
REVIEW
published: 08 January 2020

doi: 10.3389/fnagi.2019.00356

Edited by:

George E. Barreto,
University of Limerick, Ireland

Reviewed by:
Vijay Karkal Hegde,

Texas Tech University, United States
Qisheng Tu,

Tufts University School of Medicine,
United States

*Correspondence:
Yi Zeng

zengyi_xyneuro@csu.edu.cn

Received: 15 August 2019
Accepted: 05 December 2019
Published: 08 January 2020

Citation:
Chen R, Shu Y and Zeng Y

(2020) Links Between Adiponectin
and Dementia: From Risk Factors to

Pathophysiology.
Front. Aging Neurosci. 11:356.
doi: 10.3389/fnagi.2019.00356

Links Between Adiponectin and
Dementia: From Risk Factors to
Pathophysiology
RuiJuan Chen1, Yi Shu2 and Yi Zeng1*

1Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, China, 2Department of Neurology,
Second Xiangya Hospital, Central South University, Changsha, China

With the aging population, dementia is becoming one of the most serious and
troublesome global public health issues. Numerous studies have been seeking for
effective strategies to delay or block its progression, but with little success. In
recent years, adiponectin (APN) as one of the most abundant and multifunctional
adipocytokines related to anti-inflammation, regulating glycogen metabolism and
inhibiting insulin resistance (IR) and anti-atherosclerosis, has attracted widespread
attention. In this article, we summarize recent studies that have contributed to a better
understanding of the extent to which APN influences the risks of developing dementia
as well as its pathophysiological progression. In addition, some controversial results
interlinked with its effects on cognitive dysfunction diseases will be critically discussed.
Ultimately, we aim to gain a novel insight into the pleiotropic effects of APN levels in
circulation and suggest potential therapeutic target and future research strategies.
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INTRODUCTION

With the aging population, over 43.8 million people worldwide are suffering from dementia (GBD
2016 Dementia Collaborators, 2019). According to epidemiological statistics and estimates, by
2050, the population with dementia is predicted to triple worldwide (GBD 2016 Disease and
Injury Incidence and Prevalence Collaborators, 2017). Furthermore among all chronic diseases,
dementia is one of major causes leading to disability and dependance. Dementia will be one of the
most serious and troublesome global public health issues (Alzheimer’s Association, 2013; GBD
2016 Disease and Injury Incidence and Prevalence Collaborators, 2017). The two most common
forms of dementia are Alzheimer’s disease (AD) and vascular dementia (VD), accounting for 60%
and 30% of dementia, respectively (Kalaria et al., 2008; Crous-Bou et al., 2017). Now, due to the
rapid aging of the global population and the prolonged life expectancy, dementia has become a
focus issue attracting global attention. This disease imposes a considerable burden on individuals,
their families, and society.

AD and VD are distinct diseases with potential overlapping metabolic dysfunction. They
share some common risk factors, pathogenesis, and clinical features (Haan and Wallace, 2004).
For instance, aging, sex, genetic factors, rate, and vascular factors, including hypertension,
diabetes, dietary fat intake, metabolic syndrome (MetS), high cholesterol, stroke, and exercise are
their common risk factors (Figure 1); peripheral and neuroinflammatory, IR, energy metabolism
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FIGURE 1 | Risk factors for VD and AD. AD, Alzheimer’s disease; VD, vascular dementia. AD and VD share some extremely similar vascular factors, including
hypertension, diabetes, metabolic syndrome, stroke, etc., which are closely related to adiponectin.

disorder, and oxidative stress are their common pathogenesis;
cognitive and behavioral dysfunctions are their common
clinical features.

APN is one of the most abundant adipocytokines. APN
plays an important role in regulating vasodilation, resisting
inflammation and anti-arterial atherosclerosis, increasing insulin
sensitivity, and regulating glycogen and lipid metabolism. In this
review, we summarize and discuss the latest advances in the
association between APN and dementia, from the risk factors to
potential pathophysiological mechanisms of dementia, hoping to
explore a new way to address the pathophysiological mechanism
associated with dementia.

ADIPONECTIN

Adiponectin (APN) is a fat-derived hormone that was first
isolated from rat adipocytes by Scherer et al. (1995). Extensive
attention was attracted as a key messenger for a connection
between adipose tissue and other metabolically related organs.
It is a 30-kDa protein, also known as ACRP30, apM1, adipoQ,
or GBP28, containing 244 amino acids with an N-terminal
collagen-like domain and a C-terminal complement factor
C1q-like globular domain (Turer and Scherer, 2012). There
are three different complexes of APN in the blood circulation:
hexamers, trimers, and high molecular form (HMW; Aso
et al., 2006; Wang and Scherer, 2016). Different forms own
different biological activities. In related diseases, HMW
APN or HMW APN/total APN may be a more effective
indicator of insulin sensitivity (Aso et al., 2006). It works
by binding to three receptors: AdipoR1, AdipoR2, and
T-Cadherin. The three receptors are commonly expressed
throughout the body, including adipose tissue, skeletal
muscle, liver, pancreas, heart, blood vessels, and endothelial

cells (Kiliaan et al., 2014). APN receptors have also been
found in hippocampus, hypothalamus, and brainstem, and
AdipoR1 expression is more pronounced in the brain (Letra
et al., 2019b).

APN participates in regulating fatty acid and glucose
catabolism and sensitizing cellular to insulin (Gustafson, 2010;
van Himbergen et al., 2012; Letra et al., 2019b). APN
has been repeatedly reported that it is negatively correlated
with IR, body mass index (BMI), type 2 diabetes mellitus
(T2DM), and cardiovascular disease. All these factors can elevate
dementia risk (Wang and Scherer, 2016). In addition, APN
exerts anti-inflammatory effects by decreasing the production
of pro-inflammatory cytokines, including interleukin-6 (IL-6),
interferon γ (INFγ) and tumor necrosis factor α (TNF-α),
meanwhile increasing interleukin-1 (IL-1) and interleukin-10
(IL-10) expression (Brochu-Gaudreau et al., 2010). Furthermore,
it reduces IR in the brain, but also in peripheral organs.
Moreover, the role of APN in dementia with neurodegenerative
symptoms has been confirmed in many studies.

DEMENTIA

Dementia delineates a clinical syndrome that is characterized by
a series of memory difficulties, language disorders, psychological
and mental changes, and impaired activities of daily living (Burns
and Iliffe, 2009). AD is an irreversible and disabling progressive
neurodegenerative disease owing to neuronal and synaptic loss.
It is sporadic or shows modest familial clustering. AD tends to
be more insidious than VD. It is similar to the symptoms of
‘‘normal aging’’ memory loss or communication disorders, and
personality or emotional changes in the early states (Robinson
et al., 2015). The diagnostic criteria for AD have been recognized
extensively. Hallmarks of neuropathology in AD include deposits
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of amyloid-β (Aβ) peptide extracellularly and accumulation
of hyperphosphorylated tau (p-tau) in neurofibrillary tangles
(NFTs; Dubois et al., 2016; Crous-Bou et al., 2017). Therefore,
this provides detailed information on the molecular pathogenesis
of AD. Then, recently, a great deal of effort have been
undertaken targeting these pathological mechanisms in an
attempt to find potential therapeutic point for AD, especially
focusing on the metabolism of the Aβ peptide (Citron, 2010;
De Strooper et al., 2010).

Although second only to AD, VD remains an important
form of dementia plaguing the elderly population. It is a
progressive disease caused by a decreased blood flow into
the brain that affects cognitive ability as well as executive
function. It is the most severe form of vascular cognitive
dysfunction (VCI; Gorelick et al., 2011), which is defined
as cognitive function alterations caused by various vascular
factors (Hachinski and Bowler, 1993). According to the
contribution of vascular pathology to dementia, VD is classified
as different subtypes, including cortical VD, subcortical
VD, strategic infarct dementia, hypoperfusion dementia,
hemorrhagic dementia, hereditary VD (e.g., CADASIL), and
AD with cardiovascular disease (O’Brien and Thomas, 2015).
However, the most common causes of vascular brain injury
or infarction are atherosclerosis and cardiogenic embolism,
while the cognitive impairment caused by microinfarcts in
the cortex and subcortex is mostly attributed to cerebral
small vessel disease characterized by arteriosclerosis and
lacunar infarction (O’Brien and Thomas, 2015). Accurate
diagnosis of VD relies on assessment of clinical symptoms,
neuropsychological measurements, and neuroimaging and
final pathological confirmation (Kalaria, 2016). Numerous
cerebrovascular disease (CVD) causes stroke injury and other
tissue perfusion changes, along with neurocognitive disorders,
behavioral symptoms, motor abnormalities, and autonomic
dysfunction (Kalaria, 2018).

AD, VD, or CVD has common risk factors including
obesity, hypertension, diabetes, IR, hyperlipidemia, and
hyperhomocystinemia (Fillit et al., 2008; Craft, 2009; Purnell
et al., 2009). Therefore, learning more about the risk factors
and the mechanism factors contributing to dementia could
promote new ways to prevent, improve, or delay the progression
of dementia.

APN AND MULTIPLE RISK FACTORS OF
DEMENTIA

Due to a tremendous increase in dementia and the lack of
effective treatment, it is urgent to identify all the risk factors
that accelerate or inhibit the cognitive impairment process.
In many previous studies, several important risk factors were
analyzed, including hypertension, diabetes mellitus, dyslipidemia
and obesity at midlife, atherosclerosis, stroke, genes, and other
factors (aging, low levels of education, smoking, depression
and physical inactivity, etc.; Baumgart et al., 2015). AD and
VD share the common risk factors especially vascular risk
factors (Gardener et al., 2015). These common vascular risk
factors indicate a correlation and potential interaction between

AD and vascular pathology; however, the deep mechanism
is unclear.

Some studies have suggested that the clinical manifestations of
dementia are serious when vascular diseases co-exist (Snowdon
et al., 1997; Jellinger and Attems, 2015). Identifying and
reducing risk factors are major strategies for primary prevention.
Here, we review the current research progresses on the
dementia risk factors, as summarized in Figure 1 (Kalaria
et al., 2008; Song et al., 2014; O’Brien and Thomas, 2015;
Crous-Bou et al., 2017).

Aging
Aging is interrelated with progressive declines in physiological
function, which leads to multiple chronic diseases and frailty
(Kirkland, 2013). Undoubtedly, dementia is an age-related
disease. Some epidemiological studies have shown that between
65 and 90 years old, even in people aged 90 years and older,
the incidence of all-cause dementia increases exponentially
with age and doubles every 5 years (Jorm and Jolley,
1998; Corrada et al., 2010), Systemic decline with aging is
characterized by various alterations, including mitochondrial
dysfunction, cellular senescence, metabolic declines, adipose
tissue dysfunction, IR, chronic sterile inflammation, and
dysregulated nutrient sensing (Stout et al., 2017). Notably,
IR and chronic low-grade inflammation are two major
features of aging that occur nearly in most age-related
diseases, such as dementia, diabetes, arthritis, CVD, and
cancer. Besides, along with aging, adipose tissues undergo
significant changes in distribution, abundance, endocrine
signaling, and cellular composition. They play a central
role in the development of IR, inflammation, metabolic
dysfunction, and regenerative capacity (Palmer and Kirkland,
2016). As one of the most abundant adipocytokines secreted
by adipose tissue, APN has versatile properties to positively
influence these fundamental aging mechanisms. It is well
known as a modulator in improvement of insulin sensitivity,
inhibition of systemic inflammation, regulation of lipid and
glycogen metabolism, and reduction of atherosclerotic processes
(Brochu-Gaudreau et al., 2010). Numerous epidemiologic
researches have indicated that low-circulating levels of APN are
associated with many age-related metabolic disorders including
T2DM, obesity, and cardiovascular disease (Arita et al., 1999;
Lindsay et al., 2002, 2003). Besides, macrophage is crucial
to regulate the aging process and prominently contribute to
inflammatory and immune responses, but also helps maintain
metabolic homeostasis (Biswas and Mantovani, 2012). It
is reported that APN expressed in macrophages improves
insulin sensitivity and protects against inflammation and
atherosclerosis (Luo et al., 2010). Reduced IR and inflammation
appear to be closely associated with life span (Franceschi
et al., 2005; Ewald et al., 2018). In addition, mitochondria
impairment increases with age, leading to age-associated
disease phenotypes and senescense (Kauppila et al., 2017).
Iwabu et al. (2010) dedicated that decreased levels of APN
and AdipoR1 in obesity may play causal roles in IR and
mitochondrial dysfunction seen in diabetes. Several recent
studies suggest that mitochondrial dysfunction is linked to
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impairment of insulin sensitivity and decreased APN secretion
in adipocytes (Koh et al., 2007; Wang C. H. et al., 2013).
Considering these evidences, APN might be a key factor in
aging pathway.

Hypertension
Emerging as a leading cause of age-related cognitive dysfunction,
hypertension is known to be linked to VD, and is also
associated with AD and other adverse cognitive outcomes
(Crous-Bou et al., 2017; Iadecola and Gottesman, 2019).
These evidences primarily come from many epidemiological
studies, which strongly support the idea that hypertension
is clearly correlated with steeper cognitive decline. But this
adverse effect mainly occurs in middle age, early stage in
dementia (Kennelly et al., 2009), while some studies show that
later-life hypertension may help to prevent cognitive decline
(Kennelly et al., 2009; Corrada et al., 2017). Deficit of nitric
oxide (NO) derived from endothelial NO synthase (eNOS)
and endothelial dysfunction is one of the vital mechanisms
for hypertension to affect cerebral blood flow and lead
to cognitive decline (Delles et al., 2004). Endothelial cells
secrete a variety of vasodilators (e.g., NO, prostaglandins)
and vasoconstrictors (e.g., endothelin ET, thromboxane A2),
thereby regulating vasoconstriction and altering cerebral
perfusion (Vanhoutte et al., 2017). Meanwhile, the endothelium
is also essential to maintain the blood–brain barrier (BBB)
for bidirectional molecular transmission between brain and
other organs of the body (Sweeney et al., 2019) and exerts
crucial trophic effects on brain cells (Marie et al., 2018).
Previous studies demonstrated that hypertension causes severe
damage to vascular endothelial cells, which in turn leads to
BBB permeability changes, dysfunction of cerebral vascular and
perivascular, and brain structural failure, including subclinical
brain infarcts, white matter hyperintensities, and cerebral
microbleeds (Iadecola and Gottesman, 2019). Furthermore,
vascular injury and perivascular dysfunction caused by
hypertension may impair the Aβ disposal and accumulation.
Conversely, loss of NO bioavailability associated with vascular
dysfunction may also contribute to the promotion of increased
Aβ and amyloid formation, which is a marker in AD. APN
decreases the risk of hypertension and improves cognitive
impairment by stimulating NO production. It promotes
NO release via AdipoR1 and AdipoR2 and inhibits cerebral
inflammatory response through adenosine monophosphate-
activated protein kinase (AMPK)/eNOS signaling pathway
activation (Shibata et al., 2004). Increased NO reduces
platelet aggregation and elevates vasodilation regulating
cerebrovascular microcirculation. In addition, APN could
suppress amyloid-β in mice (Jian et al., 2019). Waragai et al.
(2016) have suggested a possible positive effect of APN by
finding that higher cerebrospinal fluid (CSF) level of APN is
related with lower amyloid and tau burden. Consequentially,
APN could decrease the risk of hypertension and improve
vascular cognitive impairment. Despite this, the interaction
between APN and hypertension, one of the risk factors in
dementia, still has many unsolved mysteries that require
further reveals.

Obesity
Obesity is another independent risk factor of dementia in the
diverse adult urban population. Traditionally, obesity refers to
an increase in whole body mass, which cannot analyze body
composition or distinguish between subcutaneous and visceral
fat, while excessive accumulation of visceral fat can better
illustrate metabolic abnormalities (Duvnjak and Duvnjak, 2009).

Overweight and obesity are the cornerstones of vascular
risk contributed to various diseases. BMI, waist circumference,
and waist-to-hip ratio are widely quantitative measurement
methods to assess obesity, and the BMI is the most effectively
popularized in clinic (over 30 kg/m2). Significant increase
in abdominal circumference means central adiposity or
abdominal obesity, which is more associated with visceral
fat deposits and has a stronger relationship with adverse
metabolic outcomes (Luchsinger, 2008). Abdominal obesity,
hypertension, dyslipidemia, and IR are collectively defined
as MetS. MetS is a systemic inflammatory response, which
is a cluster of risk factors interrelated with cardiovascular
disease and T2DM (Grundy et al., 2005; O’Neill et al.,
2016). Epidemiological evidence suggests that MetS may
also be linked to cognitive dysfunction, involving VD and
AD (Martins et al., 2006; Cooper et al., 2015). Obesity and
MetS represent an increase in adipose tissue and lead to an
adipocyte endocrine dysfunction, secreting excess or inadequate
adipose tissue hormones and adipokines, which may be
a clue to the mechanisms associated with dementia. APN
regulates cerebral inflammatory responses, central food intake,
energy expenditure glucose, and fatty acid catabolism. It is
also a potent insulin sensitizer with a negative correlation
with obesity, T2DM, MetS, and cardiovascular diseases
(Chandran et al., 2003). Thus, it exerts beneficial effects on
neuroprotection, neurotrophic actions, and neurogenesis.
This may be attributed to modulation of insulin receptor
signaling, sensitizing the insulin receptor signaling pathway
and suppression of neuroinflammation. Though much data
support obesity associated with multiple types of dementia,
the links between adipokines and dementia risk remain to be
further explored.

Diabetes
T2DM is also linked with dementia. It is characterized
by hyperglycemia, IR, and pancreatic β cell dysfunction.
Epidemiology studies have shown that the probability of
cognitive decline in elder patients with T2DM is 1.5 times higher
than that of non-diabetics (Biessels et al., 2006; Cheng et al.,
2012). The latest cross-sectional and longitudinal researches
have strongly demonstrated their association (Cukierman et al.,
2005; Biessels et al., 2006). In addition, recent studies suggest
that AD is a brain-specific diabetes and define it as ‘‘type
3 diabetes’’ on an account of the common risk factors between
diabetes and AD, such as IR, BBB disruption, and altered glucose
homeostasis (de la Monte and Wands, 2008; Kroner, 2009; de la
Monte, 2014). But the exact mechanism between T2DM-related
dementia especially in AD is unclear. The ultimate underlying
mechanism is possibly related to IR, and systemic inflammatory
response is associated with diabetes, vascular abnormalities,
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neurodegenerative changes, and other multifactorial effects.
Combined mechanisms may lead to mixed pathology. First,
CVD pathology is likely to be an important determinant of
the risks of all-cause dementia in individuals with diabetes. In
several different studies, T2DM was consistently associated with
an increased risk of pathologically verified infarcts at autopsy
(Arvanitakis et al., 2006; Pruzin et al., 2017). These macroscopic
brain infarcts may contribute to insidious ischemia of the brain-
related impaired cognitive function (Pruzin et al., 2018). Another
potential pathology is neurodegenerative change including
deposits of neurotic NP and NFTs, which may be attributed to
brain IR and altered insulin signaling (Verdile et al., 2015). In
addition, disruption of the BBB, dysregulation of lymphatics,
and activation of the hypothalamic–pituitary–adrenal (HPA)
axis are also proposed in many published articles (Ng and
Chan, 2017; Pruzin et al., 2018). In conclusion, present data
indicate that the relationship between T2DM and dementia is
probably multifactorial in etiology. APN plays an important
anti-inflammatory and anti-oxidant role, enhancing insulin
sensitization and maintaining BBB and anti-atherosclerotic
properties, which are crucial potential mechanisms in diabetes-
induced dementia as described above Ng and Chan (2017).
Some studies have reported that subjects with T2DM have
lower plasma APN concentrations than matched non-diabetic
controls (Hotta et al., 2000), and low APN levels can be used
as predictors of the incidence of T2DM (Lindsay et al., 2002;
Spranger et al., 2003).

Atherosclerosis
Atherosclerosis is a progressive vessel disease of large- or
medium-sized arteries that eventually leads to cardiovascular
diseases and stroke. Chronic inflammation, abnormal immune
responses, and lipid depository are involved in the development
of atherosclerosis (Solanki et al., 2018). Then, intracranial
atherosclerosis (ICAS) causes degenerative vessel stenosis and
cerebral hypoperfusion associated with an increased risk for
ischemic stroke and dementia (Gorelick et al., 2008; Yarchoan
et al., 2012). Atherosclerotic plaque development and rupture
adding to subsequent rupture of thrombosis contribute to partial
or total occlusion of the affected artery. These constitute main
events of ICA (Wang et al., 2019). Based on valuable studies,
APN may inhibit the release of pro-inflammatory cytokines
(e.g., TGF-α), enhance the release of anti-inflammatory cytokines
(e.g., IL-10), and promote the shift of macrophages toward
the anti-inflammatory phenotype M2. Furthermore, it increases
macrophages cholesterol efflux and prevent generation of foam
cells (Lovren et al., 2010; Jenke et al., 2013; Wang M. et al.,
2013). Another critical factor leading to atherosclerotic plaque
is dyslipidemia, which is characterized by high triglycerides
(TG), low high-density lipoprotein cholesterol (HDL-C), and
small-dense low-density lipoprotein (sd-LDL) particles (Lusis,
2000). APN is well-known as a mediator in lipid metabolism.
It is positively correlated with HDL-C and negatively associated
with LDL cholesterol (LDL-C) and triglyceride concentrations
(Katsiki et al., 2017). All evidences indicate that APN exerts
a multifaceted effect in improving atherosclerosis in brain by
regulating atherogenic factors.

Stroke
Stroke is defined as a cerebral disease that the blood supply
to the brain is interrupted and subsequently the brain
lacks vital oxygen and nutrients, leading to focal or global
disruption of neurological function, without other obvious
cause apart from vascular disorders (WHO MONICA project
principal investigators, 1988). Accumulating evidences suggest
that vascular factors and stroke injury increase risk for dementia
including AD, not only VD (Tosto et al., 2016; Nucera
and Hachinski, 2018). Mechanisms might involve hypoxia,
hypoperfusion, and neuroinflammation. Furthermore, dementia
and stroke share the corresponding risks and protective factors
(Nucera and Hachinski, 2018). Stroke increases the risk of
dementia in two ways. One is a sharp decline in cognition that
occurs after a stroke (post-stroke dementia), while the other
is to accelerate the development of cognitive decline several
years after stroke (Levine et al., 2015). Dementia becomes a
severe problem in stroke survivors. Several prospective cohort
studies have demonstrated cognitive deficits after stroke (Lusis,
2000; Katsiki et al., 2017). In addition, meta-analysis studies
have shown that some form of cognitive impairment affects
approximately 30% of stroke patients (Ben Assayag et al., 2012;
Wollenweber et al., 2014). The risks for stroke are shared with
dementia, including non-modifiable (e.g., age, sex, and genes)
and modifiable (e.g., hypertension, diabetes, obesity, MetS,
and smoking) factors (Vijayan and Reddy, 2016). Association
between APN and stroke have been evaluated in a number of
studies, but the results are contradictory. Some retrospective
case–control studies suggest that low APN level is related to
greater stroke risk (Stott et al., 2009; Savopoulos et al., 2011;
Prugger et al., 2012). Furthermore, several studies suggest that
APN knockout (APN-KO) mice are more prone to serious
ischemia–reperfusion injury in the brain (Shibata et al., 2005).
However, several cases report that there are no independent links
between APN and stroke risk (Stott et al., 2009). In addition,
some other studies have shown that elevated APN levels in the
elderly may contribute to an increased risk of ischemic stroke
(Hao et al., 2013).

Considering all above results, whether APN is positively
correlated with the risk factors of stroke still requires a lot
of research data to identify, though numerous studies have
confirmed its affirmative effects on vascular risk factors such as
anti-atherosclerosis, anti-inflammation, and IR.

Other Risk Factors
Genetics, ethnicity, smoking, physical activity, social
engagement, cognitive training, diet, traumatic brain injury,
depression, sleep, and level of education, etc. These are also
crucial factors influencing the progression of dementia. For
instance, genetic diagnosis is becoming a hot spot in dementia
research. But most of them have been on AD while investigations
on VD have mainly been on rare familial syndromes. According
to a system review involved of meta-analysis research, there
are six polymorphisms strongly associated with vascular
cognitive impairment (APOE, ACT, ACE, MTHFR, PON1,
and PSEN-1 genes; Dwyer et al., 2013). APOE e4 has been
reported as a significant related gene of AD in another
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independent meta-analysis (Farrer et al., 1997; Yin et al., 2012).
Moreover, exercise is another important factor that has been
reported to possibly maintain and improve cognitive function
(Brown et al., 2013; Pedersen, 2019). A randomized controlled
trial has shown that physical or mental activity may enhance
cognitive function in older adults and that the amount of activity
is more important than the type in the subject population
(Barnes et al., 2013). Hence, distinguishing and utilizing these
modifiable factors could help us find effective interventions
to prevent dementia at the preclinical stage. Understanding
well the role of APN in the progress is a key to explore
novel strategies.

REGULATION MECHANISM OF APN ON
DEMENTIA

APN has pleiotropic effects that may benefit AD and VD,
involving anti-inflammatory and insulin-sensitizing effects,
regulating sugar and lipid metabolism, regulating glucose
and lipid metabolism, improving mitochondrial dysfunction,
decreasing Aβ amyloid deposition, and inhibition of tau
phosphorylation (Figure 2).

Anti-neuroinflammation
Epidemiological and clinical studies have repeatedly
demonstrated that APN plays a chronic anti-inflammatory

FIGURE 2 | The potential effect of adiponectin to target diseases and the
relationship between them. As demonstrated here, adiponectin has
pleiotropic effects on numerous organs and tissues, and there is a close
correlation between various diseases. For example, hypertension,
atherosclerosis, diabetes, and obesity are risk factors in both dementia and
coronary heart disease, while hypertension, atherosclerosis, and obesity are
associated with the onset of diabetes. Adiponectin has anti-atherogenic,
glucose metabolism-regulating, anti-inflammatory, insulin-sensitizing, and
cardioprotective effects in multiple diseases.

role in dementia and other related diseases, such as T2DM,
cardiovascular disease, and cancer. For example, Chabry et al.
(2015) showed that APN could reduce neuroinflammation
and depressive-like behaviors in mice by regulating microglia
and macrophage phenotype and activation state. Lecompte
et al. (2017) found that APN retained its anti-inflammatory
feature in dystrophic muscle by activating the AdipoR1-AMPK-
SIRT1-PGC-1αpathway in mice. Besides, Jian et al. (2019)
demonstrated that APN suppressed inflammatory response of
microglia to amyloid-β oligomer (AβO) and APN deficiency
may aggravate microglia-mediated neuroinflammation in AD
mice. In patients with severe carotid stenosis, APN’s negative
association with glucose, insulin, and intraplaque inflammatory
markers was observed (Liberale et al., 2018). Macrophages
are the main targets for APN to exert anti-inflammatory
effects. It acts by suppressing macrophage differentiation,
modulating macrophage function or shifting phenotype from
proinflammatory M1 state to an anti-inflammatory M2 state,
decreasing expression of Toll-like receptor 4 (TLR4), and
regulating inflammation responses (Yokota et al., 2000; Gordon
and Martinez, 2010). It inhibits the transformation of human
monocyte-derived macrophages into foam cells and the
production of inflammatory chemokines and upregulates the
production of the anti-inflammatory cytokine interleukin 10 (IL-
10) in macrophages binding AdipoR1 primarily. Additionally, it
may modulate the suppression of M1 macrophage activation; in
contrast, it regulates promotion of M2 macrophage proliferation
(Fang and Judd, 2018). It binds three receptor subtypes,
AdipoR1, AdipoR2, and T-cadherin receptor, and mediates its
effects primarily through AMPK signaling pathway (Thundyil
et al., 2012). APN is also reported to act protective effects against
inflammation on a variety of cell types (e.g., cardiomyocytes,
endothelial cells, and vascular smooth muscle cells or microglia,
astrocytes, and neurons in brain), and it mediates the phenotypes
of these cells to exert anti-inflammatory effects (Ohashi et al.,
2014; Sargolzaei et al., 2018). APN gene expression is widely
expressed in the cortex and the hippocampus. It is suggested
that APN inhibits pro-inflammatory signal release, IL-6 and
TNF-α, from BBB endothelial cells, indirectly modulating the
inflammatory signaling across the BBB (Spranger et al., 2006).
In some studies, it is demonstrated that it down-regulates
neuroinflammation by decreasing Aβ amyloid deposition
in AD, while improving dementia (Chan et al., 2012; Song
et al., 2017). Therefore APN’s anti-inflammation properties
in target organs is multiplex and complicated, and worth
discussing further.

Inhibiting Insulin Resistance
Definition of IR in T2DM means ‘‘reduced sensitivity in
body tissues to the action of insulin,’’ ordinarily observed
in T2DM and obesity, characterized as hyperinsulinemia
and dyslipidemia (Goldstein, 2002). Correspondingly, brain
IR is equivalent to a weakened response of the brain cells
to insulin (Mielke et al., 2005). Insulin is involved in
neuromodulation, including regulation of neurotransmitter
(e.g., acetylcholine) concentrations, neuronal differentiation,
repair, proliferation, regeneration, and suppression of
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neuronal apoptosis, subsequently mediating memory and
learning processes (Kang et al., 2017). Thus, brain IR may
be attributed to a decrease in insulin receptors, a loss
of insulin receptor-binding insulin function, or defective
insulin signaling cascade in the central nervous system. At the
cellular level, this lack of response may appear as alteration of
neuroplasticity, receptor regulation or neurotransmitter release
dysfunction, or insulin metabolism disorders. Functionally,
dysregulation of brain or peripheral metabolism, as well
as cognitive and emotional impairment might be the main
manifestations. In addition, numerous epidemiological
data propose that obesity, T2DM, and other MetS of IR
are risk factors for AD and other associated dysfunctions
(Ahtiluoto et al., 2010; Bosco et al., 2012; Gao et al., 2013;
Chatterjee et al., 2016).

Besides, it is delineated that in IR, target tissues do
not respond insufficiently to insulin stimulation, eventually
leading to hyperglycemia, hyperlipidemia, inflammation, and
reduced plasma APN concentrations (Shibata et al., 2005).
Upregulating plasma APN can reverse the sequelae of IR in
various target organs, such as skeletal muscle, liver, pancreatic,
and adipose tissue, established by a mass of basic and
clinical outcome (Combs et al., 2004; Otabe et al., 2007;
Wang et al., 2014; Ye et al., 2014). In contrast, some other
documents show that APN deficiency is closely related to
IR-exacerbating metabolic disorders such as T2DM and obesity
(Maeda et al., 2002; Spranger et al., 2003; Bajaj et al., 2004).
In these diseases, infiltration of inflammatory cells, particularly
activated macrophages, aggregating into adipose tissue induces
a highly inflammatory status. Meanwhile, in these conditions, a
significant reduction exists in serum APN (Zhang et al., 2009).
In addition, studies have shown that continuing elevated levels
of inflammatory cytokines may directly deteriorate IR and lead
to disruption of insulin sensitivity (Weisberg et al., 2003; Xu
et al., 2003). APN decreases oxidative stress and inflammatory
cytokines, which contribute to an improvement of IR. Animals
and human studies have also identified that serum APN is
transported into the CSF, regulating various central physiological
functions of the brain (Qi et al., 2004). Intraventricular injection
of APN can improve hypothalamic insulin signaling activity
in diabetic rats and adjust glucose homeostasis (Park et al.,
2011). Therefore, APN defined as an insulin-sensitizing hormone
is a crucial mediator participating in the protection of brain
health. Exploiting and better understanding its function in
the crucial pathological mechanism in nerve provide powerful
opportunities to novel therapeutic interventions that may
improve dementia.

Regulating Glucose and Lipid Metabolism
As mentioned above, the molecular alterations in diabetes,
obesity, and dementia are accompanied by impaired glucose
uptake, lipid and fatty acid metabolism dysfunction, and energy
metabolism disorder (Hotamisligil, 2006; Lourenco et al., 2015).
Furthermore, increasing evidence has clearly demonstrated that
cellular IR exists in the brains of AD patients and even
those of non-diabetic patients; therefore, AD is also referred
to as ‘‘type 3 diabetes’’ (de la Monte and Wands, 2008).

This means that dementia especially AD can absolutely be
considered a kind of metabolic disease (De Felice et al., 2014;
Ferreira et al., 2014). However, APN directly or indirectly
exerts anti-insulin resistance, regulation of glycogen, lipid and
fatty acid metabolism, and reduction of oxidative stress at
the hub or periphery. In terms of glycogen metabolism, it
is involved in mediating hepatic glucose production, glycogen
uptake, decomposition, utilization, storage, transport, energy
expenditure, and protection of pancreatic β cell as well as
maintaining glycogen homeostasis in the brain. While in
lipid metabolism, it is demonstrated that circulating APN
levels positively associate with HDL-C (Matsubara et al.,
2002; Yamamoto et al., 2002; Ezenwaka et al., 2004; Kazumi
et al., 2004; Shetty et al., 2004; Kangas-Kontio et al., 2010;
Christou et al., 2012) and show an inverse correlation with
TG (Matsubara et al., 2002; Yamamoto et al., 2002; Ezenwaka
et al., 2004; Siebel et al., 2015; Yanai and Yoshida, 2019).
The possible mechanisms underlying up-regulation of HDL-C
due to APN involve increasing production of apolipoprotein
apo-AI and ATP-binding cassette transporter A1 (ABCA1;
Matsuura et al., 2007; Oku et al., 2007; Qiao et al., 2008;
Kitajima et al., 2011), down-regulation of hepatic lipase (HL)
activity (Schneider et al., 2005; Clarenbach et al., 2007), and
activation of lipoprotein lipase (LPL; Yanai and Yoshida,
2019). On the other hand, the plausible mechanism of
TG reduction can be attributed to the regulation of LPL
activity by APN (von Eynatten et al., 2004; Kobayashi et al.,
2005) and the decrease of APN-induced serum APO-CIII,
a well-known LPL inhibitor (Chan et al., 2005; Tsubakio-
Yamamoto et al., 2012). With regard to LDL-C, the majority
of studies have indicated no association with circulating
APN (Kazumi et al., 2004; Shetty et al., 2004; Tomono
et al., 2018). Nevertheless, high sd-LDL levels have been
demonstrated to be correlated with elevated TG levels and
decreased HDL-C levels, which constitute a common feature
of diabetes and MetS (Eckel et al., 2005; Rizzo et al.,
2009). In addition, APN-mediated improvement of HDL
and TG may decrease the atherogenic lipoprotein sd-LDL
and remnant lipoproteins, derived from very low density
lipoprotein (VLDL) and chylomicrons (Yanai and Yoshida,
2019). Summarily, increase of serum APN levels may protect
against atherosclerosis and other related diseases via mediating
lipid metabolism.

Special Effects in AD Pathogenesis
AD is referred to a degenerative brain disease characterized
by extracellular Aβ plaques and intraneuronal accumulation of
NFTs. Amyloid plaques contain Aβ, while NFTs are composed
of hyperphosphorylated tau proteins (Takahashi et al., 2017).
APN has been repeatedly reported to play special effects in
AD pathogenesis.

Reducing Aβ-Amyloid Deposition
Extracellular Aβ-amyloid deposition into oligomers, fibrils, and
plaques is a major hallmark of AD pathological mechanism. It
may cause the dysfunction of several crucial processes, such as
synaptogenesis, neurotrophy, and apoptosis, showing neurotoxin
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in the disruption of learning and memory (Rad et al., 2018).
Then, the amyloid cascade hypothesis is the most prevailing
hypothesis and propose that Aβ accumulation is the initiating
mechanistic event. In this case, various stages of aggregates,
involving protofibrils of Aβ, fibrillar forms of Aβ, as well as
different soluble and insoluble Aβ oligomers, are neurotoxic as
they could damage synapses and, in turn, cause neuron loss,
ultimately leading to chronic neurodegeneration and dementia
(Hardy, 2009; Blennow et al., 2015). Currently, targeting this
molecular mechanism of Aβ neurotoxicity, numerous research
therapies emerge aiming to reduce further Aβ aggregation
and plaque formation in brain, but remain invalid (Doody
et al., 2013, 2014; Salloway et al., 2014). It could be that
Aβ accumulation is just a bystander, rather than the cause,
of neurodegeneration in AD. Studies have posed that insulin
modulates various steps in the amyloid cascade, affecting Aβ

aggregation in the brain. The disturbance of insulin signaling
may inhibit Aβ clearance and accelerate the formation of
neurotoxic Aβ plaque (Kim and Feldman, 2015; Rad et al.,
2018). In addition, there is no doubt about the relevance of
neuroinflammation in AD. Astroglia and microglia are believed
to be the major sources of pro-inflammatory cytokines in the
brain and can be stimulated by Aβ aggregation (Letra et al.,
2019b). However, it has been reported that APN inhibits the
inflammatory response and improve IR to indirectly reduce the
production of amyloid plaques (Kamat et al., 2016). Furthermore,
a study has shown that APN suppresses inflammatory response
of microglia by inhibiting AβO and that APN deficiency
promotes aggravation of microglia activation and deteriorates
neuroinflammation in AD mice (Jian et al., 2019). Thus, it
appears to be valuable to probe and perceive crosstalk of APN
to AD for effective therapies.

Inhibiting Hyperphosphorylation of Tau in NFTs
NFTs are referred to as the twisted fibers involving abnormal
phosphorylated tau proteins (also named phospho-tau,
or p-tau), which exist as oligomers primarily in neurons
suppressing microtubule assembly (Grundke-Iqbal et al.,
1986; Iqbal et al., 1986). The lack of successful clinical
trials targeting Aβ plaques provides a novel opportunity to
seek out potential therapy targeting pathological tau in AD
progression. The crucial role of tau has been emphasized
by several clinical studies in regard to the close correlation
between tau-positive NFTs and AD development in the brain.
NFT-positive cell density correlates with disease stages, which
are measured by clinical parameters for disease severity or
cognitive decline (Giannakopoulos et al., 2003). Contrarily,
senile plaque density is not associated with stages (Delaère et al.,
1990). Hyperphosphorylated tau is neurotoxic, suppressing
microtubule assembly and inducing prion-like template
activity. Therefore, the most promising treatment is to inhibit
hyperphosphorylation and clear pathological tau; in addition,
nerve regeneration can save tau pathology and cognitive
decline (Iqbal et al., 2016). Xu et al. (2018) found that in the
ICV-STZ rat model experiment, APN supplements inhibit
hyperphosphorylation of tau protein at multiple AD-related
sites, improve cognitive deficits, and have neuroprotective

effects. But intriguingly, it is also reported that adaptation of
APN to IR may play a dual role in the formation of two markers
of AD: Aβ plaques and NFTs, and perhaps its fluctuation
acts as a driving force in the disease pathogenesis (Sekiyama
et al., 2014; Waragai et al., 2016, 2017). Therefore, according
to this unique biological mechanism of APN in AD, a selective
therapeutic strategy that is distinct from previous concepts may
be required.

CONTROVERSY

Although a large number of studies have shown that APN
has beneficial effects such as anti-inflammation, attenuating
IR, regulation of sugar and lipid metabolism, and anti-
atherosclerosis, its neuroprotective effects are still controversial.
Some researches suggest that APN is of no significance, and some
even think it is harmful (Table 1; Kamogawa et al., 2010; Une
et al., 2011; Teixeira et al., 2013; Dukic et al., 2016; Gorska-
Ciebiada et al., 2016; Kitagawa et al., 2016; Bednarska-Makaruk
et al., 2017; Bossolasco et al., 2017; Fujita et al., 2018; Gilbert et al.,
2018; Benavente et al., 2019; Letra et al., 2019a). Furthermore,
high serum APN levels have been reported to be positively
associated with cardiovascular mortality (Ortega Moreno et al.,
2016). These conflicting results about association between the
APN serum levels and the outcomes of different stages of disease
(MCI or dementia) suggest that we still know very little about
the complex involvement of APN in AD. What contributes
to the incongruences described above? Here, are five possible
underlying causes.

First of all, the most important one is that individual
diagnostic accuracy varies in different study teams. Classification
of patients in cohorts depends on the accurate diagnostic
process. Using diagnostic tools [such as Mini Mental State
Examination (MMSE) and Montreal Cognitive Assessment
(MoCA)] or exclusively relying on them, ignoring the limitation
of examinations may influence the result (Chapman et al., 2016).
Second, lack of detailed treatment data for patients enrolled,
such as drugs and other treatments. Certain special drugs
such as acetylcholinesterase inhibitors (AChEIs), statins, and
thiazolidinediones all might affect the circulating levels of APN
(Montecucco and Mach, 2009). Third, the nonuniformity in
basic characteristics of study design and studied populations or
lack of adjustments to confounding factors including vascular
risk factors may also explain the inconsistency of different
experimental results. Fourth, few studies have distinguished
different proportions of circulating APN isomers, which are the
decisive isomers, hexamers, trimers, or HMW. As mentioned
above, different forms determine their different biological
activities. In related diseases, HMW APN or HMW APN/total
APN may be a more effective indicator of insulin sensitivity
(Aso et al., 2006). Lastly, high circulating APN levels may
result in subsequent resistance to APN in a manner similar
to IR. Studies have demonstrated that high circulating APN
levels are related to inverse outcome, defined as APN resistance
(Van Berendoncks et al., 2010; Sente et al., 2016). Thus,
APN may show dual effects in the pathological process
of dementia.
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TABLE 1 | Population-based studies aiming to assess the association between adiponectin and cognitive dysfunction diseases.

References Study objects Title Disease Sample, method Results

Gorska-Ciebiada
et al. (2016) and Xu
et al. (2018)

62 seniors with type
2 diabetes (T2DM) and
MCI, and 132 seniors with
T2DM but without MCI
(controls)

Adiponectin, leptin, and
IL-1β in elderly diabetic
patients with mild cognitive
impairment.

Mild cognitive
impairment.

Serum, ELISA Serum leptin and IL-1β levels were higher and adiponectin concentration was
lower in MCI patients than controls. In MCI subjects, adiponectin level was
negatively correlated with leptin, IL-1β levels, and BMI. Leptin concentration was
correlated with IL-1β level. Univariate logistic regression models revealed that
the factors that increased the likelihood of diagnosis of MCI in elderly patients
with T2DM were higher levels of HbA1c, leptin, IL-1β, and triglycerides, as well
as lower levels of adiponectin and HDL cholesterol. Similarly, previous CVD,
hypertension, hyperlipidemia, retinopathy, nephropathy, hypoglycemia, longer
duration of diabetes, increased number of comorbidities, older age, and fewer
years of formal education were found to be associated with MCI. The
multivariable model indicated fewer years of formal education, previous CVD,
hypertension, increased number of comorbidities, higher HbA1c and IL-1β

levels, and lower adiponectin level. Elderly diabetic patients with MCI have
higher levels of leptin and IL-1β and lower levels of adiponectin.

Kamogawa et al.
(2010) nd Waragai
et al. (2017)

517middle-aged-to-elderly
community-dwelling
persons.

Abdominal fat,
adipose-derived hormones
and mild cognitive
impairment: the J-SHIPP
study.

Mild cognitive
impairment (MCI)

Serum, ELISA In men, the abdominal subcutaneous fat area was significantly lower in
participants with MCI than in those with normal cognitive function [median
(interquartile range): 107.4 (85.9, 133.1) cm2 vs. 136.4 (93.1, 161.4) cm2;
p = 0.002]. Logistic regression analyses with confounding factors including age
and abdominal subcutaneous fat area showed that a 10 mg/L increase in
plasma adiponectin had a protective effect against the development of MCI in
men (odds ratio: 0.46; 95% CI: 0.20–0.97; p = 0.041).

Teixeira et al. (2013)
and Sekiyama et al.
(2014)

54 subjects with MCI and
43 controls

Decreased levels of
circulating adiponectin in
mild cognitive impairment
and Alzheimer’s disease.

Mild cognitive
impairment (MCI)
and Alzheimer’s
disease (AD)

Serum, ELISA Serum levels of adiponectin were significantly lower in MCI and AD as
compared to controls (p < 0.001). After controlling for age, educational level,
and APOE genotype, adiponectin levels remained significantly reduced in these
groups (p < 0.001). Circulating adiponectin levels did not predict cognitive
decline in the elderly controls (i.e., progression from normal cognition to MCI) or
progression to Alzheimer’s disease in subjects with MCI.

Letra et al.
(2019a) and
Gorska-Ciebiada
et al. (2016)

Human, amnestic mild
cognitive impairment (MCI,
n = 71) and Alzheimer’s
dementia (AD, n = 53)

Association between
adipokines and biomarkers
of Alzheimer’s disease: A
cross-sectional study.

Alzheimer’s disease serum and CSF,
ELISA

Serum adiponectin was 33% higher in AD when compared to MCI patients.
Adiponectin CSF levels, similar in both groups, were positively correlated with
Aβ42 and cognitive function, though only in women. The area under the ROC
curve was 0.673 (95% CI: 0.57–0.78) for serum adiponectin as predictor of
dementia stage and the cutoff 10.85 µg/ml maximized the sum of specificity
(87%) and sensitivity (44%).

Fujita et al. (2018)
and Kamogawa
et al. (2010)

20 male and 32 female,
aged 60–93 years, mean
80.0

Increased adiponectin is
associated with cerebral
white matter lesions in the
elderly with cognitive
impairment

Alzheimer’s disease Serum, ELISA High serum adiponectin levels correlated with more severe WML (p = 0.013).
Low BMI (p < 0.001), female sex (p = 0.025), and high WML scores (p = 0.039)
were significant determinants of high serum adiponectin. HT (p = 0.032) and
high adiponectin levels (p = 0.021) were independent risk factors for WML.
Overall, we observed an association between serum adiponectin levels and
WML severity in elderly people with cognitive decline.

(Continued)

Frontiers
in

A
ging

N
euroscience

|
w

w
w

.frontiersin.org
9

January
2020

|
Volum

e
11

|
A

rticle
356

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


C
hen

etal.
A

diponectin
and

D
em

entia

TABLE 1 | Continued

References Study objects Title Disease Sample, method Results

Bednarska-
Makaruk et al.
(2017) and Teixeira
et al. (2013)

205 patients with dementia
[89 with Alzheimer’s
disease (AD), 47 with
vascular dementia (VaD),
69 with mixed dementia
(MD)], 113 persons with
mild cognitive impairment
and in 107 controls

Association of adiponectin,
leptin, and resistin with
inflammatory markers and
obesity in dementia.

Dementia. Serum and CSF,
ELISA

In all-cause dementia, adiponectin and resistin levels were significantly higher as
compared to the controls; leptin levels did not show differences. Higher
adiponectinlevels concerned AD and MD, whereas higher resistin concerned
VaD and MD. After stratification by abdominal obesity, the differences in
adiponectin levels remained significant in subjects without obesity. In all-cause
dementia, negative correlation of adiponectin with obesity, glucose metabolism
parameters, IL-6, and hsCRP and positive correlation with HDL-cholesterol were
found. Positive correlation of resistin with age, IL-6, hsCRP, and chitotriosidase
and negative correlation with HDL-cholesterol and paraoxonase 1 were stated.

Une et al. (2011)
and Letra et al.
(2019a)

Normal controls (n = 28),
MCI (n = 18), and AD
(n = 27) subjects

Adiponectin in plasma and
cerebrospinal fluid in MCI
and Alzheimer’s disease.

MCI and
Alzheimer’s
disease.

Serum and CSF,
ELISA,

The levels of adiponectin in plasma and in CSF showed a positive correlation.
Plasma adiponectin was significantly higher in MCI and AD compared to NC,
whereas CSF adiponectin was significantly higher in MCI compared to NC.

Gilbert et al. (2018)
and Fujita et al.
(2018)

205 patients over 65 years
of age

Association between
peripheral leptin and
adiponectin levels and
cognitive decline in patients
with neurocognitive
disorders ≥65 years.

Neurocognitive
disorders

Serum, ELISA The mean BMI was significantly lower (by 2 kg/m2, p = 0.01) in patients with AD
than in patients with either mild-NCD or vascular/mixed dementia. Leptin levels
were significantly higher (p = 0.043) and adiponectin levels were significantly
lower (p = 0.045) in patients with mild-NCD than in patients with major-NCD (AD
or vascular/mixed dementia). However, the mixed model suggested no influence
ofthe baseline levels of these two biomarkers on the course of cognitive decline.

Benavente et al.
(2019) and
Bednarska-
Makaruk et al.
(2017)

50% splits of TARCC’s data
(Group 1 n = 1,691; Group
2 n = 1,690)

Serum adiponectin is
related to dementia.

Alzheimer’s disease MIMIC models Serum APN was significantly related to δ scores (r = 0.10, p = 0.015). APN
hadno significant effect on g’ (r = −.25, p = 0.66), nor did it have any
independent direct effects on cognitive performance. These results were
replicated across random subsets (∆CHISQ = 2.8 (Scherer et al., 1995),
p > 0.90).

Bossolasco et al.
(2017) and Une
et al. (2011)

88 samples in the whole
cohort

Adiponectin levels in the
serum and cerebrospinal
fluid of amyotrophic lateral
sclerosis patients: possible
influence on
neuroinflammation?

Cerebrovascular
and
neurodegenerative
diseases

Serum and CSF,
ELISA

In the whole ALS group, serum APN levels were not different when compared to
the age- and sex-matched control group (CTR), but a gender-specific analysis
enlightened a significant opposite APN trend between ALS males, characterized
by lower values (ALS 9.8 ± 5.2 vs. CTR 15 ± 9.7 µg/ml), and ALS females,
showing higher amounts (ALS 26.5 ± 11.6 vs. CTR 14.6 ± 5.2 µg/ml). This
sex-linked difference was significantly enhanced in familial ALS cases (p ≤

0.01). The APN levels in ALS cerebrospinal fluids wereunrelated toserum values
and not linked to sex and/or familiarity of the disease. Finally, the screening of
serum APN levels in patients affected by other neurological disorders revealed
the highest serum values in FTD patients.

Kitagawa et al.
(2016) and Gilbert
et al. (2018)

466 patients (mean age
67.8 years, male 57%)

Serum
high-molecular-weight
adiponectin level and
incident dementia in
patients with vascular risk
factors.

Dementia Serum, ELISA Serum HMW adiponectin level was 4.33 ± 2.95 µg/ml; the levels were lower in
men than in women and negatively correlated with body mass index. During the
follow-up period (median 6.9 years), 47 patients had incident dementia including
Alzheimer’s disease dementia (Fillit et al., 2008), vascular dementia (Gustafson,
2010), mixed dementia (four), other dementia (three). Risks of dementia in
patients with high vs. low HMW adiponectin levels were almost identical
(p = 0.689). No association was found between adiponectin levels and
Alzheimer’s disease dementia or vascular dementia in the whole group or
among men and women separately.
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CONCLUSION AND FUTURE
PERSPECTIVE

Researches about dementia are rapidly increasing. Advances in
basic science and clinic studies in molecular and pathological
mechanism have provided unprecedented possibilities for novel
therapeutic strategy. The association between APN and AD or
VD, whether direct or indirect, positive or negative, in risk
factors or in pathological mechanism, central or peripheral,
has been deeply evaluated and elaborated in numerous studies.
Overall, it is significantly associated with risk factors of dementia
such as obesity, T2DM, hyperlipidemia, atherosclerosis, and
other vascular factors. APN has multiple effects on the
pathological process of dementia. Positive effects are involved
in anti-inflammation, reduced IR, anti-atherosclerosis, and
regulation of energy metabolism, such as glycogen and lipids.
Insulin sensitivity and neuroinflammatory responses are key
cellular mechanisms involved in age-related cardiovascular
disease, metabolic disease, cerebrovascular dysfunction, and
cognitive decline. APN is highly correlated with insulin
sensitivity and inflammatory response. Many studies have
shown that elevated levels of APN can improve damaged
insulin signaling; inhibit neuroinflammation, oxidative stress,
nitrosative stress, etc.; and affect cerebral blood vessels.
However, its potential mechanism is still not well explored and
even controversial. Further studies are required to illustrate
the exact functions and receptor-dependent or -independent
downstream pathways of each isoform activation, and how
APN’s peripheral concentration can modulate its central effect.
This will help us enhance congruency of the results and further
facilitate the search for the possible role and pathophysiological
mechanism of APN in the onset and development of dementia,
especially its actions on the hippocampus and cerebral cortex.
Finally, identifying and using these potential relationships,
and thoroughly understanding APN’s physiology, may help us
seek out a multi-target cocktail therapy for individuals with
cognitive impairment disease, or find a novel way to delay
or block the process of dementia in the early stage. Is there
an individual treatment that can take into account of the
different physiological characteristics, genotypes, comorbidities,
or even individual biomarker levels of dementia patients
to achieve a cure? Maybe it’s no longer a dream in the
coming future.
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