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Recent evidence shows that neuroinflammation plays a role in many neurological

diseases including mild cognitive impairment (MCI) and Alzheimer’s disease (AD), and

that free water (FW) modeling from clinically acquired diffusion MRI (DTI-like acquisitions)

can be sensitive to this phenomenon. This FW indexmeasures the fraction of the diffusion

signal explained by isotropically unconstrained water, as estimated from a bi-tensor

model. In this study, we developed a simple but powerful whole-brain FW measure

designed for easy translation to clinical settings and potential use as a priori outcome

measure in clinical trials. These simple FW measures use a “safe” white matter (WM)

mask without gray matter (GM)/CSF partial volume contamination (WMsafe) near ventricles

and sulci. We investigated if FW inside the WMsafe mask, including and excluding areas

of white matter damage such as white matter hyperintensities (WMHs) as shown on

T2 FLAIR, computed across the whole white matter could be indicative of diagnostic

grouping along the AD continuum. After careful quality control, 81 cognitively normal

controls (NC), 103 subjects with MCI and 42 with AD were selected from the ADNIGO

and ADNI2 databases. We show that MCI and AD have significantly higher FWmeasures

even after removing all partial volume contamination. We also show, for the first time,

that when WMHs are removed from the masks, the significant results are maintained,

which demonstrates that the FW measures are not just a byproduct of WMHs. Our

new and simple FW measures can be used to increase our understanding of the role

of inflammation-associated edema in AD and may aid in the differentiation of healthy

subjects from MCI and AD patients.

Keywords: Alzheimer disease, diffusion MRI, free water, neuroinflammation, white matter hyper intensity, mild

cognitive impairment, white matter, diffusion tensor imaging

1. INTRODUCTION

White matter (WM) atrophy in Alzheimer’s disease (AD) was observed more than
three decades ago (Brun and Englund, 1986a). The microstructural changes observed in
the WM of AD patients include axonal deterioration, Wallerian degeneration, loss of
myelin density, loss of oligodendrocytes, microglia activation, and vascular degeneration
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(Brun and Englund, 1986b; de la Monte, 1989; Brilliant et al.,
1995; Englund, 1998; Burns et al., 2005; Sjöbeck et al., 2005).
Numerous studies have shown that changes in the WM are
an early event in the development of AD, happening in
preclinical stages (de la Monte, 1989; Kantarci et al., 2005;
Desai et al., 2009). Changes in the microstructure of WM have
even been reported before measurable hippocampal atrophy in
mild cognitive impairment (MCI) (Zhuang et al., 2013) and
preclinical AD (Hoy et al., 2017). More recent evidence shows
that chronic neuroinflammation also contributes to the process of
neurodegeneration in AD and was recently observed in the WM
of AD patients (Raj et al., 2017).

Microglia-induced neuroinflammation in patients has been
mostly studied using PET imaging ligands such as [11C]-
PK11195 (Zimmer et al., 2014). However, to identify WM
changes, diffusion MRI has been the modality of choice
(Jones, 2010). Studies in the past decade have identified
various regions in the WM where diffusion measures, mostly
diffusion tensor imaging (DTI)-basedmeasures such as fractional
anisotropy and mean, axial, and radial diffusivities, correlate
with symptoms of MCI and AD (Stebbins and Murphy, 2009;
Smith et al., 2010; Nowrangi and Rosenberg, 2015; Galluzzi
et al., 2016; Mito et al., 2018). A more recent diffusion
measure is the free water (FW) index, which measures the
fraction of the diffusion signal explained by isotropically
unrestricted water (Pasternak et al., 2009), as estimated from a
regularized bi-tensor model. In white matter, this measurement
represents either FW in extracellular space around axons or
FW contamination from cerebrospinal fluid in adjacent voxels.
An elevated FW index in white matter has been suggested to
indicate neuroinflammation (Pasternak et al., 2012a) and has
been described in normal aging (Chad et al., 2018) and many
neurological disorders such as schizophrenia (Pasternak et al.,
2012b, 2015, 2016), Parkinson’s disease (Ofori et al., 2015), and
AD (Maier-Hein et al., 2015; Ji et al., 2017; Montal et al., 2018).

Association between higher FW, worse scores on a clinical
dementia rating (CDR) and higher probability to transition to a
more severe CDR stage was recently demonstrated by Maillard
et al. (2018). In AD and MCI patients, an association between
the widespread increased FW and poorer attention, executive
functioning, cognitive performance, visual construction, and
motor performance supports the idea that FW metrics are
associated with clinical symptoms (Ji et al., 2017; Montal
et al., 2018; Reas et al., 2018). In addition, DTI measures that
have undergone correction for FW content have been shown
to be more sensitive in differentiating between AD patients
with and without cerebrovascular involvement compared to
standard DTI measures (Ji et al., 2017). In a longitudinal
study, FW-corrected radial diffusivity, but not un-corrected
radial diffusivity, was higher in the WM of MCI patients who
converted to AD compared to MCI patients who did not
convert (Maier-Hein et al., 2015). FW-corrected DTI measures
also demonstrate greater sensitivity to associations between
AD pathology and white matter microstructure compared to
standard DTI measures (Hoy et al., 2017).

Based on the growing body of evidence showing the
association of FW or FW-corrected metrics with clinical

symptoms of AD and concomitant cerebrovascular disease, we
set out to develop a single powerful FW measurement that is
easily translatable to clinical settings with potential to be used
as a priori outcome measure in clinical trials. Simple volume-
based measurements such as ventricular expansion, cortical/sub-
cortical gray matter atrophy andWMH volume have been shown
to be linked with various AD symptom but none of them gives
information on normal appearing white matter, which may be
affected earlier during transitional stages of normal aging to MCI
and AD.

When measuring FW in aged subjects one needs to take into
account white matter lesions that are visible on certain structural
MR scans as white matter hyperintensities (WMHs). The number
and total volume of WMHs are known to increase with age (de
Leeuw et al., 2001) and they have been associated with vascular
disease (Debette et al., 2010), cognitive impairment (DeCarli
et al., 2001; Yoshita et al., 2006), and even directly with
AD (Kandel et al., 2016). Since FW inside WMHs is very
high compared to the subtle FW changes specific to the AD
continuum, WMHs need to be removed to adequately measure
AD specific FW changes. WMHs and FW are known to be
part of a WM injury continuum (Maillard et al., 2017) and
WM in the WMHs surrounding area (called the penumbrae) is
also know to undergo microstructural changes (Maillard et al.,
2011, 2014). To keep any WMHs related signal out of our
FW measurement, a dilated version of the WMHs covering
the estimated range of the penumbrae (Maillard et al., 2011)
is removed from the final mask. Another pitfall is that due
to the generally lower spatial resolution of diffusion images,
partial volume contamination from sulci and ventricular CSF
can considerably boost FW values leading to incorrect FW
measurements. Some studies (Ji et al., 2017) avoid partial volume
effects by using Tract-Based Spatial Statistics(TBSS; Smith et al.,
2006). This method avoids the partial volume effect by projecting
the data on a WM skeleton but has some shortcomings (Bach
et al., 2014) that we want to avoid such as the loss of a
major part of the WM voxels and atlas registration. In order
to get an unbiased and relevant measure of FW in healthy
WM, we developed a WM “safe” mask (WMsafe) minimizing
GM/CSF partial volume contamination and thus avoiding the
shortcomings of TBSS.

In this study, we developed these simple yet powerful whole-
brain FW measures without tractography or atlas registration.
These measurements can be done on low angular resolution
diffusion images and are designed for clinical settings and
potential use as a priori outcome measure in clinical trials.
This was done by designing a FW processing pipeline that
computes whole-brain FW measures inside a partial volume
free WM mask (with and without WMHs) for three different
groups (cognitively normal, MCI and AD subjects), selected
from the ADNIGO and ADNI2 databases. We show that
our FW measures were significantly higher in MCI and AD
groups compared to NC when using a WM safe mask. We
also show, for the first time, that when WMHs and their
penumbrae are removed from the mask, the significant results
remained, demonstrating that FW measures are not just a
byproduct of WMHs.
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TABLE 1 | Group demographics of the 226 participants.

NC (81) MCI (103) AD (42)

Age 78.46 (6.11) 79.0 (7.62) 79.38 (7.78)

Gender (M/F) 38/43 69/34 25/17

Education years 16.2 8 (2.74) 15.65 (2.68) 15.07 (2.80)

Ethnicity (H/N/U) 11/70/0 5/98/0 4/37/1

Race (A/B/W/M) 2/4/74/1 2/7/94/0 1/0/40/1

Handedness (R/L) 71/10 92/11 41/1

M, Male; F, Female; H, Hispanic; N, Not hispanic; U, Unknown; A, Asian; B, Black or

African American; W, White; M, More than one race; R, Right; L, Left.

2. METHODS

2.1. Study Participants
Two hundred and twenty-six subjects from the ADNIGO and
ADNI2 databases passed the necessary quality assurance (QA)
phases of the diffusion MRI analysis pipeline (described below).
Of those participants, 81 (38 males, 43 females) were cognitively
normal (normal control, NC), 103 (69 males, 34 females) had a
diagnosis of mild cognitive impairment (MCI) and 42 (25 males,
17 females) had a diagnosis of AD. The Pearson’s Chi-squared test
revealed a significant difference (p = 0.023) in gender between
groups. Age range per group was between 67 and 95 years for
NCs, between 60 and 95 years for MCIs and between 61 and
97 for ADs. Mean age was 78.46 for NCs, 79.0 for MCIs, and
79.38 for ADs. All participants had good general health, good
hearing and seeing abilities, no depression or bipolar condition,
no history of alcohol or drug abuse and completed at least six
grades of education. Also, NCs had no memory impairment and
their CDR was 0. MCI subjects included early and late MCI with
impaired memory and a CDR of 0.5, while AD subjects met
criteria for dementia and had a CDR between 0.5 and 1 (Petersen
et al., 2010). Participants did not suffer from any neurological
disorders other than MCI and AD such as brain tumor, multiple
sclerosis, Parkinson’s disease, or traumatic brain injury. The
detailed groups demographics can be seen in Table 1.

2.2. MRI Data Acquisition
Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and
clinical and neuropsychological assessments can be combined to
measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD). For up-to-date information,
see www.adni-info.org.

Data for each participant came from the ADNIGO and
ADNI2 databases1. Of the available MRI images, we used the
T1w, diffusion weighted imaging (DWI) and fluid attenuation
inversion recovery (FLAIR) scans. The DWI scans were acquired

1http://adni.loni.usc.edu/

along 41 evenly distributed directions using a b-value of 1,000
s/mm2 with a 1.3×1.3×2.7 mm3 spatial resolution. The T1w and
FLAIR scans were acquired at 1.2×1.05×1.05 and 0.85×0.85×5
mm3 spatial resolution, respectively. Data was acquired at 58
different North-American locations.

2.3. MRI Processing Pipeline
The processing pipeline is illustrated in Figure 1. At first, the
T1w and DW images were denoised with a non-local means
method robust to Rician noise (Descoteaux et al., 2008), followed
by an MRI bias field correction performed with ANTs N4
correction tool (Avants et al., 2009). The brain mask (BM) was
then processed and the skull was removed using the BEaST
brain extraction software (Eskildsen et al., 2012). We referred
to these methods as the preprocessing step in Figure 1. Then,
the T1w and FLAIR images were non-linearly registered to the
1x1x1 up-sampled (using linear interpolation) diffusion space
with ANTs registration (Avants et al., 2009). Tissue segmentation
was then performed on the transformed T1w scan to obtain a
binary map of the CSF, GM, and WM. This was done using
ANTs Atropos (Avants et al., 2009). In order to prevent any CSF
contamination in regions susceptible to partial volume effect, a
“safe WM mask” (WMsafe) was built by combining the following
morphological operations on the CSF, WM, GM, and brain
binary masks:

WMsafe = ((WM−(GM⊕R1))−(CSF⊕R1))∩(BM⊖R15), (1)

where Rn is a 3D structuring element of radius n, ⊕ is the
dilatation operator, ⊖ is the erosion operator, and ∩ the
intersection operator as illustrated in Figure 1. Using the FLAIR
and T1w images, a binary map of WMHs was also computed
using volBrain (Manjón and Coupé, 2016). The WMH maps
went through visual QA and none of them were rejected or
corrected. Binary dilatation of 2 voxels was applied to the
WMHs to avoid partial volume effect contamination and at
the same time include the WMH penumbrae. The bi-tensor
model proposed by Pasternak et al. (2009) was fit onto the
DW signal. The result of this fit is a fraction representing the
contribution of unconstrained water to the original signal and
a new signal representing the tissue contribution. The fraction
of unconstrained water contribution in a voxel is what we
commonly call FW volume and the 3D image of this FW volume
is called the FW map. The tissue signal is the FW-corrected
DWI signal, as it represents the signal without its unconstrained
component. The safe white matter mask, the WMH mask, and
the FWmapwere then used to extract themean FW value (µFW)
and the relative FW volume (rFW). The rFW is the total volume
of FW voxels within the safe white matter mask with FW values
greater than 0.1, divided by the total volume of the safe white
matter mask. The rFW was created to minimize the impact of
ventricle expansion and whole brain atrophy on the final FW in
WM measurement. The 0.1 threshold was defined empirically
by observing multiple subjects normal appearing white matter
compared to the obvious abnormal values. This enables the rFW
measurement to discard as much as possible of the background
(or noise) FW values.
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FIGURE 1 | Pipeline of the proposed method: (1) the DWI and T1w images are first preprocessed, (2) the three modalities are co-registered of which (3) are extracted

the FW map, the tissue map and the WMHs areas. (4) the combination of the three maps leads to the proposed FW metrics.

rFWm and µFWm are defined as such:

rFWm =
volume(FWm > 0.1)

volume(m)
, (2)

µFWm = FWm, (3)

where m ∈ {WMsafe,WMHs,WMsafe − WMHs}. All processing
was done using a Nextflow (Tommaso et al., 2017) pipeline
with all software dependencies bundled in a Singularity
container (Kurtzer et al., 2017) ensuring quick and easy
reproducibility of the results.

2.4. Statistics
A cross-sectional analysis was performed at the first available
time point comparing rFW and µFW in NC (n = 81), MCI (n
= 103), and AD (n = 42). An analysis of variance (ANOVA)
was performed to test for a main effect of diagnostic group
followed by a post-hoc pairwise Tukey test to assess differences
between sub groups (McDonald, 2006). A log transformation was
applied to the rFW andµFWmetrics to improve normality of the
distribution before analyses.

2.5. Quality Assurance
Out of all available subjects in ADNI2 and ADNIGO, 239 had
at least one time point with all the images required (T1w, DWI,

and FLAIR) to go through the processing pipeline. Visual QA
was performed on all images of all time points and those with
problems impossible to correct (missing brain parts, acquisition
artifacts) were rejected. Gradient information was also QA-ed to
make sure every DWI image had 41 evenly distributed direction
on one single acquisition shell. This first QA pass eliminated 9
subjects bringing the count of subjects with usable data to 230.
Visual inspection was performed on brain extraction of T1w and
DWI as well as on the non-linear registration of the FLAIR on
the T1w and of the T1w on DWI. Every tissue segmentation
mask (WM, GM, CSF) as well as the WMH mask was inspected.
This second QA pass eliminated 4 subjects, 3 with artifacts in the
DWI images causing improbable values in metrics and one with
an obviously incorrect T1 brain mask, leaving 226 subjects with
usable data for the group analysis.

3. RESULTS

As shown in Table 2 results of the initial ANOVA tests show a
significant main effect of group membership across all regions of
interests. Post-hoc Tukey tests show that both rFW and µFW are
significantly higher in the WMsafe mask for MCI and AD subjects
than for NC subjects whether or not WMHs were included as
seen in Figure 2. Both rFW and µFW in full WM (without
partial volume and WMH correction) also differentiate NC from
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TABLE 2 | The F-statistic obtained from the ANOVA test is displayed in the first

column and the rest of the table shows the Tukey post-hoc pairwise group

differences(on log-scale) with the standard error in parentheses.

F(2, 223) NC-MCI (SE) NC-AD (SE) MCI-AD (SE)

rFWWMsafe−WMHs 16.02*** –0.52 (0.18)*** –0.86 (0.23)*** –0.34 (0.20)

µFWWMsafe−WMHs 13.58*** –0.49 (0.17)*** –0.70 (0.19)*** –0.21 (0.20)

rFWWMsafe
16.48*** –0.53 (0.19)*** –0.90 (0.22)*** –0.36 (0.21)

µFWWMsafe
14.15*** –0.50 (0.17)*** –0.74 (0.20)*** –0.23 (0.20)

rFWWM 12.79*** –0.22 (0.08)** –0.38 (0.11)*** –0.16 (0.11)

µFWWM 12.66*** –0.26 (0.09)*** –0.40 (0.12)*** –0.14 (0.12)

rFWWMHs 4.14* –0.13 (0.07)* –0.14 (0.10) –0.01 (0.09)

µFWWMHs 3.80* –0.13 (0.08) –0.18 (0.10)* –0.05 (0.10)

WMHvolume 3.11* –0.19 (0.23) –0.53 (0.27)* –0.33 (0.30)

The statistical significance (in bold) is shown as: *p < 0.05, **p < 0.01, ***p < 0.001.

AD and MCI demonstrating that partial volume contaminated
measurements can still lead to positive results even though
measurements are incorrect. When looking at rFW and µFW
specifically within the WMH mask we see some significant
between-group differences but with lesser effect and neither of
them being able to separate both NC-MCI and NC-AD. Finally,
the volume of WMH is significantly higher for AD subjects than
for NC subjects, highlighting the need for removing WMH from
the WMmask since their volume alone differentiates groups.

A supplementary ANCOVA test including age and gender
as covariates shows that age is highly associated with rFW (p
< 0.001) and gender is marginally associated with rFW (p =
0.012). After accounting for both gender and age, the significant
differences between NC and MCI (p < 0.001) as well as between
NC and AD (p < 0.001) remain.

To assess the viability of measuring FW in allWM (as opposed
to bundles) to differentiate groups we visualize the spatial
distribution of free water differences between groups. Every T1W
image already registered in diffusion space was non-linearly
registered to the MNI152 space with the ANTs registration
tool (Avants et al., 2009). The resulting transformations were
applied to the free water volumes in WMsafe − WMHs. Mean
and standard deviation free water volume for each group was
computed and used to obtain a z-score volume of each subject
compared to each group. These z-score volumes were averaged
and thresholded at z ≥ 2 standard deviations to obtain binary
group comparison volumes. Only clusters of 10 or more voxels
were kept.

In both the NC vs. AD and NC vs. MCI comparisons, voxel
clusters showing differences are mostly found in the corticospinal
tract (CST) and bundles of the limbic system such as the
cingulum and the fornix. Many clusters are also found outside
these key AD bundles, generally covering all WM. Figure 3
shows that intensity and location of significant z-score clusters
is different when comparing AD or MCI to NC.

4. DISCUSSION

A preliminary version of these results was presented at ISMRM
2018 (Dumont et al., 2018) and since then, more studies

demonstrating the association of FW in WM and cognitive
decline (Maillard et al., 2018; Reas et al., 2018) support the idea
that a single whole-brain FW measurement is viable for clinical
settings and potential use as a priori outcome measure in clinical
trials for diagnostic grouping along the AD continuum.

To achieve that reliable and simple measurement, we
identified and overcame three major obstacles (partial volume
contamination, WMHs and brain atrophy) to measuring FW
content in aging subjects’ WM and verified group differentiation
with and without each solution. First, as a baseline, FW in whole
WM (without correction) was significantly higher in ADs and
MCIs than in NCs. Removing partial volume contamination
with WMsafe sharpened group differentiation. Removing WMH
and WMH penumbrae slightly decreased differences in groups
means while keeping significant differentiation. This can be
explained by another result presented demonstrating that WMH
volume alone differentiates AD fromNC subjects, reinforcing the
hypothesis that WMHs and their penumbrae need to be removed
to get a relevant measurement of FW in normal appearing WM.
We also demonstrated that the group-wise differences of FW
content within the WMH lesions was smaller than the group-
wise differences of FW content inWMsafe, suggesting that, unlike
normal appearing white matter, WMH lesions may have similar
underlying pathophysiology across the disease spectrum. Finally,
correcting for brain atrophy in aging patients using relative free
water volume further sharpened group differentiation. We then
visualized the spatial distribution of high FW differences (in
WMsafe − WMHs) between groups using high z-scores clusters.
These results further strengthened the whole WM measurement
idea by showing that while some of the differences are located
in bundles known to be associated with AD, the entirety of high
z-score clusters globally covers all white matter.

Our new and simple FWmeasures can be used to increase our
understanding of the role of inflammation-associated edema in
AD and may aid in the differentiation of healthy subjects from
MCI and AD patients. Due to the simplicity of the method and
the fast image acquisition time required for the images, these
measurements may be particularly useful for clinical settings
and can potentially be use as a priori outcome measures in
clinical trials.

FW metrics could not differentiate between MCI and AD
subjects. This could be the result of the whole white matter
measurement not being sensitive enough to differentiate subtle
FW differences between MCI and AD. Analyzing FW content
along specific WM bundles would be expected to yield more
specific results but would also increase complexity by introducing
tractography to reconstruct the global WM architecture followed
by an automated segmentation of several key WM bundles such
as the fornix, cingulum, corpus callosum, and association tracts
(arcuate fasciculus, uncinate, inferior longitudinal, and inferior
fronto-occipital fasciculus). FW metrics would be analyzed
along those bundles, as done in apparent fiber quantification
(AFQ) (Yeatman et al., 2012) and tract-profiling (Cousineau
et al., 2017). Future work could also include looking at how FW
correlates with amyloid beta and tau data available in ADNI
to further support the hypothesis that FW is a viable proxy
measurement of neuroinflammation.
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FIGURE 2 | Relative free water (%) in WMsafe −WMHs per group.

FIGURE 3 | Spatial repartition in free water differences across groups.

The FW threshold used to compute rFW was defined
empirically by observing this particular set of data. Adjustments
might be needed to do this analysis on a different database.
After the main processing, further tests were done with different
thresholds. Group separation remained fairly stable in the
0.1 neighborhood but drops drastically when increasing the
threshold past 0.2 due to very low occurrences of these FW
values after removingWMHs and partial volume contamination.
On the other hand, when lowering the threshold, group

separation decreases slowly and stabilizes. This suggests that
removing background FW values moderately sharpens group
differentiation. An optimal threshold could automatically be
found with small increments but it would be specifically
tuned for these groups instead of representing the underlying
biological phenomenon.

It is important to note that FW metrics used in the current
study also have limitations, i.e. they are derived from a bi-tensor
model, which is limited to representing a FW compartment and
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a single fiber population. It is estimated that 66 to 90 percent
of brain WM voxels contain at least two fiber populations (Ji
et al., 2017; Montal et al., 2018). In those voxels, the estimated
contribution of the FW compartment is incorrectly estimated,
since some of the signal arising from the fiber populations not
fitted to the single fiber tensor may be assigned to the FW
compartment. To correct this bias, a FW model accounting for
more than one fiber population would need to be used to better
fit the signal. While a more sophisticated model would certainly
better characterize the information contained in the non-free-
water portion of the signal and give more accurate free water
indices, these models require multi-shell DWI acquisitions which
are unavailable in ADN2 and ADNIGO.

In future works, visualization using z-score clustering could
be replaced with a more robust method that takes into account
multiple comparisons and cluster-based thresholding such as
threshold-free cluster enhancement (Smith and Nichols, 2009)
and non-parametric permutation tests (Nichols and Holmes,
2002).

Longitudinal data is available in ADNI2 andADNIGObut was
not analyzed in this study. Future work should make use of this
longitudinal data and look into the potential prognostic value of
FW values at baseline.

5. CONCLUSION

This study demonstrates that after removing partial volume
contamination, removing WMHs and their penumbra and
accounting for brain atrophy in elderly, the free water content of
healthy looking white matter differentiates MCI and AD groups
from healthy subjects. Our method is based on existing DTI-
like diffusion data, is atlas free, requires no registration with a
reference brain, no PET scan, no tractography, has few tunable
parameters, and takes a few minutes only of computation. The
method is a simple but powerful approach that may be used
clinically or in the context of patient selection and stratification
for novel treatments that are aimed at treating or preventing
inflammation components of AD using legacy or standard
diffusionMRI data. The significant differences of our FWmetrics
betweenNC andMCI as well as NC andADmay demonstrate the
potential of FW as a tool to study neuroinflammation. We intend
to extend this work with analyses of FWmetrics in specific white
matter bundles and sections of bundles. Also, characterization
over time of our new FW metrics in an MCI population could
help differentiate those older adults who will remain relatively
stable and those who will progress to AD, which has utility for
patient selection and stratification of subjects in preclinical stages
of AD.
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