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Age-related differences in white matter (WM) microstructure have been linked to lower
performance in tasks of processing speed in healthy older individuals. However, only few
studies have examined this link in a longitudinal setting. These investigations have been
limited to the correlation of simultaneous changes in WM microstructure and processing
speed. Still little is known about the nature of age-related changes in WM microstructure,
i.e., regionally distinct vs. global changes. In the present study, we addressed these
open questions by exploring whether previous changes in WM microstructure were
related to subsequent changes in processing speed: (a) 1 year later; or (b) 2 years
later. Furthermore, we investigated whether age-related changes in WM microstructure
were regionally specific or global. We used data from four occasions (covering 4 years)
of the Longitudinal Healthy Aging Brain (LHAB) database project (N = 232; age range
at baseline = 64–86). As a measure of WM microstructure, we used mean fractional
anisotropy (FA) in 10 major WM tracts averaged across hemispheres. Processing speed
was measured with four cognitive tasks. Statistical analyses were conducted with
bivariate latent change score (LCS) models. We found, for the first time, evidence
for lagged couplings between preceding changes in FA and subsequent changes in
processing speed 2 years, but not 1 year later in some of the WM tracts (anterior
thalamic radiation, superior longitudinal fasciculus). Our results supported the notion that
FA changes were different between regional WM tracts rather than globally shared, with
some tracts showing mean declines in FA, and others remaining relatively stable across
4 years.

Keywords: white matter microstructure, processing speed, longitudinal, coupled changes, healthy aging,
fractional anisotropy, latent change score model, structural equation modeling (SEM)

INTRODUCTION

It is widely recognized that fluid cognitive abilities decline during the course of aging (Park et al.,
2002; Deary et al., 2009; Salthouse, 2010), with substantial variability observed between individuals
(e.g., Wilson et al., 2002). Processing speed, or the speeded performance in simple cognitive
or motor tasks, is a fluid cognitive ability which is particularly vulnerable to the effects of age

Frontiers in Aging Neuroscience | www.frontiersin.org 1 November 2019 | Volume 11 | Article 298

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2019.00298
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2019.00298&domain=pdf&date_stamp=2019-11-21
https://creativecommons.org/licenses/by/4.0/
mailto:jessica.oschwald@gmail.com
https://doi.org/10.3389/fnagi.2019.00298
https://www.frontiersin.org/articles/10.3389/fnagi.2019.00298/full
https://loop.frontiersin.org/people/470811/overview
https://loop.frontiersin.org/people/194360/overview
https://loop.frontiersin.org/people/408274/overview
https://loop.frontiersin.org/people/117900/overview
https://loop.frontiersin.org/people/664/overview
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Oschwald et al. Lagged Coupled Changes

(e.g., Schaie, 2005). Processing speed has been found to explain a
substantial proportion of the performance variability in higher-
order cognitive abilities, such as working memory, or executive
functioning (Schaie, 1989; Salthouse, 1996; Verhaeghen and
Salthouse, 1997; Zimprich and Martin, 2002). The investigation
of the neural mechanisms underlying changes in processing
speed is therefore highly relevant in order to advance our
understanding of age-related decline in fluid cognitive abilities
in general.

In previous research, age-related cortical disconnection
caused by the degradation of the microstructure of myelinated
axonal fiber bundles that make up the white matter (WM) of
the brain has been identified as one potential neural mechanism
for age-related deficits in processing speed (Madden et al.,
2009, 2012; Bennett and Madden, 2014). The microstructural
properties of these WM fiber pathways can be estimated
in vivo with diffusion-weighted magnetic resonance imaging
(DW-MRI), a neuroimaging method that allows to measure
the rate and directionality of water diffusion in brain tissues
(Jones et al., 2013). Ameasure commonly derived fromDW-MRI
is fractional anisotropy (FA) that captures the directionality
of diffusion within a tissue independent of the rate of
diffusion (Rosenbloom et al., 2003). FA has proven to be
a sensitive measure of aging, with average declines observed
after 1 year in healthy older adults (Teipel et al., 2010).
Several cross-sectional studies have reported that age-related
deficits in processing speed are associated with impaired
WM microstructure across widespread regions of the brain
(Vernooij et al., 2009; Penke et al., 2010, 2012; Kerchner
et al., 2012; Haász et al., 2013; Kuznetsova et al., 2016;
Hirsiger et al., 2017), implying that a global degradation of
WM microstructure is related to cognitive slowing in old
age (but see: Bucur et al., 2008; Kennedy and Raz, 2009;
Salami et al., 2012). However, cross-sectional studies are not
sufficient to establish an association between age-related changes
in two developmental variables since they might only be
correlated due to a common mean trend, such as decline,
over time (Hofer et al., 2006; Lindenberger et al., 2011).
Longitudinal studies and appropriate statistical methods to
estimate inter-individual differences in intra-individual change
are necessary to disentangle developmental change relations
(Oschwald et al., 2019). A method well-suited for this purpose
is latent change score (LCS) modeling implemented in the
structural equation modeling (SEM) framework. In brief,
LCS models estimate LCS between subsequent measurement
scores that represent true change separated from measurement
error (McArdle, 2009). Furthermore, these models allow the
estimation of dynamic within-person associations between two
change processes.

Only few longitudinal studies have directly associated
age-related changes in WM microstructure to changes in
processing speed (Charlton et al., 2010; Lövdén et al., 2014;
Ritchie et al., 2015; Gorbach et al., 2017; Song et al., 2018).
Of these, only two have used LCS modeling to estimate
inter-individual differences in intra-individual change (Lövdén
et al., 2014; Ritchie et al., 2015). Lövdén et al. (2014)
reported significant positive change-change associations between

processing speed and WM microstructure in the corticospinal
tract, such that individuals with higher FA declines in this
tract also showed steeper declines in processing speed across
2 years. In contrast, Ritchie et al. (2015) found only positive
level-change relationships between global FA and subsequent
3-year changes in processing speed, but no change-change
relationships between these measures. Considering these two
studies it becomes obvious that the limited longitudinal
evidence arrives at very different conclusions regarding the
FA-processing speed association. It is important to note
that both studies included only two measurement occasions.
Thus, they were limited to the investigation of simultaneous
relations between differences in FA and processing speed.
However, based on prominent theories of cognitive aging,
one may expect that healthy older individuals are able—at
least in part—to compensate for age-related degradation of
brain structure and function, e.g., by recruiting secondary
neural networks or by adopting certain cognitive strategies
(Stern, 2002, 2009; Park and Reuter-Lorenz, 2009; Reuter-
Lorenz and Park, 2014). Thus, we expect that—in healthy
older adults—declines in FA lead to observable decrements
in processing speed only after a longer time lag, and when
compensatory functions are no longer sufficient to counteract
brain structural decline.

A satellite topic that has been discussed in the pertinent
literature relates to the uniformity of FA and other measures
of WM microstructure and its aging-related decline across the
brain. Empirical findings have demonstrated that, among older
adults, WM microstructure is highly correlated between WM
tracts sampled across the entire brain (e.g., Penke et al., 2010,
2012; Cox et al., 2016). This has led researchers to believe
that the effects of age on the microstructure of WM might
be a relatively global phenomenon, rather than specific to
individual WM tracts (Bennett and Madden, 2014). However,
several authors have also reported stronger correlations on
the level of regional WM tracts (Wahl et al., 2010; Li et al.,
2012; Lövdén et al., 2013). Furthermore, only few studies have
investigated the uniformity of age-related changes in WM
microstructure in a longitudinal setting, with heterogeneous
findings, supporting either more regionally (Lövdén et al.,
2014), or globally shared changes (Ritchie et al., 2015;
Bender et al., 2016).

For the present study, we are using a longitudinal dataset that
comprises four occasions of cognitive testing and brain imaging
in healthy older adults. With this dataset, we intend to assess
dynamic change-change relations between FA and processing
speed over a period of 4 years, using LCS modeling. Specifically,
we investigate lagged relationships between preceding changes in
FA and subsequent changes in processing speed: (a) 1 year; or
(b) 2 years later. Based on the assumption that the compensatory
mechanisms weaken with time, we expect that the associations
will increase with the size of the time lag. In addition, due
to previous suggestions that FA in brain-wide WM tracts
is often inter-correlated, we will explore whether a global
FA factor can capture this shared variance longitudinally, or
whether regional differences in FA changes outweigh shared
effects of aging.
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FIGURE 1 | Schematic diagram of the Longitudinal Healthy Aging Brain
(LHAB) study design. y, year; COG, cognitive testing session; MRI, magnetic
resonance imaging.

MATERIALS AND METHODS

Participants
Longitudinal cognitive and MRI data were taken from the
Longitudinal Healthy Aging Brain (LHAB) database—an
ongoing project conducted at the University Research Priority
Program (URPP) ‘‘Dynamics of Healthy Aging’’ of the University
of Zurich (Zöllig et al., 2011). We used data from the first four
measurement occasions (baseline, 1-year follow-up, 2-year
follow-up, and 4-year follow-up; see Figure 1). The baseline
dataset included 232 participants (M age = 70.84; 49.14%
female). At each measurement occasion, participants completed
an extensive battery of neuropsychological and psychometric
cognitive tests and underwent brain imaging. Brain imaging
was conducted at the University Hospital of Zurich, either
after cognitive testing, or on a separate day within a span
of 1–2 weeks of the cognitive assessment. Inclusion criteria
for study participation were age ≥64, a score of ≥26 on the
Mini Mental State Examination (MMSE; Folstein et al., 1975),
right-handedness, fluent German language proficiency, and
no self-report of any neurological or psychiatric disease or
contraindications to MRI. The study was approved by the ethical
committee of the canton of Zurich. Participation was voluntary
and all participants gave written informed consent in accordance
with the Declaration of Helsinki.

At baseline, all 232 participants completed the processing
speed tasks, and 229 also had DW-MRI data (M age = 70.72;

49.34% female). At 4-year follow-up, the dataset still comprised
74.57% of the baseline sample (n = 173), of which 70.69%
(n = 164) had complete data for both processing speed and
DW-MRI measures. To avoid bias due to selective exclusion
of participants with incomplete data, we use the full sample
(data present for processing speed and/or DW-MRI measures)
in this article. Participant characteristics of the full sample at
each occasion are presented in Table 1. Supplementary Table S1
provides an overview of the number of participants in the full
sample, with incomplete (processing speed or DW-MRI data
only), and complete data.

To estimate whether attrition was selective, we compared the
full sample at baseline with those participants still participating in
the study at 4-year follow-up in these measures. For this purpose,
we computed total selectivity by standardizing the difference
between the mean in the baseline and the 4-year follow-up
sample on the standard deviation of the baseline sample in the
variable of interest (see Lindenberger et al., 2002). The size of
the resulting selectivity index can be interpreted in terms of
an effect size. As can be seen in Table 1, total selectivity was
negligible for all measures (i.e., below the cut-off of 0.20 for
a weak effect according to Cohen, 1977), suggesting that the
participants remaining in the study at the 4-year follow-up
did not differ from the baseline sample in terms of baseline
age, education, physical and mental health, or head motion
in the scanner.

Brain Measures
MR Imaging
MRI measurements were conducted on a Philips Ingenia 3T
scanner equipped with a commercial 32-element sensitivity
encoding (SENSE) head coil array. The DW-MRI protocol
employed an echo-planar (EPI) sequence [TR = 23.918 s,
TE = 55 ms, FoV = 224 × 224 mm, acquisition
matrix = 112 × 112, slice thickness = 2 mm, 75 contiguous
slices, 2 mm3 isotropic voxel, flip angle = 90◦, Echo Train
Length (ETL) = 59, NSA = 1, SENSE factor R = 2.0]. One
non-weighted image (b-value = 0 s/mm2) and 32 diffusion-
weighted images (b-value of 1,000 s/mm2) were acquired.
The diffusion-weighted directions were equally distributed
in space. The same scanner and sequence was used at all
measurement occasions.

TABLE 1 | Participant characteristics of the full sample at baseline and at each follow-up wave.

Variable Baseline 1-year follow-up 2-year follow-up 4-year follow-up Total
(n = 232) (n = 210) (n = 197) (n = 173) selectivity

n M SD n M SD n M SD n M SD

Baseline age (years) 232 70.84 5.08 210 70.91 5.15 197 70.66 4.81 173 70.15 4.44 −0.14
Gender (% f) 232 49.14 - 210 48.57 - 197 46.70 - 173 46.24 - -
Education (1–3) 225 2.23 0.86 209 2.24 0.86 195 2.23 0.87 171 2.29 0.84 0.07
Mental health 212 54.79 6.26 195 54.61 6.40 184 54.55 6.25 159 54.69 5.74 −0.02
Physical health 212 50.78 7.44 195 50.90 7.44 184 51.04 6.95 159 51.43 6.44 0.09
Head motion 229 0.24 0.15 207 0.25 0.16 190 0.27 0.17 165 0.26 0.19 0.13

Note. f, female. Education was measured on a scale from 1 to 3 (1 = high school with or without vocational education, 2 = higher education entrance qualification, business school
or university of applied sciences, or 3 = university degree). Mental and physical health scores were computed based on the SF12 questionnaire, which participants filled out at home
(Ware et al., 1996). Total selectivity was computed for the baseline sample as compared to the sample at 4-year follow-up (M4-y − Mbase)/SDbase.
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FIGURE 2 | Depiction of 10 white matter (WM) tracts, based on the Johns Hopkins University WM tractography atlas (Hua et al., 2008).

MRI Data Preprocessing
To facilitate analysis, data were organized according to the
brain imaging data structure (BIDS; Gorgolewski et al., 2016).
Diffusion data was processed with a nipype pipeline (v0.14.0;
Gorgolewski et al., 2011) using tools from MRtrix (3-rc2;
Tournier et al., 2012), FSL (v5.0.9; Jenkinson et al., 2012),
and ANTs (2.1.0; Avants et al., 2011). The analysis code is
publicly available at https://github.com/fliem/extract_FA, and
a BIDS-Apps-compatible (Gorgolewski et al., 2017) software
container to reproduce the analysis can be found here at
http://hub.docker.com/r/fliem/extract_fa/.

The diffusion data were de-noised (Veraart et al., 2016a,b)
and corrected for eddy current distortions and head motion
(Andersson and Sotiropoulos, 2016; Andersson et al., 2016).
Subsequently, the data were bias-corrected (Tustison et al.,
2010) and a WM mask was created (Dhollander et al., 2016).
Tensor maps were calculated (Veraart et al., 2013) and FA
maps were derived (Basser et al., 1994; Westin et al., 1997).
ANTs was used to register FA maps to the JHU-ICBM-
FA template (included in FSL). Mean FA was extracted for
tracts of the JHU white-matter tractography atlas (thresholded
at 25% probability) for voxels with FA > 0.2 (Hua et al.,
2008). The tracts considered here are: forceps major (FMAJ),

forceps minor (FMIN), left and right hemispheric superior
longitudinal fasciculi (SLF), inferior longitudinal fasciculi (ILF),
inferior fronto-occipital fasciculi (IFOF), anterior thalamic
radiations (ATR), uncinate fasciculi (UNC), cingulum cingulate
gyri (CCG), cingulum hippocampus (CHC), and corticospinal
tracts (CST). A graphical depiction of these tracts is shown
in Figure 2. Since we did not have any specific hypothesis
of lateralized aging-effects in FA, we averaged left and right
hemispheric tracts, weighted by the number of voxels of the
respective tract, to obtain 10 dependent variables that entered the
statistical analyses.

Correlations across measurement occasions were high for
all WM tracts (r = 0.65–0.96), indicating good reliability
of FA estimates across time. Descriptive statistics, and
correlations within and across measurement occasions
for the raw FA values for all WM tracts can be found in
the Supplementary Material (Supplementary Table S2).
Longitudinal plots of intra-individual FA changes in each
of the WM tracts can be found in the Supplementary
Material (Supplementary Figure S1). For the statistical
analyses, we multiplied FA values by 100, in order to avoid
potential artifacts in bivariate model estimation due to
scaling differences.

Frontiers in Aging Neuroscience | www.frontiersin.org 4 November 2019 | Volume 11 | Article 298

https://github.com/fliem/extract_FA
http://hub.docker.com/r/fliem/extract_fa/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Oschwald et al. Lagged Coupled Changes

Head Motion Control
As a means of ensuring sufficient quality of the data, we
removed FA values for 56 individual observations (i.e., 6.03%
of the total N of 928 observations) at which participants
showed excessive head motion. As a measure of head motion,
we used the summary statistic of average RMS motion as
compared to the previous slice in a volume, which was
calculated during preprocessing (Andersson and Sotiropoulos,
2016). Excessive values were defined as any value more than
three median absolute deviations (MADs) above the median
of the sample distribution across measurement occasions (Leys
et al., 2013). We used the median as a reference since
it is more robust to the influence of extreme values than
the mean.

Cognitive Ability Measures
Processing speed was assessed by four psychometric paper-
pencil tests described in detail below. Correlations across
measurement occasions were relatively high for all tests
(r = 0.51–0.84), indicating good reliability of these measures
across time. Descriptive statistics, and correlations within and
across measurement occasions for the raw processing speed
values for all tasks can be found in the Supplementary Table
S3. Longitudinal plots of intra-individual changes in each of
the processing speed tasks can be found in the Supplementary
Material (Supplementary Figure S2).

Identical Pictures Test
The Identical Pictures Test (IPT) is a sub-test of the Kit of
Factor-Referenced Cognitive Tests (KIT; Ekstrom et al., 1976),
and consists of two parts with 48 items each. For each item,
participants had to distinguish which of five alternative images
was identical to a target image and mark the respective one with
a pen. Participants had a time limit of 90 s for each test part.
Ability was measured as the number of correct responses across
both test parts.

Digit Symbol Test
The Digit Symbol Test (DIGSY) is part of the Wechsler
Intelligence Scale for Adults (Von Aster et al., 2006). The
test consisted of several rows of digits ranging from 1 to 9.
Participants were required to copy, from left to right, abstract
symbols below the corresponding digits. A translation key on the
top of the test sheet indicated which symbol was uniquely paired
with which digit and was visible during the entire time of testing.
Ability was measured as the number of correct responses within
2 min.

Trail-Making-Test A
The Trail-Making-Test A (TMTA; Reitan and Wolfson, 2004)
required participants to connect numbers from 1 to 25 (in
ascending order) with a pen as quickly as possible. A test
instructor ensured that participants did not detach the pen from
the paper during the test. If an error was made, the test instructor
advised the participant to go back to the last number before the
error occurred. Ability was the total time in seconds needed to
perform this task (including the time used for error prompting

and correction), multiplied by −1 so that higher scores equaled
better performance.

LPS14 Test
The Leistungsprüfsystem (LPS) 14 is a sub-test of the LPS 50+,
which is an adapted version of the LPS for people aged between
50 and 90 years (Sturm et al., 1993). The LPS14 sub-test consisted
of two columns of letter and digit strings printed next to each
other. Participants were asked to compare the two columns row-
by-row and cross out the letters or digits in the row of the right
column that was not identical to the letter or digit printed in the
same position in the left column. Ability was measured as the
number of correct responses within 2 min.

Covariates
To control for potential confounding influences, we included
age at baseline (Agebase), level of education (on a scale from
1 to 3; 1 = high school with or without vocational education,
2 = higher education entrance qualification, business school or
university of applied sciences, or 3 = university degree) and
gender (0 = female, 1 = male) as covariates on the intercept
and slope terms into all statistical analyses. Furthermore, for
the FA models, we also included head motion in the scanner
as a time-varying covariate on the manifest indicators at each
measurement occasion. To facilitate model interpretation, age
was centered at 70 years (median of the sample), and education
at level 2. Head motion was left un-centered, since a value of zero
was meaningful (i.e., reflecting no head motion).

Statistical Analysis
All statistical analyses were run in R version 3.3.3 (R Core Team,
2019). Outlier correction in each processing speed measure was
done using a cut-off of threeMADs above or below themedian of
the sample distribution across measurement occasions, resulting
in the removal of 32 individual values (n = 2 for DIGSY;
n = 4 for LPS14: n = 4 for IPT: n = 22 for TMTA). We refrained
from outlier control in FA measures, since FA can largely vary
between individuals (e.g., Veenith et al., 2013), and no clear
consensus exists on normative cut-offs. However, we excluded
individual observations with excessive head motion values (see
‘‘Head Motion Control’’ section above).

Structural Equation Modeling (SEM)
To model inter-individual differences in intra-individual change
in FA and processing speed, and cross-domain interactions
between these variables, we estimated univariate and bivariate
LCS models in the structural equation modeling (SEM)
framework using the lavaan package version 0.5–23.1097
(Rosseel, 2012) in R. As is the standard in longitudinal SEM
modeling, we treatedmissing values as missing at random (MAR;
Little, 1995) and retained them in the model by using the full
information maximum likelihood estimation (FIML; Finkbeiner,
1979; Schafer and Graham, 2002) to deal with incomplete data.

Univariate Models
One aim of the present article was to investigate whether a global
FA factor capturing the shared variance across 10 WM tracts
would be a good fit to the data. Furthermore, we intended to
measure processing speed on the ability level. Therefore, we
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FIGURE 3 | Example diagram of a univariate second-order latent change score (LCS) model. For a detailed description see “Materials and Methods” section
(univariate models). All unlabeled paths are fixed to 1. Parameters with the same label are fixed to be equal. Strong measurement invariance (MI) is imposed on the
model by fixing the factor loadings and intercepts of the manifest indicators to be equal over time. The manifest indicator intercepts are not shown for visual clarity.
Correlated residuals of the same manifest indicator over time were estimated, but are also not shown for visual clarity. Intercept and slope variance are controlled for
age at baseline (Agebase), education and gender.

used second-order LCS models (McArdle, 2009; for tutorials see
Ghisletta and McArdle, 2012; Kievit et al., 2018) to estimate
initial values, and 4-year changes in latent factors of FA and
processing speed. Figure 3 shows a path diagram of a second-
order LCS model with a latent construct (η0. . .η4yr; area shaded
in pink) measured by three manifest, i.e., observed, indicators
(X, Y, Z; area shaded in gray) at each measurement occasion.
A minimum of three indicators is needed to identify a latent
construct without using information from other parts of the
model (Bontempo et al., 2012). Applying thismodel to processing
speed, four indicators reflect performance in the four cognitive
tasks. For FA, we extended the model in Figure 3 to include
10 indicators, reflecting FA in the 10 WM tracts. To create
equal intervals between measurement occasions, we included a
latent placeholder variable (η3yr) between the 2-year (η2yr) and
the 4-year (η4yr) follow-up (Little, 2013). LCS were estimated
between subsequent measurement occasions ∆η1yr. . .∆η4yr).
Consequently, a latent true score at measurement occasion t
(e.g., η1yr) was perfectly explained by the latent true score at
occasion t-1 (e.g., η0) and the LCS between t-1 and t (e.g.,∆η1yr).
Since our study included more than two measurement occasions,
we were able to estimate a latent intercept (I) and slope factor
(S) on top of the LCS, to capture initial levels and overall
change across time. The means of these factors reflect the average
baseline value (µI) and change (µS) in a variable across the entire
sample (i.e., fixed effects). In addition, the variances of these

latent factors reflect the variability between persons (i.e., random
effects) in their individual baseline values (σ2I) and change
trajectories (σ2S). We fixed the loadings of the change slope (α) to
a value of one, representing constant, linear change across time.
The univariate LCS models estimated here can be simplified to
the more commonly known latent growth curve model, and both
models produce the same parameter estimates and fit statistics
(see Grimm et al., 2016)1.

Global vs. Regional FA Changes
While a second-order LCS model estimating a latent construct
with multiple indicators was acceptable for processing speed, this
was not the case for FA. Therefore, we proceeded by estimating
first-order LCS models for FA in each WM tract. These models
were similar to the second-order model shown in Figure 3,
with the difference that they were simplified to include only one

1We also tested whether adding a autoregressive parameter β between previous
levels and subsequent changes of a variable would lead to improved model fit.
This parameter introduces a dynamic aspect to the model, either decelerating
(negative β) or accelerating (positive β) the overall change estimated by the
overall slope factor, allowing for the estimation of nonlinear trajectories over time.
However, this model (also known as the dual change score model; McArdle, 2001;
McArdle and Hamagami, 2001, 2003; McArdle et al., 2000) was not a good fit for
neither FA, nor processing speed, as determined by difference χ2 tests, problems
with model convergence, or inflated parameter estimates. Therefore, we decided
to proceed with the more parsimonious linear models presented here.
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manifest indicator, namely the mean of FA in the left and right
homologous tract, weighted by the respective number of voxels.

Measurement Invariance
To assure that we measured the same construct at each
measurement occasion (Meredith, 1993; Meredith and Teresi,
2006), we assumed strong measurement invariance (MI) for
the latent FA and processing speed constructs. This is achieved
by constraining both the loadings of the observed indicators
on the latent factor (weak MI), and the indicator intercepts to
equality across measurement occasions (strong MI; Widaman
and Conger, 2010). By comparing these models to a model
where the respective parameters vary freely (configural MI), it
is then possible to test in a step-wise fashion (i.e., comparing
the configural to a weak MI model, and the latter to a strong
MI model), which level of MI is supported by the data (Putnick
and Bornstein, 2016). Based on previous recommendations, we
accepted a model with higher MI to hold over a model with
lower MI if the drop in the CFI was equal to or below ∆0.01 (see
Cheung and Rensvold, 2002; Chen, 2007).

Retest Effects
One assumption that is often made in the LCS model is that the
modeled changes entirely reflect the change process of interest,
i.e., aging due to the passing of time. In case of themodel depicted
in Figure 3, this is implemented by setting themeans and residual
variances of the LCS (∆η1yr...∆η4yr) to zero, such that change is
fully captured by the constant change slope (S). However, it is
well-known that participant’s performance in cognitive tests can
be influenced by other factors, such as performance anxiety or
unfamiliarity with the testing material (Hoffman et al., 2011). In
the present study, participants were confronted with the testing
situation andmaterial for the first time at the baseline assessment,
thus it is very likely that the change in processing speed between
baseline and 1-year follow-up is due to both, ‘‘real change’’
as well as increased familiarity with the situation. To probe
whether processing speed was affected by such retest effects, we
additionally fit two models where either only the mean or both
the mean and error variance of the first LCS were allowed to vary
freely (see Barker et al., 2014).

Bivariate Models
To estimate cross-domain relations between FA and processing
speed, we combined the best fitting univariate LCS models for
both domains into a bivariate LCS model2 (see Figure 4). In
a first step, we estimated a baseline model that only included
cross-domain correlations between intercepts and slopes, thus
estimating static between-person associations between these two
domains at baseline, and across time. As can be seen in Figure 4,
this included intercept-intercept (σIPS,IFA), slope-slope (σSFA,SPS),
and intercept-slope correlations (σIFA,SPS and σIPS,SFA) among
FA and processing speed. In the next step, we fit two series
of models to test the two hypotheses of 1-year and 2-year

2This model is comparable to the more commonly known bivariate dual change
score model (BDCSM; McArdle, 2001; McArdle et al., 2004; McArdle and
Hamagami, 2001), but with the autoregressive coupling parameters set to zero,
since they were not a good fit to either the FA or processing speed univariate
models (see footnote 1).

lagged change-change relationships between FA and processing
speed. For each series, we estimated three models that differed
from the baseline model only by the inclusion of cross-lagged
regression paths, so-called coupling parameters, between changes
in the two domains. In Figure 4A, the cross-lagged paths for
the 1-year lagged model series are shown in blue font. In
Figure 4B, the cross-lagged paths for the 2-year lagged model
series are shown in orange font. The first two models included
a unidirectional coupling parameter, assuming either FA as
leading, and processing speed as lagging variable (γFA-PS), or vice
versa (γPS-FA). Finally, in the full coupling model, we included
both coupling parameters, estimating bidirectional change-
change associations. Hence, all three models estimated dynamic
within-person couplings between changes in one domain as a
leading indicator of changes in the other domain, or both, while
controlling for static between-person associations between these
domains. We fixed the coupling parameters to be equal over time
in the respective models, thus assuming similar effects over the
study period.

Evaluation of Model Fit
Overall model fit was evaluated by the χ2 test, specifically, by the
ratio of the χ2 test statistic to the respective degrees of freedom
(Jöreskog and Sörbom, 1993). Furthermore, the Comparative Fit
Index (CFI; Bentler, 1990), and the root mean square error of
approximation (RMSEA; Steiger and Lind, 1980) were used to
evaluate goodness-of-fit. Good model fit was defined as a ratio
of χ2/df ≤ 2, CFI > 0.97, RMSEA ≤ 0.05, and adequate fit was
defined as χ2/df ≤ 3, CFI> 0.95, RMSEA between 0.05 and 0.08
(see Jöreskog and Sörbom, 1993; Schermelleh-Engel et al., 2003).
Models were compared using the difference χ2 test (for nested
models) and the sample size adjusted Bayesian Information
Criterion (BIC; Raftery, 1995). The BIC is not interpretable
in isolation, however, in model comparisons, smaller values
indicate a closer fit of the model to the data (Kass and Raftery,
1995; Raftery, 1995). For the difference χ2 test, we lowered the
significance threshold to p < 0.01 to reduce the likelihood of
Type I error.

RESULTS

Univariate Models: FA
In a first step, we evaluated whether a global FA factor
capturing the shared variance across the WM tracts of interest
was tenable. Therefore, we fit a univariate LCS model with a
global FA factor based on 10 indicators and strong MI. This
model had unacceptable fit for the data [χ2

(851) = 4,046.392,
χ2/df = 4.75, RMSEA = 0.127 (0.123–0.131), CFI = 0.775,
BIC = 26,064.112]. Freeing the intercepts led to a substantial
increase of the CFI (∆CFI = 0.024), suggesting that strong
MI was not supported for this global FA model. Closer
investigation of modification indices revealed that the intercepts
of multiple indicators (i.e., multiple WM tracts) were not
invariant. Even when freeing constraints on both intercepts
and factor loadings (configural invariance), model fit remained
unacceptable across all fit indicators [χ2

(797) = 3,584.301,
χ2/df = 4.50, RMSEA = 0.123 (0.119–0.127), CFI = 0.804,
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FIGURE 4 | Schematic diagram of the full-coupling bivariate LCS model, combining the two best-fitting univariate LCS models for fractional anisotropy (FA) in the
respective WM tract (using the anterior thalamic radiations (ATR) as example), and processing speed (PS). The gray-shaded area contains bidirectional cross-domain
couplings between changes in FA and changes in PS for the 1-year lagged model series (A), and for the 2-year lagged model series (B). For a detailed description
see “Materials and Methods” section (bivariate models). DIG, Digit Symbol task; TMT, Trail Making Test A; LPS, Leistungsprüfsystem 14; yr, year; RPS, retest effect
between baseline and 1-year follow-up. FA is measured as first-order LCS model, and PS estimated as second-order LCS model, with a latent construct
(PS0. . .PS4yr) at each measurement occasion, comprising four manifest indicators. Strong MI is imposed on the PS model by setting the factor loadings and
intercepts of the manifest indicators equal over time. The manifest indicator intercepts are not shown for visual clarity. Correlated residuals of the same manifest
indicator over time were estimated, but are also not shown for visual clarity. Squares represent observed variables, and circles represent latent variables.
One-headed arrows stand for regression paths and two-headed arrows for variances and covariances. The triangle represents means and intercepts. All unlabeled
paths are fixed to 1. Parameters with the same label are fixed to be equal. Intercept and slope of FA (IFA, SFA) and PS (IPS, SPS) are controlled for age at baseline
(Agebase), education and gender. Manifest FA scores were adjusted for head motion (HM0 . . .HM4yr) at each measurement occasion.

BIC = 25,724.994]. We also tried to fit a reduced model that
included only thoseWM tracts with sufficient variance in change
(FMIN, IFOF, UNC, SLF, ATR; see results below). However,
this model still did not yield acceptable fit [χ2

(221) = 1,376.497,
χ2/df = 6.23, RMSEA = 0.150 (0.143–0.158), CFI = 0.836,
BIC = 13,112.579]. Thus, we concluded that a global FA factor
was not tenable in the present dataset. Hence, tract-specific
models should be evaluated.

In a second step, we investigated how FA changes in
the WM tracts of interest over time. For this purpose, we

estimated separate LCS models for eachWM tract. These models
all showed adequate to good model fit across the majority
of fit indicators (χ2

(26) = 34.428–77.611, χ2/df = 1.32–2.99,
RMSEA = 0.037–0.092, CFI = 0.953–0.992), except for the CHC.
The CHC and the CST initially converged with a negative slope
variance, most probably due to the small variability between
individuals’ change trajectories. One possible solution is to fix
such negative variances to zero (for an extended discussion,
see Dillon et al., 1987), as we did in the present case, which
resulted in an acceptable model fit for the CST, but not for the
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FIGURE 5 | Visualization of model-predicted annual mean changes in scaled
FA for all WM tracts. Error bars show 95% confidence intervals.
Non-significant annual mean changes are printed in red, and significant
values in blue (p < 0.05). See Supplementary Table S4 for the exact
parameter estimates.

CHC (i.e., RMSEA = 0.087, CFI = 0.912). Hence, the results
for the CHC are not reliable. Scaled mean FA at baseline
ranged from 35.796 in the SLF to 55.536 in the FMAJ3.
Significant annual mean declines were observed for the FMIN,
SLF, IFOF, ATR, CCG, and CST (ranging from unstandardized
estimates of −0.177 to −0.417). In contrast, the FMAJ, ILF,
UNC and CHC did not show significant mean changes over
time. Annual mean changes in scaled FA for all tracts are
also visually shown in Figure 5 (for detailed results of these
models and model fit statistics see Supplementary Table S4).
Baseline FA was not significantly correlated with change over
time for any of the tracts, indicating that participants with
higher FA values at baseline did not change differently from
participants with lower FA values. Third, independent of mean
change, we examined whether individuals varied substantially
in their change trajectories over the study period. We found
significant between-person variance in baseline FA values for
all tracts, indicating that participants varied substantially in
their initial FA values across all tracts. Furthermore, we found
that five tracts also showed significant or marginally significant
(i.e., p = 0.052) between-person variance in change slopes (FMIN,
SLF, IFOF, ATR, UNC), indicating that participants differed
substantially from each other with regard to FA changes in
these tracts. We retained only the latter tracts for the subsequent
bivariate analyses with processing speed since sufficient variance
in change is necessary in order to analyze longitudinal bivariate
associations (Raz et al., 2008; Lövdén et al., 2014).

3Divided by 100, these unstandardized estimates can be directly interpreted like
raw FA values on a scale from 0 to 1. Thus, baseline FA ranged between 0.358 and
0.555.

Finally, we investigated whether covariates had an impact on
baseline FA values or changes therein across 4 years. The effects
of the time-invariant covariates (age, gender, education) on FA
at baseline and across time are presented in Supplementary
Table S5. The effects of head motion on FA at each time point
are shown in Supplementary Table S6. We found that older age
was associated with significantly lower baseline FA values (except
for the CHC and CST), and steeper annual declines (except for
the SLF, ILF, and CHC). The size of cross-sectional age-effects
was larger than that of the longitudinal effects. Education had
no impact on FA at baseline or changes across time in any of
the WM tracts. Effects of gender on baseline FA were limited
to the FMIN (−0.592, SE = 0.299, p = 0.048) and CHC (0.794,
SE = 0.388, p = 0.041), and effects of gender on changes in FA
were limited to the ATR (0.151, SE = 0.047, p = 0.001) and the
CST (0.233, SE = 0.057, p < 0.001): male participants had on
average different baseline FA (lower in the FMIN and higher
in the CHC) or less FA declines in these tracts than females.
Most tracts were impacted by head motion, such that more
motion in the scanner was associated with significantly lower
FA estimates. Please note that one unit increase in head motion
amounts to almost five times the average head motion present in
the sample (from 0.24 to 0.27 across measurement occasions; see
Table 1), thus, the effects in Supplementary Table S6 need to be
interpreted as effects of excessive motion.

Univariate Models: Processing Speed
Comparable to the global FA factor for the WM tracts, we first
investigated whether a latent processing speed variable based on
the shared variance across four processing speed tasks was a good
representation of the data. For this purpose, we fit a univariate
LCS model with a latent processing speed factor based on four
indicators and strong MI. This model had acceptable fit for all
fit measures except for the CFI [χ2

(143) = 314.551, χ2/df = 2.20,
RMSEA = 0.072 (0.061–0.083), CFI = 0.940, BIC = 22,709.758].
MI testing revealed a model with weak MI to be superior
(∆CFI = 0.022)4. After the inspection of modification indices,
we identified the intercepts of the LPS14 as the source of non-
invariance. Freeing these intercepts led to an improvement in
model fit, such that a model with partial-strong MI did not differ
substantially from a model with weak MI (∆CFI = 0.007). The
model with partial-strong MI provides very similar results for
the analyses presented in this article, which is why we retain the
model with full-strong MI.

In a second step, we probed whether the initial unfamiliarity
with the testing situation led to retest effects between baseline
and 1-year follow-up. Therefore, we fit a model where we freely
estimated the mean of the first LCS. Freely estimating the mean
of this but not the other change scores contains the assumption
that change between baseline and 1-year follow-up is not entirely
reflecting ‘‘true change’’ over time (as captured by the slope
parameter), but is additionally influenced by other variables,
such as repeated testing. This model showed adequate fit for
all indicators [χ2

(142) = 262.879, χ2/df = 1.85, RMSEA = 0.061

4Weak MI was supported, however, as compared to a model with configural MI
(∆CFI < 0.001).
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(0.049–0.072), CFI = 0.957, BIC = 22,660.363], supporting
the presence of retest effects. However, additionally freeing the
variance of the first LCS resulted in an improper solution (i.e., the
estimation of a negative variance of the first LCS), suggesting that
participants did not seem to vary with respect to retest effects.
Thus, we kept the retest variance fixed to zero. Since this model
showed superior fit compared to the initial model without retest
(∆χ2 = 51.672, ∆df = 1, p < 0.001), we retained it for the
bivariate analyses with WM FA.

In a third step, we examined the average trajectory of change
in processing speed across 4 years as well as whether participants
showed substantial inter-individual variance at baseline and
around this mean trajectory. At baseline, participants had on
average initial mean processing speed levels of 48.459 (SE = 1.453,
p < 0.001). Besides an initial increase between baseline and
1-year follow-up captured by the retest effect (2.032, SE = 0.343,
p < 0.001), processing speed declined on average over time
(−0.567 per year, SE = 0.280, p = 0.043). Furthermore, between-
person variance with respect to both intercepts and slopes
was significant, suggesting that participants showed differences
in baseline levels and changes over time. Baseline processing
speed was not significantly correlated with change over time
(−0.491, SE = 0.583, p = 0.399), indicating that participants with
higher processing speed performance at baseline did not change
differently from participants with lower performance.

Finally, we investigated whether covariates influenced
baseline processing speed or processing speed changes across
4 years. Age at baseline had a significant impact on both
intercept and slope, such that with every 1-year increase in
age, participants had −0.645 lower processing speed at baseline
(SE = 0.096, p < 0.001), and showed steeper decline (−0.049 per
year, SE = 0.017, p = 0.004) over time. Participants with higher
education levels showed higher levels of processing speed
performance at baseline (1.246, SE = 0.554, p = 0.025), but
education had no effect on changes in processing speed over
time (0.069, SE = 0.089, p = 0.436). No effects of gender on
either intercept or slope were found. The detailed results of this
model, including the effects of the time-invariant covariates on
processing speed at baseline and across time are presented in
Supplementary Table S7.

Bivariate Models: FA and Processing
Speed
After detecting that five WM tracts (FMIN, SLF, IFOF,
ATR, UNC) show between-person variance in change slopes,
we restrict bivariate models for the investigation of the
relationship between change in FA and processing speed to
these tracts. Specifically, we were interested in investigating
lagged relationships between preceding changes in FA and
subsequent changes in processing speed: (a) 1 year; or (b) 2 years
later. As an alternative hypothesis, we also investigated the
other directionality (changes in processing speed as a leading
indicator of subsequent changes in FA) as well as bidirectional
relationships between those domains. To do so, we estimated
a baseline model and compared it to two series of models that
estimated either unidirectional or bidirectional cross-domain
couplings. The first model series was fit with 1-year time-lags,

and the second series with 2-year time-lags between changes
in FA and changes in processing speed. Hence, for each
combination of an individual WM tract with processing speed,
we estimated overall 7 × 5 = 35 bivariate LCS models.

We performed model comparisons between the baseline and
each of the lagged coupled change models using χ2 difference
tests since the latter models were nested within the former.
Model fits for the baseline model and the coupled change models
are shown in Table 2 for the 1-year time-lag, and in Table 3
for the 2-year time-lag model series. The selected model for
each WM tract is shaded in gray. Please note that the baseline
model was only estimated once, but is presented in both Tables.
None of the 1-year lagged coupling models fit significantly better
than the baseline model. However, the 2-year lagged coupling
models were a better fit for the SLF and the ATR. For the
SLF, both unidirectional models, and the full coupling model
fit significantly better than the baseline model. Since the full
coupling model also had the lowest BIC, we chose it as the
best fitting model for the SLF. For the ATR, the unidirectional
coupling model with FA as leading and processing speed as
lagging indicator, and the full coupling model fit significantly
better than the baseline model. Although the unidirectional
couplingmodel had a slightly lower BIC, we decided to report the
full coupling model here to allow better comparability with the
results for the SLF. For the FMIN, IFOF andUNC, however, none
of the lagged change models showed superior fit to the baseline
model, which is why we retained this more parsimonious model
for these WM tracts. Table 4 shows the results of the best-fitting
models for these five tracts. As can be seen from this Table,
none of the bivariate correlations between FA and processing
speed (intercept-intercept, intercept-slope, slope-slope) reached
significance in the baseline models of FMIN, IFOF, and UNC,
indicating an absence of static cross-domain associations in these
tracts. With respect to the 2-year lagged change models for the
SLF and ATR, significant positive cross-sectional correlations
were found between FA values and processing speed at baseline,
indicating that participants with higher FA values showed better
processing speed. These effects were small to typical in effect
size (fully standardized estimate = 0.151 for SLF, and 0.198 for
ATR) as compared to the standards in inter-individual difference
research (Gignac and Szodorai, 2016). Of specific interest were
the results for the 2-year lagged dynamic coupling effects from
FA to processing speed. This effect was significant and positive
for both the SLF (2.570, SE = 1.119, p = 0.022) and the ATR
(3.030, SE = 1.265, p = 0.017), indicating that less intra-individual
declines in FA were related to fewer declines in processing speed
2 years later. Moreover, for the SLF, we also found a positive
effect of preceding changes in processing speed on subsequent
changes in FA (0.607, SE = 0.229, p = 0.008). This effect was
smaller than the coupling effect from FA to processing speed and
reached significance due to the smaller standard error. No effect
of changes in processing speed on subsequent changes in FAwere
found for the ATR. Since previousMI testing revealed that strong
MI is not fully supported for the processing speed part of the
model, we re-calculated the results for the best-fitting bivariate
models, but now assuming only partial-strongMI (i.e., by freeing
the intercepts of the LPS14 indicators). All results remained
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TABLE 2 | Model fit indices from bivariate LCS models of FA in five WM tracts with processing speed (1-year coupling).

Model fit Model comparison

Tract χ2 (df) χ2/df RMSEA (95% CI) CFI BIC ∆χ2 (∆df)

FMIN Baseline model 427.070 (292) 1.46 0.045 (0.035–0.054) 0.966 24,189.362 -
FA→ PS 427.029 (291) 1.47 0.045 (0.035–0.054) 0.966 24,191.598 0.041 (1)
PS→ FA 425.066 (291) 1.46 0.045 (0.035–0.053) 0.966 24,189.635 2.004 (1)
Full coupling 424.975 (290) 1.47 0.045 (0.035–0.054) 0.966 24,191.821 2.095 (2)

IFOF Baseline model 427.278 (292) 1.46 0.045 (0.035–0.054) 0.965 24,214.512 -
FA→ PS 427.239 (291) 1.47 0.045 (0.035–0.054) 0.965 24,216.752 0.039 (1)
PS→ FA 425.303 (291) 1.46 0.045 (0.035–0.054) 0.965 24,214.815 1.975 (1)
Full coupling 425.090 (290) 1.47 0.045 (0.035–0.054) 0.965 24,216.880 2.188 (2)

UNC Baseline model 457.964 (292) 1.57 0.049 (0.041–0.058) 0.954 24,481.152 -
FA→ PS 457.961 (291) 1.57 0.050 (0.041–0.058) 0.954 24,483.426 0.003 (1)
PS→ FA 457.907 (291) 1.57 0.050 (0.041–0.058) 0.954 24,483.372 0.057 (1)
Full coupling 457.750 (290) 1.58 0.050 (0.041–0.058) 0.953 24,485.493 0.214 (2)

SLF Baseline model 471.856 (292) 1.62 0.052 (0.043–0.060) 0.954 23,951.350 -
FA→ PS 471.601 (291) 1.62 0.052 (0.043–0.060) 0.954 23,953.371 0.255 (1)
PS→ FA 470.545 (291) 1.62 0.052 (0.043–0.060) 0.954 23,952.315 1.311 (1)
Full coupling 470.197 (290) 1.62 0.052 (0.043–0.060) 0.954 23,954.245 1.659 (2)

ATR Baseline model 443.327 (292) 1.52 0.047 (0.038–0.056) 0.961 24,224.647 -
FA→ PS 443.070 (291) 1.52 0.047 (0.038–0.056) 0.961 24,226.667 0.257 (1)
PS→ FA 442.035 (291) 1.52 0.047 (0.038–0.056) 0.961 24,225.632 1.292 (1)
Full coupling 441.877 (290) 1.52 0.048 (0.038–0.056) 0.961 24,227.751 1.450 (2)

Note. PS = processing speed. Models were compared to the baseline model. The gray shading indicates the selected model for the respective WM tract. None of the lagged change
models fit significantly better than the baseline model (p < 0.01).

largely similar, with one exception: While the 2-year lagged
dynamic coupling effect from FA to processing speed remained
significant and positive for both the SLF (2.854, SE = 1.387,
p = 0.040) and the ATR (3.251, SE = 1.292, p = 0.012), the reverse
coupling effect from processing speed to FA for the SLF did
no longer reach significance (0.420, SE = 0.248, p = 0.091), and
should, therefore, be interpreted with caution.

DISCUSSION

The focus of the present study was to examine the dynamic
interplay of intra-individual changes in FA of 10 major
WM tracts with changes in processing speed. Specifically, we
examined whether changes in FA preceded changes in processing
speed by 1 or 2 years, and vice versa. In addition, we intended
to characterize the nature of age-related FA changes across
the investigated WM tracts, i.e., whether changes are regionally
distinct or globally shared. We used LCS models to estimate
inter-individual differences in intra-individual changes in FA
and processing speed in a large sample of healthy older adults
measured repeatedly across 4 years. We found that a model
assuming a single latent FA variable at each measurement
occasion resulted in a bad fit to the data. We, therefore, conclude
that FA changes are not fully shared across brain-wide WM
tracts, but differ depending on the WM tract under study.
Investigating these regional WM tracts separately, we found
significant mean declines in FA for five WM tracts (FMIN,
SLF, ATR, CCG, CST). The other tracts did not show any
significant mean changes over time, suggesting average stability
across 4 years. Importantly, three of these tracts (FMIN, SLF,
ATR) and also two of the tracts that displayed mean stability
(IFOF, UNC) revealed significant between-person variability

in the individual longitudinal trajectories, suggesting that in
these tracts, individuals diverged substantially from the mean
trend. Associating FA changes in this subset of WM tracts with
changes in processing speed, we found evidence supporting an
association of within-person changes in the SLF and ATR with
lagged changes in processing speed 2 years, but not 1 year,
later. For the SLF, we also found evidence for the reciprocal
relationship of changes in processing speed as a leading indicator
of changes in FA 2 years later. However, this effect was much
smaller in size, and not stable when partial MI was assumed (see
‘‘Limitations and Future Directions’’ section for a discussion). In
addition, both tracts showed positive associations between FA
and processing speed at baseline, indicating that individuals with
higher FA values in these tracts show higher processing speed
performance. In contrast, the FMIN, IFOF, and UNC—for which
we also observed significant inter-individual slope variance, did
not show any bivariate associations with processing speed.

Lagged Coupled Changes
The fact that we found support only for more distant, 2-year
time lags between preceding changes in FA and subsequent
changes in processing speed aligns well with the formulated
theoretical models that link brain and cognitive aging. For
example, the theory of cognitive reserve proposes that individuals
differ in the amount of cognitive capacity, e.g., in the use of
cognitive strategies or general mental flexibility, that enables
them to deal with accumulating brain damage, and ultimately
delay negative impacts on cognitive ability (Stern, 2002, 2009).
In a similar vein, the revised Scaffolding Theory of Aging and
Cognition (STAC-r) proposes that compensatory scaffolding
mechanisms, e.g., via the recruitment of secondary functional
brain networks, can buffer the immediate impacts of age-related
declines in brain structure and function on cognitive abilities
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TABLE 3 | Model fit indices from bivariate LCS models of FA in five WM tracts with processing speed (2 year-coupling).

Model fit Model comparison

Tract χ2(df) χ2/df RMSEA (95% CI) CFI BIC ∆χ2 (∆df)

FMIN Baseline model 427.070 (292) 1.46 0.045 (0.035–0.054) 0.966 24,189.362 -
FA→ PS 424.281 (291) 1.46 0.044 (0.035–0.053) 0.966 24,188.850 2.789 (1)
PS→ FA 426.716 (291) 1.47 0.045 (0.035–0.054) 0.966 24,191.285 0.354 (1)
Full coupling 423.427 (290) 1.46 0.045 (0.035–0.053) 0.966 24,190.273 3.643 (2)

IFOF Baseline model 427.278 (292) 1.46 0.045 (0.035–0.054) 0.965 24,214.512 -
FA→ PS 423.071 (291) 1.45 0.044 (0.035–0.053) 0.966 24,212.583 4.207 (1)
PS→ FA 427.095 (291) 1.47 0.045 (0.035–0.054) 0.965 24,216.607 0.183 (1)
Full coupling 422.943 (290) 1.46 0.044 (0.035–0.053) 0.966 24,214.732 4.335 (2)

UNC Baseline model 457.964 (292) 1.57 0.049 (0.041–0.058) 0.954 24,481.152 -
FA→ PS 457.521 (291) 1.57 0.050 (0.041–0.058) 0.954 24,482.986 0.443 (1)
PS→ FA 456.255 (291) 1.57 0.049 (0.041–0.058) 0.954 24,481.719 1.709 (1)
Full coupling 451.280 (290) 1.56 0.049 (0.040–0.058) 0.955 24,479.022 6.684 (2)

SLF Baseline model 471.856 (292) 1.62 0.052 (0.043–0.060) 0.954 23,951.350 -
FA→ PS 464.919 (291) 1.60 0.051 (0.042–0.059) 0.956 23,946.690 6.937 (1)
PS→ FA 456.875 (291) 1.57 0.050 (0.041–0.058) 0.958 23,938.645 14.981 (1)
Full coupling 447.505 (290) 1.54 0.048 (0.039–0.057) 0.960 23,931.552 24.351 (2)

ATR Baseline model 443.327 (292) 1.52 0.047 (0.038–0.056) 0.961 24,224.647 -
FA→ PS 434.948 (291) 1.49 0.046 (0.037–0.055) 0.963 24,218.545 8.379 (1)
PS→ FA 443.128 (291) 1.52 0.047 (0.038–0.056) 0.961 24,226.725 0.199 (1)
Full coupling 433.978 (290) 1.50 0.046 (0.037–0.055) 0.963 24,219.853 9.349 (2)

Note. PS = processing speed. Models were compared to the baseline model. Values printed in bold were significant at least at p < 0.01. The gray shading indicates the selected
model for the respective WM tract.

TABLE 4 | Results for best-fitting bivariate LCS models FA in five WM tracts with processing speed.

Baseline model Lagged full coupling model (2 years)

Parameter estimates/WM tract FMIN IFOF UNC SLF ATR

Bivariate correlations
Intercept FA, PS 1.451 (0.972) 1.303 (0.897) 0.865 (1.002) 1.754∗ (0.736) 2.482∗∗ (0.854)
Intercept FA, Slope PS 0.206 (0.155) 0.137 (0.157) 0.235 (0.162) 0.170 (0.145) 0.025 (0.188)
Intercept PS, Slope FA 0.022 (0.144) 0.086 (0.136) 0.239 (0.209) −0.024 (0.173) 0.131 (0.164)
Slope FA, Slope PS −0.009 (0.022) −0.024 (0.022) −0.006 (0.028) −0.037 (0.038) −0.090 (0.052)

Longitudinal coupling
FA→ PS - - - 2.570∗ (1.119) 3.030∗ (1.265)
PS→ FA - - - 0.607∗∗ (0.229) 0.109 (0.139)

Note. PS = processing speed. Parameter estimates are unstandardized, and adjusted for effects of age at baseline, education, and gender (on intercept and slope of both FA and PS).
Manifest FA scores were additionally adjusted for head motion at each measurement occasion. Values printed in bold were significant at ∗p < 0.05, ∗∗p < 0.01.

(Reuter-Lorenz and Park, 2014). Taken together, both theories
predict that healthy aging individuals should have sufficient
compensatory resources to level off brain atrophy for a certain
period of time, and thus maintain cognitive ability in the short
term. Consequently, if anything, only weak relations between
simultaneous changes in brain connectivity and processing speed
can be expected. In line with this proposition, the few existing
longitudinal studies did not find a relation between changes
in a measure of global (Charlton et al., 2010; Ritchie et al.,
2015) or regional WM microstructure (genu and splenium
of corpus callosum: Gorbach et al., 2017; fornix crus: Song
et al., 2018) and simultaneous changes in processing speed. One
exception is the study by Lövdén et al. (2014), who reported
a significant correlation of WM microstructure changes in the
corticospinal tract with changes in latent processing speed in very
old adults (81–103 years) across 2 years. This association was
very specific and remained after controlling for changes in the
other WM tracts (FMAJ, FMIN, CCG, SLF), and in global WM
or higher-order cognitive abilities (i.e., episodic memory, letter

and category fluency). The authors concluded that the tasks they
used to measure processing speed (i.e., digit cancellation, pattern
comparison) might have required a strong motor component.
At first glance, the motor component of the used tasks in the
present study does not seem to differ much from the study by
Lövdén et al. (2014). However, given that we only included tracts
with sufficient variance in change in the bivariate models, we did
not assess the relation between changes in CST and processing
speed. Considering the advanced age of the participants in this
study, it is also very likely that their compensatory resources
were already diminished, resulting in a more immediate impact
of WM degradation on processing speed.

In the present study, the finding of lagged coupled change
relations between FA and processing speed was limited to specific
WM tracts (ATR and SLF). And moreover, these tracts were
also the only ones showing significant baseline-associations with
processing speed.

First, the SLF is a long-range tract that can be anatomically
separated into several distinct parts (Kamali et al., 2014). In its
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entirety, the SLF is connecting intra-hemispheric frontal with
temporal, parietal and occipital regions (Catani et al., 2002).
In empirical studies, the SLF has been related to language
production (Dick and Tremblay, 2012), and visuospatial
processing (Shinoura et al., 2009; Vestergaard et al., 2011).
Moreover, Kerchner et al. (2012) found that FA in the SLF was
associated with processing speed, independent of the age of the
participants (age range 55–87 years). To measure processing
speed, the authors used a composite of speeded performance in
multiple visuospatial choice-reaction time tasks. In the present
study, we measured processing speed with four paper-pencil
tasks that all involved some aspect of visuospatial processing. For
example, the TMTA required participants to connect numbers
in an ascending order, and thus needed visuospatial attention
to locate the respective next number in the order on the sheet
of paper. It is thus possible that the SLF is specifically relevant
in supporting the visuospatial processing aspects of speeded
performance. Second, the ATR is an intra-hemispheric tract
projecting from the anterior and dorsomedial nuclei of the
thalamus to the frontal cortex (Coenen et al., 2012). The ATR
has been linked to attentional control (Ge et al., 2013), and
higher-order cognitive ability (Rossi et al., 2017). Specifically,
cross-sectional studies with healthy older adults have associated
inter-individual differences in WM microstructure of the ATR
to speeded performance in part B of the TMT (MacPherson
et al., 2017), and a processing speed composite of performance
in the IPT, and a letter- and digit comparison task (similar to the
LPS14 used here; Borghesani et al., 2013).

In addition, most comparable to the present study, Rabin
et al. (2019) investigated associations between global and tract-
specific WMmicrostructure at baseline with subsequent changes
in processing speed, measured by the DIGSY and TMTA, across
up to 7 years in healthy older adults (aged 63–90 years). The
authors found that lower global FA was significantly related
to subsequent declines in processing speed. However, tract-
specific associations between FA and processing speed did not
reach significance or were at least substantially diminished when
controlling for a modified measure of global FA (excluding the
respective tract of interest), suggesting an association of global
WM microstructure beyond tract-specific relationships. The
authors repeated these analyses across several other measures
of WM microstructure (e.g., mean diffusivity) and found the
same pattern of results, with one exception: the ATR showed
an independent association with changes in processing speed,
such that lower WM microstructure in this tract was associated
with steeper declines in processing speed. Altogether, the present
finding of lagged change associations being limited to the ATR
and the SLF might reflect changes in visuospatial or attentional
functioning underlying the specific tasks we used to measure
processing speed. Despite that—based on previous research—the
two tracts can be convincingly related to the tasks used in
the present study we would refrain from over-interpreting the
observed regional specificity. It could also be that the 2-year
lag is only just at the lower limit to reveal lagged coupled
associations between brain and behavioral changes. Accordingly,
one could assume that, for the other tracts, the associations would
appear more consistently with longer time lags. In addition,

and consistent with this idea, the LHAB sample is very well
educated compared to the Swiss population: While 15.1% of
the adults in Switzerland between 65 and 74 years have a
university degree, this was the case for 51.1% of the participants
in the LHAB sample (Bundesamt für Statistik, 2018). Previous
empirical studies have associated higher levels of education with
increased cognitive reserve, and thus longer maintenance of
cognitive ability (Foubert-Samier et al., 2012; Mungas et al.,
2018). Partially supporting this notion, higher levels of education
in the present study were associated with higher processing
speed performance.

Global vs. Regional Changes of WM
Microstructure
A second aim of the present study was to investigate whether
age-related FA changes are global, i.e., shared among brain-wide
tracts or local, i.e., show distinct changes between regional
tracts. A second-order LCS model estimating a latent FA
construct at each measurement occasion, which was based on
the shared variance among 10 WM tracts, did not show a
satisfactory fit. Even the estimation of a reduced model that
included only those WM tracts showing sufficient variance
in change did not prove to be a good representation of
the data. Therefore, we concluded that a global FA factor
is not tenable in the present sample. The advantage of
estimating latent constructs based on multiple indicators is
that the respective latent variable can be evaluated for MI
over time. This means that it is possible to test, whether
the construct of interest is comparable, i.e., is measuring the
same, across different measurement occasions. At least strong
MI is needed to allow for the meaningful interpretation of
changes in mean structures. In the present example, the latent
FA construct, besides not fitting the data well, did not show
strong MI. This means that the intercepts of the individual WM
tracts changed differently than the overall construct. To our
best knowledge, only three longitudinal studies have directly
investigated the factor structure of WM microstructure, and
evaluated MI over time (Lövdén et al., 2014; Ritchie et al.,
2015; Bender et al., 2016). These studies all included two
repeated assessments of WM microstructural microstructure
and processing speed and covered a time span of 2–3 years.
Comparable to the present study, Lövdén et al. (2014) reported
an unacceptable fit of a global FA factor estimated based on
five WM tracts, and testing MI further revealed that strong
MI did not hold. In contrast, Bender et al. (2016) and Ritchie
et al. (2015) found a global factor across multiple tracts to
be acceptable. However, while Bender et al. (2016) assumed
strong invariance, the authors did not report testing that
assumption. Furthermore, Ritchie et al. (2015) found—similar
to the present study—that strong invariance was not tenable
for their global FA factor. Since this lack of invariance did
not influence the main results of their analyses, however, the
authors decided to retain a global FA factor. Overall, these
findings tentatively suggest that age-related changes in WM
microstructure unfold differently across the specific WM tracts
of the brain—even though slopes are highly correlated between
the tracts. To derive a final conclusion, however, is difficult
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due to substantial between-study differences regarding the age
range of the participants, the WM tracts investigated, and
the method used to extract the FA values (or other indices
of WMmicrostructure).

Strengths
The present study is the first to include longitudinal
measurements of both WM microstructure and cognitive
ability in a large sample of healthy older adults across more than
two occasions. Strictly speaking, more than two occasions are
needed to estimate even linear change, since a straight line always
can be fit neatly through two estimates. Importantly, more than
two occasions are necessary to estimate lagged relationships
between developmental changes in two variables, and at least
four repeated measurements—as included here—are required to
estimate nonlinear trajectories of change (see King et al., 2018).
Although not the primary focus of the present investigation, we
also tested whether a nonlinear model of change would better
represent changes in processing speed and FA (both for the
global factor, and the individual tracts). Specifically, we explored,
whether an extension to the linear LCS models, where previous
levels were related to subsequent changes within a domain would
result in improved model fit. Such an autoregressive parameter
allows to model decelerating and accelerating change dynamics,
in addition to the overall latent change slope. However, this
extension did not show a good fit for either the processing
speed or the FA models, suggesting that 4-year changes in both
domains were better approximated with a linear trajectory.

Generally, the use of LCS models to estimate inter-individual
differences in intra-individual change is a major strength of
the present study. LCS models have the advantage that they
can be flexibly adapted to test complex dynamic relations
between within-person changes in two or more developmental
processes. Specifically, by estimating LCS between subsequent
measurement occasions, it becomes possible to estimate lagged
coupled changes. To the best of our knowledge, only one
study has estimated lagged couplings between changes in brain
structure and changes in cognitive ability, using bivariate LCS
models: in a sample of older adults (N = 123, age range:
60–90 years), Grimm et al. (2012) found that larger decreases
in lateral ventricle volume were related to larger declines in
short-term memory 1 year later.

Another advantage of LCS models, or rather of the SEM
framework in general, is that it allows the estimation of latent
constructs based on multiple observed indicators. In the present
study, we have used this approach to estimate processing speed
as a latent variable, and thus reduce the influence of task-specific
measurement error. Similarly, we were also able to directly test,
whether a global FA factor could capture changes in FA across
multiple tracts.

Another strength of the present study is the inclusion of retest
effects into the statistical model of processing speed. One of the
downsides of the longitudinal design is that repeated testing can
lead to confounding of actual age-related changes with retest-
related gains (Salthouse et al., 2004). Specifically, if not controlled
for, retest effects can lead to a positive bias of correlated change
estimates between two or more variables (Ferrer et al., 2005).

Here, having a longitudinal design with more than two time
points again is paramount, otherwise, retest effects cannot be
distinguished from effects of ‘‘real’’ change.

Finally, although it is well-known that head motion in the
scanner can substantially bias the estimation of FA and other
metrics derived from DW-MRI (Yendiki et al., 2014; Baum et al.,
2018), few studies actually take the effects of head motion into
consideration. In the present study, we applied a strict control
for head motion, by removing observations where participants
showed excessive motion in the scanner, and by entering head
motion as a covariate in the statistical analyses of individual FA
tracts. We found that head motion had significant effects on FA
across most of the WM tracts investigated here, such that more
motion was associated with lower FA values.

Limitations and Future Directions
Even though the present dataset was of a relatively large sample
size compared to other longitudinal studies that combined
neuroimaging with cognitive assessments, future investigations
of complex multivariate theoretical models of change, as tested
here, warrant much larger sample sizes. Since longitudinal
studies are time and resource-intensive, a fruitful solution to
increase sample size is to pool data across multiple sites. An
advantage of data pooling is that it allows researchers to test the
replicability of their results in a different sample, and thus gain
more insights into the generalizability of their findings (Jockwitz
et al., 2019). While the present study is one of the first to include
four repeated measurements of both neuroimaging and cognitive
data, studies with more follow-ups and different time intervals
are needed to explore the temporal dynamics of age-related
changes in the brain, and their impact on subsequent changes in
cognitive ability.

Furthermore, the age range in the present sample was
relatively heterogeneous (64–86 years), and skewed to
include more young-old than old-old participants. While a
heterogeneous age range is generally informative, it can bias
the estimate of change with age-related differences, especially if
the metric for change is time in study. We limited confounding
effects of this imbalance by controlling all of our statistical
models for the participants’ age at baseline. An alternative
solution would be to use age directly as the time metric. In the
present study, this was not possible due to few participants in the
older age categories.

While we carefully ensured to measure processing speed on a
latent, ability level, and tested for longitudinal MI of this latent
construct, we could only establish partial-strong MI. Our main
results remained similar for the most part when we assumed
strong MI in processing speed and compared it to a model
with partial-strong MI. One exception was the finding of 2-year
lagged couplings from preceding changes in processing speed
to subsequent changes in FA of the SLF, which was no longer
significant when assuming partial MI, and therefore probably
unreliable. Unfortunately, it is still largely unknown what degree
of violation of strong MI can be accepted in order to be able
to interpret changes in mean structures (Putnick and Bornstein,
2016). Future simulation studies are urgently needed to address
this question.
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Given the exploratory nature of our analyses, we performed a
large number of model comparisons. Therefore, we used a strict
significance threshold for these comparisons (i.e., p < 0.01), and
additionally relied on the BIC to select the best-fitting models.
For the selected final models, however, we did not apply any
statistical control for multiple comparisons. Little consensus
exists on how best to control for multiple comparisons in
complex multivariate SEM models, and hence, most researchers
do not apply any Type I error control (Smith and Cribbie, 2013).
One suggestion that has been made is to control for the total
number of hypothesis tests performed within a model (Cribbie,
2007), however, it is still up to the researcher to decide whether
this number is determined based on the structural model or
also based on the measurement model. In any case, the main
results presented here warrant future replication and should be
interpreted with caution at the present moment.

Finally, although DW-MRI is a highly popular and
sophisticated method in aging neuroscience research, the
derived estimates of WMmicrostructure are relatively unspecific
with regard to their neurobiological basis (Jones et al., 2013).
Many factors of the complex WM architecture, including
those unrelated to WM health (e.g., crossing or kissing fibers,
water concentration) can influence tensor-derived estimates
(Beaulieu, 2002; Jeurissen et al., 2013; Jones et al., 2013). Given
the exploratory nature of the present study, we decided to limit
our analyses to FA as an index of WM microstructure, since it is
comparatively well-researched and provides a global estimate of
the change in the WM fiber organization.

CONCLUSION

We conclude that regional changes in WM microstructure
precede changes in processing speed. Specifically, our results
support theoretical predictions of more distant 2-year, but not
1-year, time-lagged change associations of WM microstructure
and processing speed in some of the WM tracts under study.
Furthermore, our results did not support the proposition
of completely shared WM microstructure changes across the
brain. Future investigations are needed to further explore
the temporal dynamics between WM microstructure and
processing speed.
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