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The exact cause of Parkinson’s disease (PD), the second most prevalent
neurodegenerative disease in modern societies, is still unknown. Many scientists point
out that PD is caused by a complex interaction between different factors. Although
the main risk factor is age, there are other influences, genetic and environmental, that
individually or in combination may trigger neurodegenerative changes leading to PD.
Nowadays, research remains focused on better understanding which environmental
factors are related to the risk of developing PD and why. In line with the knowledge
on evidence on exposures that prevent/delay PD onset or that impact on disease
progression, the aims of this review were: (i) to comment on the non-genetic risk factors
that mainly affect idiopathic PD; and (ii) to comment on seemingly reliable preventive
interventions. We discuss both environmental factors that may affect the central nervous
system (CNS) or the intestinal tract, and the likely mechanisms underlying noxious or
protective actions. Knowledge on risk, protective factors, and mechanisms may help
to envisage why nigral dopaminergic neurons are so vulnerable in PD and, eventually,
to design new strategies for PD prevention and/or anti-PD therapy. This article reviews
the variety of the known and suspected environmental factors, such as lifestyle, gut
microbiota or pesticide exposition, and distinguishes between those that are harmful or
beneficial for the PD acquisition or progression. In fact, the review covers one of the most
novel players in the whole picture, and we address the role of microbiota on keeping a
healthy CNS and/or on preventing the “side-effects” related to aging.

Keywords: cognitive reserve, gut microbiota, dysbiosis, pesticides, methylxanthines, substantia nigra,
dopaminergic neurons

INTRODUCTION

Parkinson’s disease (PD) is one of the most prevalent diseases in advanced societies
whose main risk factor is age. Two types can be distinguished based on the onset age.
Early-onset PD (EOPD), i.e., clinical symptoms occurring before 50 years of age (even
before 40), is mainly due to genetic alterations. However, the percentage of patients
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carrying mutations in PD-related genes is much lower than that
of the idiopathic PD cases, whose clinical symptoms usually start
past the age of 60.

PD is a well-defined disease that consists of the death
of dopamine-producing neurons in the substantia nigra (SN).
Like other synucleinopathies, it is characterized by aggregations
of α-synuclein in the so-called Lewy bodies. The resulting
lack of dopamine in motor control areas of the brain leads
to the characteristic trends: tremor, difficulty to start any
automatized movement, etc. In the long run, patients develop
cognitive alterations that may be quite severe. The still pending
question is why these neurons die or, in other words, why
are these neurons so vulnerable to genetic alterations or
environmental factors? The impact of PD-related genetic factors
(Polymeropoulos, 1998; Valente et al., 2004; Eriksen et al., 2005;
Deng et al., 2006; Spatola and Wider, 2014; Franco et al.,
2019) on these neurons will be covered in other articles in
the Research Topic and, therefore, is out of the scope of this
review article.

Fortunately, PD research has led to efficacious therapeutic
interventions. The first one, which is still in use, is the therapy
with levodopa that, after its intake, is converted into dopamine
(Birkmayer and Hornykiewicz, 1962, 1964; Hornykiewicz, 2006);
this is known as the ‘‘substitutive therapy.’’ Similar, though
less used or used only when levodopa therapy is not working
properly, is the treatment with dopamine receptor agonists.
In any case, medication has to be chronic, and this leads to
undesirable side-effects, the most common being levodopa-
induced involuntary movements (dyskinesias; Olanow et al.,
2004). When such side-effects severely affect the daily activities
there is still an efficacious therapy, already available in the
nineties, consisting of brain surgery to implant electrodes in
the subthalamic nucleus whose electric activity is controlled by
pacemaker-like devices placed under the skin. Using the right
parameters, the intervention, known as deep brain stimulation
(DBS), produces a re-balancing of motor-control circuits to
afford dyskinesia disappearance and normal deambulation
(Benabid et al., 1994; Duff and Sime, 1997; Obeso et al., 1997;
Tasker et al., 1997; Kumar et al., 1998; Walter and Vitek, 2004;
Guridi et al., 2018). Any good news, such as therapies that are not
available for other neurodegenerative diseases like Alzheimer’s,
is obscured by the lack of any intervention that is able to stop
disease progression. Unfortunately, there is no interventions
to stop or delay the progressive death of neurons for PD,
Alzheimer’s, Huntington’s, or other neurodegenerative diseases.
At this point, potentially useful strategies include avoiding risk
factors and looking for actions that can be preventive.

The aim of this review article is double-sided. On the
one hand, we will cover some of the known or suspected
environmental factors that may reduce the survival of nigral
dopaminergic neurons. On the other hand, we will comment on
the opposite i.e., which lifestyle and surrounding factors can be
preventive. Finally, we think that it is of interest to comment
on a new player in this conundrum, namely microbiota. Gut
microbiota is becoming popular as, depending on its nature,
it may provide benefits or alterations at the whole-body level
(including brain).

INFLUENCE OF PESTICIDES AND
RELATED ENVIRONMENTAL TOXICS IN
PARKINSON’S DISEASE ONSET

There are surely gene–environment links in PD pathophysiology
(Singh et al., 2014; Karimi-Moghadam et al., 2018), i.e., two
individuals with different genomes exposed to the same pesticide
may respond differently, and, in the same way, two different
pesticides may differentially affect a given genome. As an
example, allelic variants of GSTP1, coding for glutathione
S-transferase P, and CYP2D6, coding for cytochrome P450,
impact on the differential sensitivity to pesticides (Singh
et al., 2014). In summary, individuals with the ‘‘inappropriate’’
combination of alleles in these genes are more sensitive to
environmental factors, and pesticides are among the best
characterized in PD physiopathogenesis.

To date, the most commonly used PD animal models
rely on providing a neurotoxin that kills dopaminergic
neurons. These models have been instrumental to the
advancement of knowledge of PD pathophysiology. Toxicity
may be achieved by proximity delivery, such as through an
intracerebroventricular injection of 6-hydroxy-dopamine
(Ungerstedt, 1971; Carey, 1986a,b; Andén et al., 1966) or,
systemically, by oral or intraperitoneal administration of a toxic
compound. Interestingly for the aim of this article, toxins used
may provide further information on risk assessment. The use
of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to
generate rodent and non-human primate PD models (Langston
et al., 1984; Johannessen et al., 1985; Jenner and Marsden,
1986; Snyder and D’Amato, 1986; Williams, 1986; Tipton
and Singer, 1993; Schulz et al., 1995; Przedborski et al., 1996;
Ara et al., 1998) gives a clue: affected cells must have the
DAT dopamine transporter, i.e., unlike neurons unable to
uptake MPTP, dopaminergic neurons are the most affected.
Taking into consideration all data concerning MPTP and
rotenone (see below) effects, it is clear that toxicity requires their
incorporation into cells, likely altering the energy metabolism of
dopaminergic neurons.

Rotenone is another of the toxics that already in 1963 was
known to be an inhibitor of the main provider of energy of
cells in aerobiosis: the mitochondrial electron transport chain
(Chance et al., 1963). In 1985, Emmanuel Geoffrey discovered
a compound in Lonchocarpus nicou, Nicouline (see Ambrose
and Haag, 1936). Later, Nagai Nagayoshi isolated ‘‘rotenone’’
from Derris elliptica (see Laforge et al., 1933). Although the
two compounds are identical, the name given by the Japanese
chemist prevailed. Rotenone was used for centuries as a non-
selective pesticide, and it was not until 2007 that it was
labeled an environmental toxin by the Environmental Protection
Agency of the United States of America. Compound exposure
is considered a risk factor for PD, something that fits with
PD-like symptoms when the compound is administered to
a mammal and with the long-time exposure of humans to
this, now forbidden, pesticide. In fact, one of the existing
PD animal models consists of rodents exposed to rotenone
(Heikkila et al., 1985).
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Lindane, an organochlorine pesticide
(γ-hexachlorocyclohexane), was associated with convulsions
due, most likely, to either heavy doses or repeated exposure
(Gupta, 1975). Despite the relatively few reports on lindane and
PD, there is solid evidence pointing to a link between exposure
to certain types of insecticides and PD risk. A relevant piece
of information came from determining the content of lindane
in the SN of post-mortem samples from PD, dementia with
Lewy bodies, Alzheimer’s disease, and age-matched non-PD
(non-demented) controls. The level of lindane was significantly
higher in the SN of PD patients (Corrigan et al., 2000). In
a similar study but using the now forbidden environmental
hazard dieldrin [(1R, 2S, 3S, 6R, 7R, 8S, 9S, 11R)-3, 4, 5, 6, 13,
13-hexachloro-10-oxapentacyclo(6.3.1.13, 6.02, 7.09, 11)tridec-
4-ene], authors found the compound in the brain of 6 out
of 20 PD cases but in none of the control brains (Fleming
et al., 1994). Despite some controversy due to the difficulty
in performing accurate epidemiological studies (Costa, 2015),
there is solid evidence linking PD risk to the exposure of similar
chemicals used for pest control. In a case-control study, serum
β-hexachlorocyclohexane levels were associate with PD diagnosis
(Richardson et al., 2011). Laboratory data from blood and hair
collected for various individuals proved that the odds ratio for
PD was statistically significant for β-hexachlorocyclohexane
(Petersen et al., 2008). In the case of seizures, it was suggested
in the early seventies that the mechanism of toxicity was
dependent on the ammonia and glutamine accumulation with
the order of toxicity: lindane > dieldrin > heptachlor (1, 5, 7,
8, 9, 10, 10-heptachlorotricyclo[5.2.1.02, 6]deca-3, 8-diene) >

DDT (1,1′-(2,2,2-Trichloro-1,1-ethanediyl)bis(4-chlorobenzene;
Omer, 1971). However, the mechanism in PD seems different;
the fact that MPTP is toxic only after entering the cell and
rotenone is toxic for mitochondrial function suggests that
mitochondria-related events play a significant role. Thus,
exposure to certain heavy metals increases PD risk likely
by interfering with Fe2+/Fe3+ conversions in hemoglobin, in
mitochondrial cytochromes or both. Potential risk factors are,
among others, manganese, copper, and bismuth (Levin and
Sukhotina, 1956; Gibbs and Walshe, 1971; Smyth et al., 1973;
Bahiga et al., 1978; Torkian et al., 2019). In the latter, PD was
developed after parenteral treatment of alveolar pyorrhoea with
bismuth salts (Galata, 1964). Independently of environmental
factors, excess absorption of iron from food, coming from to
blood transfusions, thalassemia, etc., causes hemosiderosis,
which gives rise to several serious consequences and one of
them may be parkinsonism (Asenjo et al., 1968; Aracena
et al., 2006; Jiang et al., 2019; Thirupathi and Chang, 2019).
Details on the links between metal-based PD risks and/or
underlying mechanisms may be found elsewhere (Cannon and
Greenamyre, 2012; Bjorklund et al., 2018; Ball et al., 2019;
Thirupathi and Chang, 2019).

Pioneering studies in late eighties discovered a deficient
activity of nicotinamide adenine dinucleotide (NADH)-
ubiquinone (or coenzyme Q) reductase, i.e., of complex I of
mitochondrial electron chain transport, in platelets of 10 PD
patients (Parker et al., 1989). Actually, the deficit in complex
I activity was soon discovered in the SN from post-mortem

samples of nine PD patients (comparing with samples from
age-matched controls; Schapira et al., 1990). Authors concluded
that: ‘‘These results indicated a specific defect of Complex I
activity in the SN of patients with PD. This biochemical defect
is the same as that produced in animal models of parkinsonism
by MPTP and adds further support to the proposition that PD
may be due to an environmental toxin with action(s) similar
to those of MPTP.’’ Further studies confirmed mitochondrial
abnormalities in the periphery using platelet-rich preparations
from another cohort of patients (Krige et al., 1992; Schapira
et al., 1992) or blood lymphocytes (Barroso et al., 1993).
Authors concluded that: ‘‘our study supports the hypothesis that
a biochemical defect in the respiratory chain may be involved
in the pathogenesis of PD.’’ Although it may not happen in all
PD cases, mitochondrial alterations are found often, and they
are transversal, i.e., they may be found in both early onset and
ideopathic PD cases, in transgenic models, and in non-transgenic
animal models (Mizuno et al., 1995; Hauser and Hastings, 2013;
Karimi-Moghadam et al., 2018).

Genetic polymorphisms in mitochondrial DNA have
been associated with PD. As an example (Chu et al., 2015)
reported that an A10398G polymorphism and two haplotypes
associated with either 10398G or 10398A are risk factors for
the development of sporadic PD in a relatively homogenous
population in Northern China. Interestingly, this association
was stronger in females than in males. Transcriptomics analysis
at the single cell level using post-mortem SN samples from
patients have also detected alterations in the amount of gene
products encoded in mitochondrial DNA (Grünewald et al.,
2016). Moreover, in Pink1−/− transgenic PD models, which lack
the E3 ubiquitin ligase parkin, there is a decrease in the level
of free complex I while the energy metabolism is compromised
(Lopez-Fabuel et al., 2017). Again, the evidence points towards
mitochondrial components and events as direct players in
almost any PD-associated risk (Vanitallie, 2008). One of the
transgenic models is based on this knowledge; the ‘‘MitoPark’’
mouse model, developed by inactivation of mitochondrial
transcription factor A, a protein essential for mitochondrial
function, displays a progressive PD-like phenotype
(Ekstrand and Galter, 2009).

Another important consequence of mitochondrial
malfunctioning is oxidative stress. While one may consider
whether oxidative stress is a consequence of dopaminergic
neuron death (Sanders and Greenamyren, 2013), all the evidence
points to complex I defective function leading to oxidative
stress. Many environmental risk factors affect the mitochondria
(Abdulwahid Arif and Ahmad Khan, 2010). Unfortunately, the
possibility of coenzyme Q supplementation (Beal, 1999; Ebadi
et al., 2001) and the promising results of a phase II trial (Shults,
2005) did not translate into benefits for patients (Negida et al.,
2016), thus suggesting that coenzyme Q is not the limiting
factor able to rescue mitochondrial malfunctioning in neurons
of the SN.

In summary, the most reasonable hypothesis is that age and
exposure to environmental factors, with or without particular
polymorphisms, lead to reduced electron transport, reduced
ATP production and increased oxidative stress. These events
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are detrimental for every cell in the human body, but it seems
that nigral neurons are more vulnerable. The Ockham’s Razor
rule indicates that these neurons lack appropriate detoxification
mechanisms, and/or that the demanding metabolism related
to dopamine production makes rescue mechanisms lose their
efficacy upon aging.

DYSBIOSIS AS RISK A FACTOR OF
PARKINSON’S DISEASE

Dysbiosis of gut microbiota refers to the pathological imbalance
between the beneficial flora, i.e., Lactobacteria species,
Bifidobacterium, or Enterococci, and opportunistic bacteria,
i.e., Bacteriodes, Clostridia, Enterobacteria, Staphylococci,
or Streptococci, living permanently or occasionally in the
human gut (Roy Sarkar and Banerjee, 2019). This aberrant
condition leads to gastrointestinal, metabolic and various
neurodegenerative disorders, PD among them. It should be
noted that dopamine, which was thought to be mainly produced
in the central nervous system (CNS), is found at relatively high
levels in the gastrointestinal tract (Eaker et al., 1988).

Regarding neurodegenerative diseases, different studies have
evidenced an intimate bidirectional communication between gut
microbiota and CNS. On one hand, the so-called Gut-Brain
Axis links the sympathetic and parasympathetic nervous system
of the gut with the CNS. On the other hand, CNS regulates
gut function (immunity, permeability, or mucus secretion) via
afferent and efferent autonomic pathways (Collins and Bercik,
2009; Carabotti et al., 2015).

Gut dysbiosis and the consequent disruption of beneficial
relationship between gut microbiota and CNS may impact
on PD progression. In fact, some authors suggest that
the neurodegenerative cascade in PD could start in the
gastrointestinal tract as a result of an increased gut permeability,
inflammation and oxidative stress. This may explain the
intestinal alterations such as recurrent constipations observed in
patients at very early stages of PD, long before the characteristic
motor symptoms (Houser and Tansey, 2017; Parashar and
Udayabanu, 2017; Nair et al., 2018).

Pioneering studies comparing gut flora composition of
PD patients with age-matched healthy controls found higher
levels of Enterobacteriaceae species and lower abundance
of Prevotellaceae (Scheperjans et al., 2015). Prevotellaceace
family members contribute to keep digestive structures in
optimal conditions by the production of mucin and short
chain fatty acids (SCFAs; Nair et al., 2018). It is proved
that decreases in Prevotellaceae species alter gut permeability
and lead to systemic exposure to bacterial endotoxins (Roy
Sarkar and Banerjee, 2019). Moreover, other bacteria species
with probed anti-inflammatory properties, such as Blautia,
Coprococcus and Roseburia, are significantly diminished in
PD patients (Felice et al., 2016; Parashar and Udayabanu,
2017). Enterobacteriaceae population seems to be related
with inflammation processes, postural instability, and motor
dysfunction in PD (Mukherjee et al., 2016; Houser and Tansey,
2017). Guo et al. (2013) demonstrated that lipopolysaccharide
(LPS) derived from the cell wall of gram-negative bacteria

compromises intestinal epithelial barrier and makes a possible
entrance into the blood stream of LPS and potential neurotoxics.
Disruptions to the gut permeability and systemic exposure
to bacterial antigens induce the expression of inflammatory
cytokines, such as tumor necrosis factor (TNF-α) or interleukin
(IL)-1β and IL-6, that alter the blood–brain barrier (BBB),
promote α-synuclein accumulation in the SN and lead to
dopaminergic cell death (Singh et al., 2014). Other determining
factors in dopaminergic neuron loss may be the small intestinal
bacterial overgrowth, termed SIBO, displayed by PD patients.
Satisfactory treatment of SIBO is related to the long-lasting
improvement in motor and intestinal symptoms of patients,
and this is probably due to greater efficiency in levodopa
absorption (Anderson et al., 2016; Felice et al., 2016; Parashar and
Udayabanu, 2017).

According to the hypothesis of Braak et al. (2006),
the pathological accumulation of α-synuclein could start in
the enteric nervous system (SNE) spreading to the brain
through the vagus nerve (Braak et al., 2006). In this sense,
histologically identical inclusions to Lewy bodies have been
found in enteric neurons of both submucosal (Meissner) and
myenteric (Auerbach) plexuses following a hypothetical rostral-
caudal gradient; a higher concentration of α-synuclein in the
submandibular gland and esophagus and a lower concentration
in the colon and rectumwere found (Felice et al., 2016). However,
other studies suggest that intestinal disturbance is a consequence
of CNS damage (Mulak and Bonaz, 2015).

Along PD progression gut microbiota could also contribute to
the synthesis of key metabolites and neuroactive compounds. An
example of pivotal relevance is the case of tryptophan catabolites
(TRYCAT). In the gastrointestinal tract tryptophan can be
metabolized using three different routes: (i) direct catabolism
into indole and tryptamine; (ii) the kynurenine pathway;
and (iii) the serotonin pathway. In the kynurenine route,
L-tryptophan is metabolized into kynurenine in two sequential
steps catalyzed by indoleamine 2,3-dioxygenase (IDO) and
tryptophan 2,3-dioxygenase (TDO). Kynurenine is further
metabolized into several metabolites that play an important role
in immunoregulation, neurotransmission and inflammation.
Other metabolites derived from microbial action on tryptophan
can act as potent neurotoxins (Anderson et al., 2016;
Agus et al., 2018).

Recent studies have shown that patients with PD exhibit
higher proportion of L-kynurenine/tryptophan in serum. This
finding may result from enhanced IDO and TDO enzymatic
activities in patients. In addition, increased levels of 3-
hydroxykynurenine, a neurotoxic TRYCAT, have been found
in the putamen, prefrontal cortex, and SN of patients with PD
(Calabrese et al., 2018). It is important to note that the intestinal
production of melatonin through the serotonin pathway may
be downregulated due to increased IDO and TDO activities
(Agus et al., 2018). This neuromodulator has some important
physiological functions, such as being anti-inflammatory and
also acting as an antioxidant, and it has even been reported to
counteract the neurotoxicity of α-synuclein deposition. Lower
levels of melatonin and its receptors are common in the SN of
PD brains.
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Finally, and although PD-related genetic factors are out of the
scope of this review, we do not want to overlook recent studies
suggesting that interactions between host genetics and microbial
exposures could contribute to some chronic diseases such as
inflammatory bowel disease (IBD) and PD. In this sense, it has
been demonstrated that some microbiota alterations produce
PD-like symptoms in genetically susceptible individuals (Knights
et al., 2014; Palm et al., 2014; Matheoud et al., 2019).

Bearing in mind all the data, it seems that maintaining
a balanced gut microbiota could minimize the pathological
processes of PD and even be a preventive factor. In this sense,
consumption of probiotics containing Lactobacillus casei shirota
significantly improves gastrointestinal symptoms in patients with
PD (Felice et al., 2016). One interesting study showed that
regular intake of Bacillus spp. may increase dopamine levels since
this probiotic bacterium can convert L-tyrosine into levodopa
(Parashar and Udayabanu, 2017). A recent innovative treatment
linkingmicrobiota and PD is the fecal microbiota transplantation
by which feces from healthy donors are transferred to the
gastrointestinal tract of a PD patient in order to restore their
microbiota. It has been described that healthy mice carrying feces
from patients with PD show motor alterations and a reduction
of Lachnospiraceae and Ruminococceae populations, similar to
those observed in PD patients (Parashar and Udayabanu, 2017).
However, fecal microbiota transplants remain unapproved by US
Food and Drug Administration (FDA), and further studies are
necessary to probe their benefits as a therapy to combat/prevent
PD (Tremlett et al., 2017).

INFLAMMATION AND INFECTION AS RISK
FACTORS OF PARKINSON’S DISEASE

Depending on the pathogen, infections affect different
mammalian body components. Most infectious agents, even
viruses or bacteria that do not lead to neurological symptoms
may reach the brain. Fortunately, in the majority of cases
the brain does not suffer gross anatomical alterations and/or
significant disturbances in a higher function. However, as
many pathogens cause inflammation and PD courses with
neuroinflammation, not only in animal models of the disease
but also in patients, the hypothesis of a link between infection
and PD risk was emitted. It is very difficult to assess in humans
whether a given viral infection increases the PD risk. Also, it
is difficult to perform a study in patients trying to look for
the occurrence of ‘‘similar’’ infections. Every human suffers
in her/his lifetime a myriad of infections and the number of
pathogens to which a human is exposed is counted by dozens.
In summary, it may be that a given pathogen increases PD risk
but to identify it is like finding a needle in a haystack. To our
knowledge, there is no intervention aimed at avoiding infections
that could result in an increased risk of suffering the disease,
i.e., of leading specifically to the death of SN dopaminergic
neurons. However, it should be noted that an infection caused
by the hepatitis C virus seems to be a risk factor for PD (Benito-
León, 2017; Wijarnpreecha et al., 2018). But even in the case
that a relationship between a viral infection and PD risk can
be found, it is difficult to address the mechanisms by which

viral-induced immunoreaction would affect more dopaminergic
cells of the SN than other neuronal types. At present, it is
assumed that inflammation, represented by activated glial cells,
specially by reactive microglia, is a consequence of dopaminergic
cell death. Facts and hypotheses encompassing the noxious
role attributed to activated glial cells, prompted the approach
of using anti-inflammatory drugs to delay disease progression.
The rationale was that reducing inflammation would result in a
decline in the rate of neuronal death.

Despite promising trends in animal models, all the efforts to
try anti-inflammatory drugs to produce signs of improvement
to PD patients have failed. Details may be found in the data
deposited in the US clinical trial database1. In terms of risk
assessment, one of the first meta-analyses that included data
from seven studies concluded that: ‘‘There may be a protective
effect of nonaspirin nonsteroidal anti-inflammatory drug use
on risk of PD consistent with a possible neuroinflammatory
pathway in PD pathogenesis’’ (Gagne and Power, 2010). This
cautionary conclusion has not been validated in further studies,
such as the one by Ren et al. (2018) who, upon considering
15 studies, concluded that the consumption of non-steroidal
anti-inflammatory drugs is not associated with PD risk (Ren
et al., 2018). The most recent work including 17 studies with
14,713 patients within circa 2,5 million participants also failed
to find an association between non-steroidal anti-inflammatory
drugs and PD risk at the population level (Poly et al.,
2019). Authors riveted: ‘‘clinicians need to be vigilant ensuring
that the use of NSAIDs remains restricted to their approved
anti-inflammatory and analgesic effect.’’

EMERGING CONCEPTS OF LIFESTYLE
AND COGNITIVE RESERVE IN
PARKINSON’S DISEASE DEVELOPMENT

Current research about aging and aging-associated
neurodegenerative diseases focuses on the lifestyle factors
and on cognitive reserve, a concept that has been proposed
to explain the discrepancies between the degree of brain
damage and the observable cognitive manifestations. Overall,
cognitive reserve encompasses two different but complementary
components—cognitive reserve and brain reserve—that have
been used to account for inter-individual differences in
cognition deficits. On the one hand, brain reserve refers
to some neurobiological aspects such as brain volume,
number of neurons, or number of synapsis or dendritic
branches that impact on the ‘‘brain resilience’’ to age-related
changes. Instead, cognitive reserve refers to the plastic changes
occurring from all experiences along a life: formal education,
emotional support, level of occupation, work position,
familial relationships, physical activity or leisure activities.
It is hypothesized that promoting mental activity in the
course of our lives can influence our structural neuronal
network complexity and our functional processing capacity
and efficiency, which in turn can activate compensatory
mechanisms that prevent injury (see Barulli and Stern, 2013;

1https://clinicaltrials.gov/
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Sampedro-Piquero and Begega, 2017). Extensive experimental
evidence, starting with the ‘‘nuns’’ study and going all the way
to the Honolulu-Asia Aging Study (Latimer et al., 2017), has
confirmed that a higher cognitive reserve is associated with
less cognitive decline and a delay in the appearance of clinical
symptoms in neurodegenerative diseases (Stern, 2002, 2009;
Valenzuela and Sachdev, 2006). Also, the comparative analysis
of the press conferences of two US presidents, in order to
afford an early diagnosis of a degenerative disease, is of interest
(Alzheimer’s in the study by Berisha et al., 2015).

The effects of cognitive reserve in PD have raised the
interest of many researchers in the last decade, as well as some
controversy. A significant number of studies report that lower
education levels, measured as the number of years in education,
are associated with an increased risk of dementia in PD (Poletti
et al., 2011). Inversely, cognitive reservemay slow the progression
of global cognitive decline in PD showing a positive effect (Cohen
et al., 2007; Poletti et al., 2011; Koerts et al., 2013; Hindle et al.,
2015). It is not clear whether there is enough empirical evidence
behind these findings. Thus, one cross-sectional study of 120 PD
patients reported that higher education level may exert protective
effect only in short-termmemory and not on the global cognitive
decline; while a systematic meta-analysis did not find an
association between cognitive reserve and lower risk of long-term
dementia in PD (Pai and Chan, 2001; Hindle et al., 2014).
Noteworthy, some studies, as the one carried out by Muslimović
et al. (2009), show that years of daily brain stimulation positively
correlated with cognitive performance of PD patients. Therefore,
it seems that ‘‘poor’’ neuronal stimulation can be associated with
higher cognitive decline (reasoning, attention, processing speed,
or memory; Muslimović et al., 2009).

Although the benefits of intellectual stimulation on cognitive
function have been clearly demonstrated in environmental
enrichment (EE) interventions both in animals and in some
clinical trials in humans, a number of outstanding questions
about how cognitive reserve modulates cognitive decline in PD
have yet to be answered. What is the most appropriate age
to start brain stimulation? Or what is the minimum level of
education, i.e., years of formal education, that translates into
an improvement of cognitive function? A better understanding
of cellular and molecular mechanisms underlying cognitive
stimulation may provide valuable information about how
cognitive reserve modulates cognitive decline and counteracts
neurodegenerative processes in PD-like conditions.

Behavioural benefits of EE and how these interventions
correlate with plastic changes at the circuit and cellular levels
can be assessed in animal models. In this sense, it is shown
that the positive effects of EE modify the structure of the brain,
and EE increases, among others, the volume and weight of the
hippocampus and of the cortical and some subcortical areas.
In addition, EE may be also able to trigger the expression of
neurotrophic factors of great relevance for the maintenance
of neuronal homeostasis, neurogenesis, neuronal survival and
synaptic structure and function. Important factors are the brain-
derived neurotrophic (BDNF), the nerve growth (NFG), the glial
cell-derived neurotrophic (GDNF) and the vascular endothelial
growth (VEGF) factors. The overexpression of some genes

related with formation and consolidation of new synapses must
be taken into account (Sampedro-Piquero and Begega, 2017).
Interestingly, in a recent work, authors suggested a potential
implication of microglia in the beneficial effect of long-term EE
in diseases coursing with neuroinflammation and in systemic
metabolism (Ali et al., 2019). In contrast, serious alterations
in neuronal activity and even cell death have been observed
in the case of animals exposed to impoverished environments
(Muslimović et al., 2009; Sampedro-Piquero and Begega, 2017).

PREVENTIVE INTERVENTIONS FOR
PARKINSON’S DISEASE

Neuroprotective interventions are difficult to identify and are
restricted to a few conditions. There are, for instance, the
so-called nootropics that eventually prevent dementia. In the case
of PD, epidemiological interventions that had improved over
time have led to identifying some substances that reduce the risk
of suffering from the disease.

Caffeine and Other Methylxanthines
Some historical background will be helpful to understand
why caffeine and related methylxanthines (theophylline
and theobromine) are PD preventive. Methylxanthines are
non-selective antagonists of adenosine receptors and it turns out
that one of them, the A2A receptor (A2AR) is highly enriched in
striatum (Rosin et al., 1998), i.e., in the main target structure of
any pharmacological anti-PD treatment. The role of endogenous
adenosine in the basal ganglia is to counteract the effect of
dopamine. In particular, activation of the A2AR by adenosine
reduces dopamine D2-receptor-mediated transmission (Fuxe
et al., 1983; Zoli et al., 1993; Hillion et al., 2002). Accordingly,
blockade of the A2AR receptor by an antagonist increases
dopaminergic effects. A long time ago, it was hypothesized that
adenosine receptor antagonists would be beneficial to combat
PD, if combined with dopaminergic agonists or with levodopa.
After many years of research and of clinical trials with up to five
different novel A2AR antagonists, one of them was approved
(NouriastTM) in Japan as adjuvant to levodopa in PD therapy
(Jenner et al., 2009; Mizuno and Kondo, 2013; Saki et al., 2013;
Kondo and Mizuno, 2015). The same compound has been
recently approved by the FDA and prescribed as NourianzTM.
Importantly, research on A2AR and PD has led to the discovery
that genetic ablation of the receptor or its pharmacological
blockage is neuroprotective in animal models. At present, there
is no suitable protocol to assess neuroprotection in humans (even
in patients with neurodegenerative diseases). Alternatively, one
may assume that ‘‘chronic’’ consumption of A2AR antagonists
could be neuroprotective. Actually, coffee/tea are considered
parameters to assess the risk of developing PD in relation with
dietary habits. The report by Ragonese et al. (2003) constitutes a
good example of early studies with solid evidence that drinking
coffee prevents PD.

There is controversy in almost any potential risk factor. For
instance, despite previous works providing evidence on negative
correlation between coffee consumption and PD risk (Sipetic
et al., 2012), we have been unable to find similar results in a
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case-control study. On the one hand, there is a consensus that
there are compounds in coffee that can afford protection, such
as caffeine and similar methylxanthines, which block adenosine
receptors. On the other hand, the consumption of caffeine is
not easy to asses due to differences in caffeine content in coffee,
to inter-country differences in the style/amount of drinking
coffee/tea, and to the fact that caffeinated drinks must be also
considered in the risk analysis. Overall, the evidence stands up. In
the exhaustive meta-analysis of Noyce et al. (2012), a significant
negative association between coffee drinking and PD risk is
confirmed. More information on the validity of this negative
association can be found in more recent reviews (Ascherio and
Schwarzschild, 2016; Chen, 2019).

Although cacao/chocolate and tea have caffeine and other
methylxanthines and there are cultural differences in the amount
of consumed coffee, tea, caffeinated beverages, etc., Eskelinen
et al. (2009, 2011) proved, within the Cardiovascular Risk
Factors, Aging and Dementia (CAIDE) study, that mid-life
sustained consumption of caffeine and tea is protective in
dementia and Alzheimer’s disease (Eskelinen and Kivipelto,
2010; Sindi et al., 2018). One of the hypothesis behind the benefits
of sustained methylxanthine intake for the CNS, also backed
up by the fact that virtually all societies have methylxanthine-
containing beverages, is that active neurons are less prone
to death. Adenosine receptor antagonism produces neuronal
activation and, eventually, active neurons havemore tools to cope
with environmental factors leading to oxidative stress (Franco
et al., 2013; Oñatibia-Astibia et al., 2017).

Smoking
In past times, it was usual to smoke while taking coffee. This fact
has prompted the search for the relationship between smoking
and PD risk. The first results were positive but they were
challenged by the idea that smokers live less and, therefore,
they are less susceptible to suffer from an age-related disease.
A case-control study with males of the same socio-cultural
context showed that PD patients had more exposure to smoking
(>10 cigarettes/day) and drinking (>50 g ethanol/day) habits.
Taken together, the results in the literature are interesting. Some
of the early studies found that 63% of cases (n = 237) and 47%
of controls (n = 474) never smoked (Baumann et al., 1980). In
the Drosophila melanogaster model of PD, nicotine-free tobacco
affords neuroprotection. The translatability of this result to
patients is dubious, as the same study reports that caffeine-free
coffee is neuroprotective (Trinh et al., 2010). To our knowledge,
the more informative article is constituted by a systematic review
of the literature and a meta-analysis. Authors found significant
differences: the reported risk reduction was 36% for individuals
with a smoking habit. They also indicated that ‘‘the effect is
strongest in current smokers and weakest in past smokers (56% for
current smokers and 22% for past smokers), but the association
remains significant in all’’ (Noyce et al., 2012). In the same year,
a case control study also found that smoking was PD protective
(Sipetic et al., 2012). In summary, at present there are little doubts
that smoking cigarettes protects against suffering from PD and
there are hints in animal models that support the most obvious

hypothesis, i.e., that nicotine in tobacco is the relevant factor for
PD risk reduction (for review, see Ma et al., 2017).

The mechanism of protection of nicotine and caffeine (or
other methylxanthines) may be different. On the one hand,
nicotine affects nicotinic ionotropic receptors and there are no
reports showing nicotine effects via direct action on adenosine
receptors. On the other hand, nicotine produces addiction and,
hence, the neuroplasticity in the rewarding areas that could
impact on PD risks does not occur upon consumption of coffee,
cola drinks, etc.

Urate
The Honolulu Heart Program, which consisted of a 30-year
prospective epidemiological study, incidentally discovered an
association between serum levels of urate, above the median,
and less PD risk (Davis et al., 1996). Afterwards, the seminal
clinically-oriented work of Schwarzschild et al. (2008) proved
that the concentration of urate in blood plasma/serum is a
parameter to consider in PD. More importantly, increased values
of urate seem to be preventive although it is known that excess
production of uric acid leads to deposition in joints and to a
clinical condition known as gout. First of all, we would like to
highlight that urate is a reliable marker of disease progression
(Schwarzschild et al., 2008, 2011; Ascherio et al., 2009; Cipriani
et al., 2010; Crotty et al., 2017; Paganoni and Schwarzschild,
2017). In addition, relatively high urate levels in men’s serum
are associated with less PD risk (Weisskopf et al., 2007; Gao
et al., 2008; Bronstein et al., 2009; Cipriani et al., 2010; Ascherio
and Schwarzschild, 2016; Paganoni and Schwarzschild, 2017;
Kim et al., 2018). The reasons are not totally clear but it may
be related to oxidative stress, that is specially detrimental in
highly active cells such as those producing dopamine in the SN
(Crotty et al., 2017). Also, another intriguing point is the poor
association existing in females as reported by the same research
team (O’Reilly et al., 2010). Interestingly, inosine administration
to elevate urate levels in early PD female patients (intervention
within the SURE-PD trial) showed a slower clinical decline
(Schwarzschild et al., 2019).
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