mutation, the secretion of exosomes
was extremely reduced and their composition changed enriching
in Lamp1 protein. Overall, the GRN null mutations cause an
alteration in the intercellular communication.

The Role of Exosome miRNAs in FTD
The current knowledge of exosomal miRNAs in the pathogenesis
of FTLD is exiguous. The work of Schneider et al. (2018)
is the only performed on exosomes from CSF of FTLD
patients. MiRNA expression profiles of 23 presymptomatic
and 15 symptomatic mutation carriers compared to
11 healthy non-mutation carriers were performed on
the Genetic Frontotemporal Dementia Initiative (GENFI)
cohort and sporadic FTD. They found that miR-204-5p and
miR-632 significantly decreased in symptomatic respect to
presymptomatic mutation carriers (Figure 4). In another cohort,
the miR-632 was highly decreased in sporadic FTLD compared
to sporadic AD and healthy controls. The authors, using in
silico analysis, discovered a potential target of miR-204-5p and
miR-632; HRK that encodes for HARAKIRI, a pro-apoptotic
protein. Its aberrant increasing could contribute to the neuronal
death in FTLD patients (Schneider et al., 2018). Although these
findings open a new perspective in the FTLD research, they need
further investigations.

Exosomes in Parkinson’s Disease (PD)
PD is a chronic neurodegenerative disease characterized by
motor impairments due to the selective death of dopaminergic
neurons. Cognitive impairments can arise in the course of
the disease at any time. The most of PD cases are sporadic
but there are rare familial forms linked to mutations in
several genes; SNCA, parkin, DJ-1, PTEN-induced kinase 1
(PINK-1) and Leucine-rich repeat kinase 2 (LRRK2; Thomas
and Beal, 2007). Even if the molecular pathogenesis of PD
is not fully understood, it’s now universally accepted that
α-synuclein plays a predominant role in PD accumulating
in Lewy Bodies, a pathological hallmark of PD (Spillantini
and Goedert, 2018). Indeed α-synuclein aggregates are
responsible for synaptic pathology and neurodegeneration
(Kramer and Schulz-Schaeffer, 2007). In addition, mutations
that involve duplication or triplication of the wild-type SNCA
are associated to autosomal dominant PD with a severity
proportional to the degree of α-synuclein over-expression
whereas missense mutations in SNCA (e.g., A53T) are linked
to dominantly inherited forms of PD (Thomas and Beal, 2007).
Therefore, it is not surprising that the spreading of pathology,
already proposed for AD and demonstrated for PD involved
α-synuclein. Several studies on murine primary cortical neurons
and SH-SY5Y cell lines reported that α-synuclein was secreted

from exosomes (Emmanouilidou et al., 2010; Danzer et al.,
2012). Moreover, exosomes, providing environments for
α-synuclein nucleation, catalyzed its aggregation in N2a cells
and cultured hippocampal neurons (Olanow and Brundin,
2013; Grey et al., 2015). Another study in human H4 cell
line demonstrated that the loss of function of P-type ATPase
ion pump PARK9/ATP13A2 led to a decrease in secretion of
α-synuclein into extracellular space, indeed the overexpression
of PARK9/ATP13A2 caused the opposite effect, suggesting that
PARK9/ATP13A2 was involved in the α-synuclein secretion
at least in part via exosomes (Tsunemi et al., 2014). This
consequence could have a neuroprotective effect. Probably
because the increased release of exosomes containing α-
synuclein reducing the intracellular levels of that protein, it
could explain the surviving of neurons of substantia nigra in
sporadic PD patients that overexpress PARK9/ATP13A2.

Furthermore, the biogenesis of α-synuclein exosomes
seems to be modulated by zinc levels regulated from
PARK9/ATP13A2 in SHSY5Y cells (Kong et al., 2014). Stuendl
et al. (2016) measured the levels of CSF exosomal α-synuclein,
and found differences among patients with PD and Lewy bodies.
In accordance with previous studies in glioblastoma cell lines,
the same group demonstrated that CSF exosomes derived from
patients with PD and dementia with Lewy bodies induced
the oligomerization of soluble α-synuclein in target cells in a
dose-dependent manner (Stuendl et al., 2016). In this regard,
Shi et al. (2014) were able to demonstrate in mouse models
that CSF α-synuclein was promptly transported to blood, with a
small portion within exosomes but CNS specific. An increased
releasing of this protein to the blood of PD patients was explained
discovering that in a large cohort of clinical samples (267 PD and
215 controls); the levels of plasma exosomal α-synuclein were
significantly higher in PD patients. Another protein secreted
from exosomes is LRRK2. Mutations in the LRKK2 gene cause
late-onset PD. LRKK2 secretion was regulated by 14-3-3 protein.
Indeed, using 14-3-3 inhibitor, the LRRK2 secretion from
exosomes was interrupted in mouse primary neurons and
macrophages (Fraser et al., 2013).

The Role of Exosome miRNAs in PD
Concerning the involvement of exosomal miRNAs in PD, the
literature is still scarce. Cao et al. (2017) profiled the expression of
24 candidate miRNAs, already dysregulated in previous studies,
in the serum of 109 PD patients matched with healthy controls
finding the downregulation of miR-19b and the upregulation
of miR-195 and miR-24 compared to healthy controls. Instead,
Gui et al. (2015) investigated the expression of 746 miRNAs
in CSF of PD patients finding 16 miRNAs upregulated and
11 downregulated. In detail, miR-1 and miR-19b-3p were
significantly reduced; miR-153, miR-409-3p, miR-10a-5p, and
let-7g-3p were significantly overexpressed in PD CSF exosomes
(Figure 4). With bioinformatics tools the predicted targets
of these miRNAs were involved in critical pathways for PD;
neurotrophin signaling, mTOR signaling, ubiquitin-mediated
proteolysis, dopaminergic synapse, and glutamatergic synapse.
To complete the study, authors analyzed exosomal miRNAs in
AD too, as we mentioned before in this review article. They
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conclude that exosomal RNAs could be useful to distinguish
accurately between PD and AD (Gui et al., 2015).

With respect to the research of new biomarkers for early
diagnosis of PD, Dos Santos et al. (2018) combining an
optimized technique of exosomal miRNA isolation with small
RNA sequencing, they detected 1,683 exosomal miRNAs in
the CSF on 40 early-stage PD patients and 40 well-matched
controls. Then, using machine learning approach to find
the best miRNA biomarkers for the accurate diagnosis of
early-stage PD, they restricted analysis on a panel model of
5 microRNAs, let-7f-5p, miR-27a-3p, miR-125a-5p, miR-151a-
3p, and miR-423-5p. Intriguingly, when combining miRNA
profiles to protein analysis of the most studied PD related
proteins as biomarkers, as DJ-1, UCHL1 and α-synuclein, the
robustness of the generated model increased. This work was
worth to be mentioned because it is the first study integrating the
state-of-the-art microRNA sequencing with protein analysis and
complex machine learning approach and obtained potential PD
biomarkers in CSF exosomes able to discriminate early PD from
healthy controls (Dos Santos et al., 2018). Unfortunately, studies
are still scarce and need further investigations and validations
although they are promising in the field of biomarker research.

CONCLUDING REMARKS

It is undeniable that last two decades have been characterized
by an exponential increase in the number of publications
regarding exosomes and their role in the pathogenesis of
diseases as well as in the field of clinical biomarker research.
Indeed due to their intrinsic ability to transfer biomolecules
to other cells and to cross the BBB in both directions, they

are becoming an attractive source of potential new biomarkers
and/or reservoir of validated ones. The times when exosomes
were considered full of junk are long gone. Indeed, new roles
and functions for exosomes emerged to the point where these
small EVs have been proposed with a double-edged sword
role, ‘‘Trojan horses’’ of neurodegeneration or neuroprotective
from neurodegeneration. This means that their involvement
in neurodegenerative diseases is not totally understood. Some
questions remain opened and the most interesting seem to
be: (1) are exosomes carrier of disease propagating pathogenic
molecules also in vivo; (2) can targeting the release of exosomes,
or the release of their cargo have an inhibitor effect on the
progression of diseases; and (3) can specific protein, or ncRNA
signatures isolated from patients be used as biomarker of
disease. Further investigations will clarify these aspects as well as
the basic research on exosomes improving the comprehension
on the role of exosomes in the etiology and progression of
these pathologies.
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