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Parkinson’s disease (PD) is a neurodegenerative disease with a complex etiology.
Several factors are known to contribute to the disease onset and its progression.
However, the complete underlying mechanisms are still escaping our understanding.
To evaluate possible correlations between metabolites and metallomic data, in this
research, we combined a control study measured using two different platforms.
For the different data sources, we applied a Block Sparse Partial Least Square
Discriminant Analysis (Block-sPLS-DA) model that allows for proving their relation,
which in turn uncovers alternative influencing factors that remain hidden otherwise. We
found two groups of variables that trace a strong relationship between metallomic and
metabolomic parameters for disease development. The results confirmed that the redox
active metals iron (Fe) and copper (Cu) together with fatty acids are the major influencing
factors for the PD. Additionally, the metabolic waste product p-cresol sulfate and the
trace element nickel (Ni) showed up as potentially important factors in PD. In summary,
the data integration of different types of measurements emphasized the results of both
stand-alone measurements providing a new comprehensive set of information and
interactions, on PD disease, between different variables sources.

Keywords: data integration, metabolomics, metallomics, Block-sPLS-DA, Parkinson’s disease

INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting mainly people older
than 50 years (de Rijk et al., 1997). As the world population ages, the total amount of people affected
by PD is increasing (Tanner and Goldman, 1996). Therefore, this disease will gain always more
interest in research. Up to now, the underlying mechanisms are not fully understood. Several factors

Abbreviations: AA, amino acids; Ala, alanine; Arg, arginine; Block-sPLS-DA, Blocks Sparse Partial Least Square
Discriminant Analysis; Cit, citrate; DGLA, dihomo-γ-linolenic acid; DRC, dynamic reaction cell; ESI, electrospray ionization;
FT-ICR-MS, Fourier transform-ion cyclotron resonance-mass spectrometry; Gln, glutamine; Glu, glutamic acid; Gly, glycine;
His, histidine; HMM, high molecular mass; ICP-MS inductively coupled plasma-mass spectrometry; Ile, isoleucine; IOS,
inorganic species; Leu, leucine; LMM, low molecular mass; m/z, mass-to-charge ratio; PD, Parkinson’s disease; Phe,
phenylalanine; PPE, protein precipitation extraction; ROS, reactive oxygen species; SEC, size exclusion chromatography;
SeM, selenomethionine; Ser, serine; sf, sector field; SOD, superoxide dismutase; Tyr tyrosine.
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influencing the onset of PD have already been found, highlighting
the multifactorial etiology of the disease. Environmental and
occupational factors like exposure to metals (Witholt et al., 2000;
Lucchini et al., 2007; van der Mark et al., 2015; Gunnarsson and
Bodin, 2017), pesticides and fungicides (Uversky, 2004; Hancock
et al., 2008) as well as genetic factors (Dawson, 2003; Gilks et al.,
2005), aging (Sofic et al., 1988; Gaeta and Hider, 2009), and
biological factors like aggregation and misfolding of proteins
(Paik et al., 1999; Uversky et al., 2002) seem to be involved in the
onset and in the progression of PD.

Various studies are discussing the involvement and changes
of several metals in biofluids of PD patients in comparison to
healthy controls (Jiménez-Jiménez et al., 1992; Forte et al., 2004;
Zhao et al., 2013; Sanyal et al., 2016; Maass et al., 2018). Therefore,
a great number of metals have been analyzed with varying results.

On the other hand, the metabolic changes through disease
are discussed in literature. Differing biofluids showed altered
concentration profiles within various compound classes.
Compound classes like sugars, fatty acids, and AAs (Wishart
et al., 2007; Okuzumi et al., 2019; Socha et al., 2019) or lipids
(Xicoy et al., 2019) were found to be affected through disease.

These fields of either metallomics or metabolomics alone
already show interesting results and changes and ongoing in
diseased individuals. Even more interesting are the possible
relations between these datasets within the same study population
opening new perspectives and hypothesis on this degenerative
disease. Therefore, hereby, we processed for the first time, to
our knowledge, the data integration of these different types of
measurements. The results may lead to even enhanced knowledge
of potential causative changes associated with the PD status.

The aim of this work was to integrate different variables,
determined by diverse methods of investigations, and related
to the PD patients. More specifically, we reprocessed previous
results from metabolomics and metallomics studies on the
samples set, as published in Willkommen et al. (2018a,b),
respectively, who have used the same set of 33 PD patients and
101 neurologically healthy controls. Therefore, the possible
explored relations between different parameters can deliver
additional new information on important biological processes
in PD that are impossible to uncover otherwise. The statistical
evaluations were built up between the “most important
m/z signals” from ESI-FT-ICR-MS analysis and the metal
concentration information and ratios information. The “most
important m/z signals” refer to the list of annotated masses
published in Willkommen et al. (2018a) and considered as
the list of metabolites obtained after the feature selection
algorithm (Supplementary Table S2). The metals considered
in this study are zinc (Zn) and the redox-active metals like
iron (Fe), copper (Cu), and manganese (Mn). Additionally,
the metallomic parameters refer to the species characterization
measurements and the amount of metals within AA fractions.
The data were evaluated with a Block Sparse Partial Least
Square Analysis (Block-sPLS). This analysis is suitable to
retrieve the mutual relation between different types of datasets
(in this case, metallomic–metabolomic data) with a specific
focus on variables selection. Moreover, this technique offered
several graphical outputs that enable better knowledge of

the relationships and correlation structures between the
data integrated.

MATERIALS AND METHODS

Chemicals
The purchased chemicals were as follows: MeOH from
CHROMASOLV R© LC-MS (Sigma-Aldrich, St. Louis,
United States), L-arginine from Sigma-Aldrich (>98% purity,
St. Louis, United States), Tris (Carl Roth, Karlsruhe, Germany),
MeOH (Merck, Darmstadt, Germany), elemental standards
(Perkin Elmer, Rodgau-Jügesheim, Germany), NH4Ac, human
serum albumin (99%), bovine-γ-globulin, bovine-apo-transferrin
(98%), dichloromanganese tetrahydrate (99.99%), citric acid,
reduced and oxidized glutathione, arginase, ferritin, and
β-lactoglobulin (each from Sigma-Aldrich, Steinheim, Germany).

Study Participants
A total of 134 samples of cerebrospinal fluid (CSF) were taken
by standardized lumbar puncture at the Cologne University
Hospital (Germany). Even though originally not intended for
scientific use, the samples were stored in the biobank of the
hospital. The procedure of lumbar puncture was performed
without problems and patients recovered quickly. Thirty-three
of the CSF samples were collected from patients diagnosed with
PD and 101 samples were derived from neurologically healthy
controls (Table 1). The control patients underwent lumbar
puncture after neurological symptoms (e.g., headache, dizziness)
to exclude diseases of the central nervous system. Regarding
the medication of the PD patients, they are divided into 18
patients without any PD-specific medication, 11 patients with
PD-specific medication (one or more of the following drugs:
L-dopa, Madopar R©, Clarium R©, Sifrol R©/Pramipexol, Azilect R©,
amantadine, and Artane R©), and two patients had electrodes for
deep brain stimulation.

Once lumbar punctuation had been performed, the
samples remained at room temperature for no longer than
6 h for routine diagnostics. Subsequently, the samples were
temporarily stored at -20 ± 1◦C and later at -80 ± 1◦C until
measurement. The count of erythrocytes was determined
in a semi-quantitative manner in a counting chamber
(negative = no erythrocytes, isolated < 5 erythrocytes/µl,+< 90
erythrocytes/µl, + + > 90 erythrocytes/µl, + + + > 350
erythrocytes/µl, plentiful = overlying erythrocyte layers). Only
samples with negative or isolated erythrocytes were involved in
the study. The study was approved by the Ethics Committee of

TABLE 1 | Characteristics of PD and controls.

Parkinson patients Healthy controls

Number of CSF samples n = 33 n = 101

Age average (years) 65.1 ± 12.9 44.8 ± 17.3

Sex (f/m) 10/23 63/38

Duration of disease (years) 1.39 ± 3.7 –
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the University Cologne (09.12.2014, no. 14-364). All patients
consented to scientific use of their CSF samples.

Metabolomics: Sample Preparation and
Measurement
Prior to FT-ICR-MS analyses, a PPE was performed following
the protocol of Willkommen et al. (2018a). The measurement
of metabolic features was acquired by means of FT-ICR-MS
(Solarix, Bruker, Bremen, Germany), equipped with a 12-
T superconducting magnet (Magnex Scientific, Varian Inc.,
Oxford, United Kingdom) and an ESI source (Apollo II,
Bruker Daltonics, Bremen, Germany) as shown in the detailed
description in Willkommen et al. (2018a).

Metallomics: Measurement
The procedure of determination of total concentrations of metals
by ICP-sf-MS and the species characterization by SEC-ICP-DRC-
MS is reported in Willkommen et al. (2018b).

Since SEC-ICP-DRC-MS measurements and the statistical
analysis showed especially the AA fraction to be the most
significant influencing factor in the differentiation of PD and
control, we decided to additionally separate AAs by the method
AAA-directTM. The method is explained in detail in Thermo
Scientific (2018). Fractions were collected manually from the
AAs Arg, Glu, Gln, Ala, Gly, Ser, Ile, Leu, SeM, His, Phe, and
Tyr. These fractions were further analyzed using ICP-sf-MS to
determine the elemental concentration of Cu, Fe, Mg, Mn, Ni,
Sr, and Zn. The samples were mainly diluted to obtain a ratio of
1:25 (but also 1:100, 1:50, and 1:33 depending on the available
sample volume). An eight-point calibration was carried out with
concentrations of 10, 50, 100, 250, 500 (ng/L), 1, 5, and 10 (µg/L).
Moreover, Rh was added as internal standard and was constantly
introduced with a final concentration of 1 µg/L. The instrumental
settings of ICP-sf-MS were the following: 1170W RF power,
16 L Ar/min plasma gas flow, 0.99 L Ar/min nebulizer gas flow,
and 0.64 L Ar/min auxiliary gas flow. The analytes 24Mg, 25Mg,
55Mn, 56Fe, 60Ni, 63Cu, 66Zn, 87Sr, and 103Rh were measured in
medium resolution.

Data Pre-treatment and Statistics
We integrated the two different datasets with a vertical
integration method (Yu and Zeng, 2018). We used the
list of most informative metabolites (in total 243 masses,
Supplementary Table S2) obtained after applying the feature
selection algorithm (Relief) to the entire dataset, as detailed in
Willkommen et al. (2018a).

For the metallomic measurements, we used the total
concentrations and species characterization of Cu, Fe, Mn,
and Zn as well as metal determinations in AA fractions; the
data are presented in Willkommen et al. (2018b). The data
were vertically integrated together in order to get for each
sample two different measurement typologies: metallomic and
metabolomics. The dataset was unite variance (UV) scaled and
analyzed through a Block-sPLS that represents a suitable tool for
data integration (MixOmics package, RStudio Version 1.0.136©
2009–2016 RStudio, Inc.). The model imposed sparseness within

the latent components and this is going to improve the variables
selection while it performed simultaneous dimension reduction.
On the other hand, the block permitted to aggregate two
different datasets (Wold, 1966; Tenenhaus, 1998; Tenenhaus
and Tenenhaus, 2011). We tested its ability to classify and to
discriminate. The classification performance was evaluated by
using a sevenfold cross-validation. The balanced error rate (BER)
has been calculated to evaluate the model performances. BER
is appropriate in case of an unbalanced number of samples
per class, as it calculates the average proportion of wrongly
classified samples in each class (Rohart et al., 2017). As a result,
the model inferred strongly interrelated masses and metallomic
variable. By further studying and evaluating lists of correlated
variables, we found them to show a particular alteration in PD
patients. They were also found to drive the separation between
control and PD patients. Additionally, for each of the most high-
related metallomic and metabolomics data, we run a general
linear model (GLM). The p values were calculated with the
confounding factors (age and gender) and they were adjusted
with the Benjamini–Hochberg test. The experimental design
being unbalanced, we estimated the least squares means (LS-
means) that correspond to the specified effects for the linear
predictor part of the model. The elaborations were done using
SAS version 9.3 (SAS Institute Inc., Cary, NC, United States).
The data were visualized by different box plots. Moreover,
we focused on the reduced list of biomarkers (Supplementary
Table S1) already presented in Willkommen et al. (2018a) and we
investigated the metallomic features that were most related with
the presented m/z values.

RESULTS AND DISCUSSION

The neurodegenerative disease PD has several factors influencing
its onset and progression. Metals, as well as metabolites, show
altered concentrations in the human biofluids such as blood,
serum, urine, and CSF. In particular, CSF is a suitable biofluid
to investigate changes in neurodegenerative diseases. It is in
close contact with the brain, and therefore directly connected
to the extracellular space of brain parenchyma (Blennow et al.,
2010). Therefore, the metabolic changes within the brain are
likely to be reflected in CSF (Michalke and Berthele, 2011).
The investigations done within the same sample set to obtain
the changes in metallomics and metabolomics between PD
patients and controls have already been published separately
in Willkommen et al. (2018a,b). The present work aimed to
correlate the results of both studies to explore new relations
between metals and metabolites, thereby opening new hypotheses
to explain the mutual relations between different variables. The
statistical evaluation of the data could prove the interrelation
between the different data (Supplementary Figure S1). On
top of the data management, we could confirm a biological
agreement between the most correlated variables. The Block
sPLS-DA analysis (Figure 1A) visualizes the two main blocks of
data (metallomics/metabolomics) and how they could separate
the control versus PD patients. The interrelationship between
the two initial datasets was found to be at a level of about
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FIGURE 1 | Statistical modeling of the two datasets. (A) Map of the samples belonging to the block of metallomics and metabolomics that showed separately the
control vs. disease separation; (B) the correlation values for the PD patients and Control divided for the metabolomic and metallomic blocks showing increased
concentrations/ratios for either PD or Control; and (C) classification performance, the error rates stabilized after the second component.
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TABLE 2 | The first group of related variables and their p values (test the
difference, Control vs. Disease).

Type of measurement Variables Adjusted p valuea

Metallomics IOS (Zn) 0.0146

Metallomics AA(Fe) vs. AA(Cu) 0.0199

Metallomics Cit(Zn) vs. AA(Cu) 0.6381

Metallomics Cu (HMM%) 0.1081

Metabolomics p-cresol sulfate 0.0006

Metallomics IOS(Zn) vs. AA(Cu) 0.1781

Metallomics Fe (IOS) 0.6447

Metallomics LMM(Mn) vs. LMM(Cu) 0.0261

Metallomics AA(Mn) vs. LMM(Cu) 0.3393

Metallomics Fe (LMM + IOS) 0.7717

Metallomics IOS(Zn) vs. AA(Cu) 0.5994

Metallomics total c(Fe) vs. LMM(Cu) 0.0069

Metallomics LMM/IOS(Zn) vs. AA(Cu) 0.3438

Metallomics LMM(Mn) vs. AA (Cu) 0.0223

Metallomics IOS(Fe) vs. AA(Cu) 0.1049

Metallomics total c(Fe) vs. AA(Cu) 0.0245

Metallomics IOS(Mn) vs. AA (Cu) 0.0278

Metallomics total c(Fe) vs. AA(Cu) 0.1349

The p values are calculated with the confounding factors (age and gender), and
they are adjusted with Benjamini–Hochberg. AA, amino acid; c, concentration; Cit,
citrate; HMM, high molecular mass; IOS, inorganic species; LMM, low molecular
mass. aModels with the confounding factors (age and gender).

47%. Taking into account the different data origin (already
statistical reduced) and the different typology of the data, this
correlation value is robust/strong enough to allow for further
statistical evaluation (illustrated in the Supplementary Figure
S1). The analysis has three valid components, absorbing 25%
(for the metabolomic dataset) and 23% (for the metallomic
dataset) of the total variance. The validity of the component is
presented in Figure 1C. The separation between control and
PD patients was driven by different variables ranked from the
most important to the least important (Figure 1B). The most
important variables (with the highest-ranking score) defined the
structure of the connection between the most altered variables
in the two classes. Mostly the metallomic variables are on the
top of such list.

Among the top of the most important variables (Figure 1B),
we considered the metallomic variables that were more related to
the already published biomarkers. Based on different strengths
of the loadings values, which determined the rank, we listed
the metallomic and past biomarkers in two different tables
(Tables 2, 3). In Table 2, we have listed the 18 variables within the
95th percentile of the most important variables. Table 3 contains
the 10 variables within the 50th and 95th percentile of the most
important variables. The percentiles were calculated based on the
loading values. The listed p values were calculated, including,
in the models, the covariates (age and gender) to control
the demographic influence. Moreover, they were corrected by
Benjamini–Hochberg that controls the false discovery rate.

Within the 95th percentile of the most important variables
(yellow box in Figure 2), mainly metallomic parameters are
involved. The first block (Table 2) of strong positive correlations

TABLE 3 | The second group of related variables and their p values (test the
difference, Control vs. Disease).

Type of measurement Variables Adjusted p valuea

Metallomics Ni (Glu) Ni associated with
glutamate

0.6634

Metallomics Ni (Ile) 0.3033

Metabolomics Valerenic acid 0.1180

Metabolomics Mannosylglycerate 0.4745

Metabolomics Quinic acid 0.0291

Metallomics Cu (His) Cu associated with
histidine

<0.0001

Metabolomics Arachidonic acid 0.0013

Metabolomics Decanoic acid 0.7490

Metallomics Ni (Arg) Ni associated with
arginine

0.1524

Metabolomics 10-Hydroxydecanoic acid 0.0125

The p values are calculated with the confounding factors (age and gender) and
they are adjusted with Benjamini–Hochberg. aModels with the confounding factors
(age and gender).

arose among the significantly differentiating ratios of size
fractions. Additionally, specific fractions of the SEC analysis
of Fe, Cu, Mn, and Zn were involved in these correlations
as well. For the strongest relations, we presented also the box
plots for individual variation (Figure 3). All parameters show
an increased loadings value in PD patients. The close linkage
among the variables is attributable to the involvement of LMM
fractions of Cu within the ratios or more specifically the AA
fractions of Cu as described in Willkommen et al. (2018b).
Figure 2 shows that all the 13 ratios with a Cu fraction in
the denominator are increased in PD patients. Moreover, the
important role of the redox-active trace element Fe is underlined.
This element is also found within these highly significant
correlations. The size fractions of Fe, as well as all ratios
having Fe in the numerator show increased concentration/rate
in PD patients, as illustrated in the respective box plots in
Figure 3. Both trace elements (Cu, Fe) evolve their toxicity
through the ability to form ROS via Fenton reaction. Within the
cascade of oxidative reactions hydroxyl radicals are synthesized
leading to lipid peroxidation. Moreover, metallo-enzymes with
Cu or Fe in the active center may contribute to altered redox
balance and are known to contribute to the neuropathology of
diseases like PD. Additionally, Cu as well as Fe are involved
in the abnormal protein aggregation which is a major hallmark
of neurodegenerative diseases (Gaeta and Hider, 2009). The
dyshomeostasis of various elemental balances seems to be
impaired in PD and may be an attributor and major influence
on disease development. The strict regulation of metal ratios was
already established to preserve proper brain function (Ahmed
and Santosh, 2010; Zheng and Monnot, 2012; Zhao et al.,
2013). Additionally, this block of metallomic parameters shows
a strong positive correlation with the metabolite p-cresol sulfate
in PD CSF samples. The compound p-cresol sulfate is linked
to the neurological disease multiple sclerosis (Cao et al., 2000).
Moreover, this metabolite is a metabolic waste product that can be
found in CSF (Cassol et al., 2014). Metabolic waste products, like
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FIGURE 2 | The resulting loadings plot structure (in the first and second component) aimed at highlighting the multiple interrelations between the metallomic (green
dots) and the previously defined biomarkers (red dots). The variables are up-regulated in PD. The yellow box contains the variables presented in Table 2, while the
orange box contains the variables listed in Table 3. AA, amino acid; Arg, arginine; Cit, citrate; DGLA, dihomo-γ-linoleic acid; Gln, glutamine; Glu, glutamic acid; His,
histidine; HMM, high molecular mass; Ile, isoleucine; IOS, inorganic species; LMM, low molecular mass; Phe, phenylalanine; SeM, selenomethionine; Ser, serine.

p-cresol sulfate, show increased accumulation also in Alzheimer’s
disease and, therefore, are a hallmark of several age-associated
neurodegenerative diseases (Nedergaard, 2013). Our results also
indicated a marked increase in the concentration of p-cresol
sulfate in CSF (box plot in Figure 3). The compound p-cresol
sulfate is a breakdown product of Tyr and phenylalanine and
therefore also closely connected with the AAs and, by extension,
the AA fractions and their ratios. Thus, the close connection
of this metabolic waste product with the AA size fractions of
the species characterization supports the effectiveness of our
analyses. The increase of metabolic waste is paralleled by an
increase of AAs in CSF.

Apart from the ratios of various elemental balances, in
the second block, we found various correlations between the
fatty acid metabolites arachidonic acid, decanoic acid, 10-
hydroxydecanoic acid, valerenic acid, and quinic acid with
various metals analyzed within the AA fractions. A list of these
correlating parameters is gathered in Table 3. The fatty acids are
highly correlated through the lipid metabolism within human
biology. In addition, correlations to the redox-active metals Cu
and Fe are involved. As already mentioned, both metals are
essential trace elements in the human body. But if they are
in excess, they can be deleterious to the metabolism through

ROS (Gaeta and Hider, 2009). The fatty acid decanoic acid was
found with increased concentration within the PD-CSF samples
in our study (Willkommen et al., 2018a). Hughes et al. (2014)
exposed neuronal cells with decanoic acid and identified an
increased catalase activity after 6 days of exposure. Catalase
is an antioxidant compound removing the hydrogen peroxide
produced by SOD (Scibior and Czeczot, 2006). In humans, three
forms of SOD are present, including the Cu-Zn-SOD. This latter
SOD is a metallo-enzyme, which is known to protect against
oxidative stress. The increased Cu associated with histidine
might be a part of this SOD metallo-enzyme and it is positively
correlated with increased concentration of decanoic acid. Both
compounds are metabolically linked closely to each other and
they can hint increased oxidative stress conditions in PD patients.
Increased oxidative stress is a intensively discussed influencing
parameter in neurodegenerative diseases (Andersen, 2004; Kim
et al., 2015; Liu et al., 2017). In addition to Cu and Fe, the
essential trace element Ni is associated with the fatty acids. Ni
was measured in the manually taken fractions of AA analysis
and seems to be associated with them. The metal Ni is redox
active, as are Fe and Cu, and it is part of several metallo-
enzymes in which it acts as the catalytic center, e.g., in SOD
(Ryan et al., 2015) and acetyl-CoA-synthase (Boer et al., 2014;
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FIGURE 3 | Box plots of the individual variations in PD compared to control for the strongest correlating parameters. All concentrations/ratios are increased in PD.

Can et al., 2014; Manesis et al., 2017). In this context, the positive
relations between fatty acids and Ni found within AAs fractions
is of great importance, since the metallo-enzymes acetyl-CoA-
synthase is necessary for the production of acetyl-CoA, which
in turn is a major brick in fatty acid synthesis (Ikeda et al.,
2001). Therefore, the positive correlation between increasing
activity of acetyl-CoA-synthase with Ni in its catalytic center to
produce acetyl-CoA along with the increasing concentrations of
fatty acids seems to be closely related. This connection needs
further investigations to uncover the real influence of Ni in
PD. Especially, the influence of Ni in connection to acetyl-
CoA-synthase and fatty acid synthesis seems to be a promising
leverage point. Ni was already investigated in various biofluids

of PD patients in comparison to controls. Maass et al. (2018)
determined an elemental fingerprint in CSF samples. The results
could not identify a significant difference in the Ni level, but
ascertained the metal among others for sufficient classification
between PD and control (Maass et al., 2018). Furthermore, a
study investigating various metals in serum and plasma showed
significant increased Ni concentrations in serum as well as in
blood (Forte et al., 2005). Both studies showed increased Ni
concentrations in PD identifying the trace element as a possibly
important contributor to PD progression, which is in agreement
with our findings.

The data integration of complementary Omics approaches,
namely, metallomics and metabolomics, was done to enhance
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knowledge of potential causative changes associated with PD.
Sophisticated statistical models were optimized and applied
to prove the correlations and uncover alternative influencing
factors. We identified two groups of correlating variables
highlighting the impact of metallomic as well as metabolomic
parameters to disease development. The integrative metabolomic
and metallomic analysis showed the importance of such models.
Connections between parameters of various types of analyses
are revealed and give a broader overview. In this research, our
data integration opens new perspectives and shows once more
its important impact on data interpretation and on disclosing
new information about biological phenomena that would go
unnoticed otherwise.
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