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The global incidence of Alzheimer’s disease (AD) is on the rise with the increase in
obesity and metabolic disease epidemic. Obesity is co-morbid with the increase in mass
of adipose tissue, which secretes numerous molecules that are biologically important.
Obesity and its associated conditions are perhaps involved in the causative pathway
of AD. Immunologically important cytokines such as IL-18, IL-10, and IL-18, which
are released by adipose tissue, are also found to be associated with AD. Besides,
the expression of IL-6, IFNy, and TNF alpha are also associated with AD. Ang-l and
Ang-Il are found to mediate the progression of AD. Complement factors B, C4b, and
H are differentially expressed in AD. Overall, several adipocyte-derived cytokines are
found to be dysregulated in AD, and their role in AD remains to be studied. The
induction of autophagy is a very promising strategy in the treatment of AD. A variety
of adipose-derived molecules have been shown to modulate autophagy. However, very
little literature is available on the role of adipose-derived molecules in inducing autophagy
in microglial cells of AD. Understanding the role of adipose-derived molecules in the
development of AD, especially in the induction of autophagy, would open up new
avenues in devising strategies for the treatment of AD.

Keywords: adipose tissue, obesity, adipose-derived molecules, Alzheimer’s disease, autophagy

INTRODUCTION

Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative disorders. Individuals
affected with AD show a decline in cognition and loss of self-dependency further leading to
hospitalization and premature death. According to a recent WHO report, 60-70% of cases of
dementia are contributed by AD. On the whole, it has been estimated that 5.2 million Americans of
all ages have AD. Among this population, 5 million people are at the age of 65 or older (Alzheimer’s
Association, 2006). Further, one-third of people around the age of 85 have AD (32%) (Hebert
et al., 2013). Several studies suggest that both overweight and obesity tend to increase the risk of
AD (Gustafson et al., 2003; Kivipelto et al.,, 2005; Rosengren et al., 2005; Whitmer et al., 2005).
Obesity, on the other hand, is a predisposing factor for vascular dysfunction (Zhang and Reisin,
2000). Furthermore, a strong association between dementia and adiposity has been stated by many
researchers. Naderali et al. (2009) suggested that obesity-mediated defects in insulin and glucose
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signaling may evoke AD (Naderali et al., 2009). It has also been
observed that obesity-mediated progression of AD is likely to be
more prevalent in men compared to women (Elias et al., 2003).

The brain is the master regulator of all the organ systems
and functions through either direct or indirect modes. The
indirect mode of communication between the brain and the
organ systems involves the exchange of bioactive peptides that
can cross the blood-brain barrier (BBB). Many of these bioactive
peptides include a variety of cytokines and chemokines that
are released from different organs and signal the brain. One
of the major organs that produce a wide array of bioactive
peptides is adipose tissue, and it is, therefore, now recognized as
an endocrine organ (Trayhurn and Beattie, 2001; Kershaw and
Flier, 2004). Adipose-derived molecules are the peptides that are
specifically produced by adipose tissues. These peptides include
hormones, enzymes, complement factors, immunomodulators,
etc. An increase in adipose tissue mass or adiposity disrupts
the homeostasis of these adipose-derived molecules. Expression
levels of a variety of these molecules are directly proportional
to adipose tissue mass (Benoit et al., 2004). Examples include
leptin, adiponectin, apelin, etc (Azuma et al., 2003; de Courten
et al., 2004). Adipose-derived molecules play a crucial role in the
progression of AD (Warren et al., 2012). Thus the occurrence
of AD may be linked to the magnitude of adiposity (Luchsinger
and Gustafson, 2009). This review highlights the role of adipose-
derived molecules in implicating AD that connects both obesity
and AD. Furthermore, the possible roles of the molecules in
inducing autophagy are discussed.

CYTOKINES

Adipose tissues [both white adipose tissue (WAT) and brown
adipose tissue (BAT)] are well known to produce inflammatory
cytokines, which rise with adiposity (Coppack, 2001; Fain, 2006).
These cytokines play vital roles in the progression of AD
(Rubio-Perez and Morillas-Ruiz, 2012).

Interleukins

Interleukins (IL) act as messengers and assist in communication
between cells within and across the tissues. They regulate cell
growth, differentiation, motility, the stimulation of immune
responses, etc. Adipose tissues produce a wide variety of
interleukins (Kern et al., 2001) including IL-1p, IL-4, IL-6, IL-
8, IL-10, and IL-18. These interleukins have been known to
correlate with AD.

Interleukin 18 (IL-1p)

Interleukin 1B is a cytokine involved in immune modulation.
The hyperglycemic condition accelerates the synthesis of IL-
18 in the adipose tissue of both humans and rodents via
thioredoxin interacting protein (TXNIP) (Koenen et al., 2011). A
comparison of the post-mortem brain of AD patients and the
control group indicated an increased level of IL-1f in the AD
patients, specifically at the frontal cortex and hippocampus.
Francois et al. (2013) have demonstrated the relationship between
autophagy and IL-1B. Autophagy induced IL-1f in microglia

through degrading inflammasomes (Francois et al., 2013). These
findings shed light on the involvement of IL-1f in AD.

Interleukin 4 (IL-4)

Interleukin 4 is a cytokine that is secreted by the adipose
tissue (Ouchi et al,, 2011). As an anti-inflammatory cytokine,
IL-4 protects the brain from inflammation-induced damage. In
amyloid precursor protein (APP)-transgenic mice, IL-4 enhances
the degradation of amyloid beta (A), thereby preventing
the AB-induced cell death (Ouchi et al,, 2011). In contrast,
Chakrabarty et al. (2012) observed mIL-4 in the hippocampus
favored amyloid deposition in vivo (Chakrabarty et al., 2012).
Both studies revealed the association of IL-4 with AD. Besides,
IL-4 is a well-known inducer of autophagy in B cells (Xia et al,,
2018), which may also induce autophagy in brain cells.

Interleukin-10 (IL-10)

Interleukin-10 is also an anti-inflammatory cytokine that is
produced by the adipose tissue. It is otherwise known as the
human cytokine synthesis inhibitor factor (CSIF). IL-10 is mostly
produced by visceral adipose tissue of obese subjects (Juge-
Aubry et al, 2005). Human WAT explants also produce IL-
10 when exposed to tumor necrosis factor alpha (TNF alpha)
and lipopolysaccharide (LPS). In the microglial cell, IL-10 is
capable of suppressing the monocyte chemoattractant protein-1
(MCP-1) production in concert with the exposure of AP peptide.
Furthermore, it also modulates the immune process associated
with AD development (Szczepanik et al., 2001). Despite this,
there is no sufficient information available to conclude the exact
mechanism of IL-10 in the development of AD. Conversely, the
role of IL-10 in cardiac autophagy is established (Samanta and
Dawn, 2016), though not in brain cells.

Interluekin-18 (IL-18)

White adipose tissue is one of the major sources of IL-18 (Wood
etal,, 2005). Sutinen et al. (2012) demonstrated that a high level of
IL-18 increases Beta-secretase (beta-site APP cleaving enzyme-1)
(BACE-1) (APP-cleaving enzyme) together with the y-secretase
complex in the brain (Sutinen et al., 2012). It also raises the level
of Fe65, which regulates glycogen synthase kinase-3p (GSK-38)
by binding with the C-terminus of APP. Culture medium, when
treated with IL-18, showed increased levels of soluble APP-f, thus
exemplifying the importance of IL-18 in APP- production. The
elevated level of IL-18 in the brain for a prolonged period leads
to AD (Bosst et al,, 2010), possibly through increased Ap. But the
involvement of IL-18 in inducing autophagy remains elusive.

Tumor Necrosis Factor Alpha (TNF Alpha)

Adipose tissue produces TNF alpha, which plays key roles in
the inflammatory pathway (Sewter et al., 1999; Hoareau et al.,
2010). Many studies with rodent models demonstrated that
overexpression of TNF alpha in adipose tissue promotes insulin
resistance (Hotamisligil et al., 1993, 1995). TNF alpha acts as
an initiator of inflammation in the brain (Feldmann and Maini,
2003) and regulates neuroinflammation. A post-mortem study
localized TNF alpha within the amyloidogenic plaque of AD
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patients’” brain (Dickson, 1997). Later, TNF alpha was found to
be increased in the cerebrospinal fluid (CSF) of AD patients
(Tarkowski et al., 2003). Consequently, a clinical trial in AD
patients using a TNF alpha inhibitor (Etanercept) showed that
TNF alpha inhibition could be a promising approach to control
AD (Tobinick et al., 2006). Furthermore, TNF alpha has been
suggested to inhibit autophagy in microglia (Jin et al., 2018).
This could be due to the induction of autophagy caused by the
inhibition of TNF alpha.

Macrophage Migration Inhibitory Factor
(MIF)

Adipose tissue secretes MIF (Skurk et al., 2005), which is
an inflammatory cytokine of innate immunity. MIF is co-
localized with AB-protein, promoting inflammation around the
plaque areas, and is thus able to form amyloid-like fibrils.
This notion validates its importance in neuroinflammation and
plaque development (Oyama et al., 2000; Lashuel et al., 2005).
Further, MIF is markedly increased in AD patients, indicating
its importance in AD pathogenesis. MIF favors AD pathogenesis
by accelerating the production of other cytokines (Popp et al.,
2009; Bacher et al, 2010). An in vitro study using an MIF
inhibitor in the neuroblastoma cell line revealed amelioration of
the neurotoxic effect of MIF and AP protein production. Similar
results were also observed with murine BV2 microglial cells
(Bacher et al,, 2010). This evidence sheds light on the potential
of MIF inhibitors in developing treatment strategies for AD.
However, the role of MIF is not studied in autophagy.

Leptin

The mature adipocytes secrete leptin that assists the brain
in deciding the level of energy intake. Leptin thus regulates
feeding behavior, energy expenditure, and other activities. Leptin
transport across the BBB is facilitated by leptin receptors (Schulz
et al.,, 2011), which are abundantly found in the hypothalamus,
neocortex, cerebellum, and medulla. Moreover, leptin receptors
are also found in cells that produce orexigenic and anorexigenic
neuropeptides (Jequier, 2002). These neuropeptides are crucial
to maintaining the energy intake. Leptin is now counted
as a biomarker in predicting AD progression (Lieb et al.,
2009). A recent investigation showed that leptin attenuates
the hyper-phosphorylation of tau protein. Conversely, the
hippocampal tissue and CSF of AD patients revealed a high
level of leptin and leptin receptors (King et al, 2018).
Leptin has been shown to induce autophagy in neuronal
cells (Li et al., 2018), but this has not been demonstrated
in relation to AD.

GROWTH FACTORS

Angiopoietins [Angiopoietin-1 (Ang-1)

and Angiopoietin-2 (Ang-2)]

Angiopoietin-1 is involved in the remodeling of WAT during
weight loss and gain; this process not only involves changes in
adipocytes but is also associated with the distinct changes in

the density of blood vessels and nerve fiber. Several adipokines
are involved in this process. For instance, Tie proteins remodel
the adipose tissue through vascular maturation (Dallabrida
et al, 2003). Adipocyte-derived stem cells produce Ang-1
when supplemented with growth factors in the medium. The
production of Ang-1 is time-dependent, and knockdown of
Ang-1 negatively affects endothelial regenerative capabilities
(Takahashi et al., 2013). This proves that angiogenesis is partially
regulated by Ang-1. Therefore, understanding the role of Ang-1
in angiogenesis would help to delineate obesity and other related
conditions. Furthermore, angiogenic activation of the brain cell
endothelium favors the formation of B-amyloid, which is the
hallmark of AD (Vagnucci and Li, 2003). The measurement of
serum Ang-1 in AD patients and control revealed significantly
increased Ang-1 in AD patients. Ang-1 level in serum is,
therefore, suggested as a complementary technique together
with mental status examination to diagnose AD (Schreitmiiller
et al.,, 2012). However, further studies are warranted to validate
Ang-1 as a potential marker of AD, and its role in autophagy
remains unstudied.

Ang-2 is also important in the vascularization of adipose
tissue, which shows greater plasticity by expanding or
reducing its size throughout the lifespan. Ang-2 regulates
either vascular remodeling or regression, through positive or
negative regulation. It is closely connected with obesity because
leptin has a crucial role in inducing the expression of Ang-2,
which is independent of other angiogenic factors [e.g., vascular
endothelial cell growth factor (VEGF)] (Cohen et al, 2001).
Tabata et al. (2009) reported the secretion of an angiopoietin-
like protein-2 by adipocytes and considered it as a marker of
adiposity (Tabata et al.,, 2009). Ang-2 promotes vascularization
of subcutaneous WAT and improves metabolic homeostasis,
and it is therefore has a promising role in mitigating high-fat
diet-induced obesity (An et al., 2017). However, the function of
Ang-2 is not yet established in AD and neither is autophagy.

Fibroblast Growth Factors (FGFs)

Fibroblast growth factors consist of 22 members and are secreted
both by WAT and BAT. The FGFs produced by WAT are
involved in a variety of functions including metabolism, and
neural development (Itoh and Ohta, 2014). FGF-1 is significantly
increased in WAT during obesity than FGF-2 (Mejhert et al,,
2010). FGF-9 regulates the expansion of BAT under cold-
induced conditions (Shamsi et al., 2018). FGFs have a potential
therapeutic application against obesity, and understanding their
molecular mechanism is thus pivotal (Nies et al., 2016). FGFs,
on the other hand, are required for the development of various
brain areas. For instance, the supplementation of FGFs increases
neuronal survival in the midbrain, hippocampus, etc (Matsuda
etal., 1990). The occurrence of FGFs is mostly associated with the
plaques, and this was evidenced by the focal immunoreactivity of
neuritic plaques (Stopa et al., 1990). The systemic administration
of FGF in APP-23 transgenic mice resulted in decreased AP
formation and tau synthesis (Katsouri et al., 2015). Overall,
it is interesting to explore FGFs for their beneficial role in
mitigating AD. FGF-2 has been reported to regulate autophagy
in non-small-cell lung cancer cells (Yuan etal,2017), which
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leads to the speculation that it might induce autophagy
in controlling AD.

Hepatocyte Growth Factor (HGF)

Hepatocyte growth factor is expressed as an angiogenic factor
in adipose tissue. HGF expression is reduced during adipocytes
differentiation and upregulated during hypoxia (Chu et al., 2009).
In the human brain, HGF is localized in the astrocytes of white
matter (Tsuboi et al., 2003), and its expression level varies
in response to brain injury (Yamada et al., 1994). Therefore,
its concentration is useful to assess the extent of damage
in the white matter of AD patients (Laterra et al., 1997).
It remains to be further elucidated whether HGF could be
used as a biomarker for AD. HGF and MET together induce
autophagy in certain cancer cells (Huang, 2018). However,
the role of HGF in controlling autophagy in brain cells is
not established.

Insulin-Like Growth Factor-1 (IGF-1)

Insulin-like growth factor-1 is responsible for the increase
in tissue mass through the regulation of growth hormones.
In adipose tissue, the differentiation of pre-adipocytes to
adipocytes is favored by the growth factors. Particularly, the
newly differentiated adipocytes are highly sensitive to IGF-1
(Zezulak and Green, 1986). The IGF-1 level is altered in AD
patients’ brain, suggesting the effect of disrupted signaling
of IGF-1 in AD. Besides, IGF-1 polymorphism rs972936 is
associated with the high prevalence of AD (Vargas et al,
2011). Furthermore, IGF-1-mediated signals are implicated in tau
phosphorylation, the cleavage of APP, transport of Af, memory
formation, etc (Freude et al., 2009). IGF-1 prevents autophagy
in human colorectal carcinoma cells (Wang and Gu, 2018),
but the role of IGF-1 in the regulation of autophagy remains
to be elucidated.

Nerve Growth Factor (NGF)

Nerve growth factor is an emerging neurotrophin in adipose
tissue biology. It is expressed in both WAT and BAT of
rodents that were fed with a high-fat diet. Furthermore, both
neurotrophins were found to have roles in the pathogenesis
of other metabolic diseases, including cardiovascular diseases
(Sornelli et al, 2009). In adipocytes, NGF is involved in
energy homeostasis by regulating glucose and lipid metabolism
(Chaldakov et al., 2003). Furthermore, NGF also plays a crucial
role in neural disorders. In particular, the activity of NGF is
elevated in the frontal and occipital cortex of AD patients.
Measurement of the quantity of NGF is used as a diagnostic
criterion for AD (Crutcher et al, 1993). Though NGF has
been shown to activate autophagy in Schwann cells (Li et al.,
2020), its role in regulating autophagy in brain cells need
to be established.

Tissue Factor (TF)

Tissue factor genes are expressed in the adipose tissue of
obese rodents (Samad et al., 1998) and atherosclerotic plaque
of humans (Pfeiffer and Schatz, 1995). TF is a cell-surface

receptor that activates factor VII and initiates the coagulation
cascade in the cardiovascular system (Edgington et al., 1991).
TF is expressed in the brain parenchyma, neurons, astrocytes,
and in the cortex. However, the immunoreactivity of TF was
prominent in senile plaques (Faulk et al., 1990). TF also activates
the coagulation factor in the brain by forming a complex
with factor VII via the extrinsic pathway (Fleck et al.,, 1990;
McComb et al., 1991). Further insight into TF would help to
develop treatment/diagnostic strategies for AD. However, the role
of TF in autophagy is not studied.

Transforming Growth Factor Beta
(TGF-B)

Transforming growth factor beta is a multi-functional growth
factor and plays a crucial role in the determination and
differentiation of mesenchymal progenitors in the adipogenic
pathway (Fujimoto et al., 2003; Sato et al., 2009). Specifically,
TGF-p inhibits adipogenesis through the smad3-dependent
pathway (Choy and Derynck, 2003; Tsurutani et al., 2011). TGF-
P1 is a candidate gene for AD, and its overexpression induces the
deposition of the AB peptide (Mattson et al., 1997). Besides, TGF-
1 is involved in cellular responses following brain injury, and its
level is found to be elevated in AD patients (Gomez-Pinilla and
Cotman, 1993). Furthermore, overexpression of TGF-B1 triggers
AP accumulation in senile plaques of AD patients (Luedecking
et al., 2000). TGF-B is a potent inducer of autophagy in other
cells, but its role in AD remains elusive. Altogether, this evidence
emphasizes the importance of TGF-f and helps understanding
the downstream signaling pathways of TGF-f in AD to strategize
further therapeutic intervention.

Vascular Endothelial Cell Growth Factor
(VEGF)

Vascular endothelial cell growth factor helps in the expansion
and lifelong growth of adipose tissues (Cao, 2007; Lijnen, 2007).
Concomitant neovascularization parallel to the expansion of
adipocytes is required for the efficient delivery of oxygen and
nutrients. Adipose tissues release a variety of angiogenic growth
factors, including VEGEF, FGFs, etc., for neovascularization
(Cao, 2007). Angiogenic suppression is one of the promising
therapeutic approaches for the effective treatment of obesity
and diabetes. Angiogenic inhibitors have been shown to possess
promising efficacy in individuals with metabolic syndrome
(Rupnick et al., 2002; Cao, 2010). It is well known that hypoxia
leads to obesity due to inadequate angiogenesis, which is perhaps
caused by the impaired VEGF signaling in the adipose tissue.
However, the role of VEGF in obesity is unclear (Sung et al.,
2013). Hypoxia also results in AD due to pathological alteration
of the vasculature, which is one of the key features of AD,
leading to the accumulation of atherosclerotic plaques and AP
in arterial blood vessels of AD patients. However, the role of
AP in vascularization is poorly understood. The levels of Afs
40 and 42 in brain arterioles were found to be elevated in
AD patients and transgenic AD mouse model. VEGF inhibits
AB-induced endothelial apoptosis in vitro. In line with the above
finding, neuron-specific expression of VEGF in transgenic mice
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restored memory in rodent model of AD (Religa et al., 2013).
Evidence has suggested that VEGF expression is increased in
response to autophagy induction (Yao et al., 2020). The exact
relationship between VEGF and autophagy in AD remains
to be elucidated. However, the above findings suggest that
improvement of vascular functions would be a novel approach
for the treatment of AD.

IMMUNOMODULATORY PROTEINS

Monocyte Chemotactic Protein-1

(MCP -1)

Monocyte chemotactic protein-1 belongs to the chemokine
family. MCP-1 is involved in the remodeling and expansion
of adipose tissue during the early stages of obesity (Low
et al., 2001). Therefore, the disruption of MCP-1 expression is
considered to be important in the alteration of the function and
metabolism of adipose tissue, especially during the transition
between lean and obese states (Sartipy and Loskutoff, 2003).
Besides, MCP-1 recruits monocytes, thereby initiating and
maintaining the inflammatory reactions in the adipose tissue
(Sartipy and Loskutoff, 2003). MCP-1 also influences glucose
and lipid metabolism (Loskutoff and Samad, 1998). In the
CNS, MCP-1 is produced by astrocytes (Hurwitz et al., 1995)
and microglia (Ishizuka et al, 1997). Sokolova et al. (2009)
identified MCP-1 as the major predictor of AD, and they found
consistent upregulation of MCP-1 in AD brain tissue. They
further localized MCP-1 in neurons, astrocytes, and within
plaques through immunohistochemistry (Sokolova et al., 2009).
Yet, the involvement of MCP-1 in autophagy needs to be
investigated further.

C-Reactive Protein (CRP)

In adipose tissue, pro-inflammatory cytokines, such as IL-6
(Hotamisligil et al., 1995) and TNF alpha (Heinrich et al., 1990),
stimulate the secretion of CRP (Warren et al., 1987). In particular,
CRP levels are found to be elevated in visceral adipose tissue
(Saijo et al., 2004). In diagnostics, CRP is used as a marker of
inflammation (Stefanska et al., 2011). Inflammation, on the other
hand, is crucial in cognitive decline, AD, and vascular dementia.
Positively, a plethora of studies have linked AD with CRP
levels. Furthermore, CRP was also found in both neurofibrillary
tangles and senile plaques of AD patients (Engelhart et al., 2004).
O’Bryant et al. (2013) found a decreased level of CRP among
AD patients and suggested the rise in CRP is dependent on
the progression of AD (O’Bryant et al., 2013). Another study,
however, found no significant association between plasma CRP at
the baseline and subsequent cognitive decline. Therefore, it was
concluded that reduced levels of plasma CRP can be used as a
biomarker to diagnose AD (Yarchoan et al., 2013). Though the
data from the literature is contradicting, it needs to be further
investigated. In the autophagic perspective, CRP is found to
have a negative correlation with autophagy in kidney injury in
mice (Bian et al., 2017). However, the role of CRP in regulating
neuronal autophagy is unclear and needs to be explored.

Serum Amyloid A (SAA) Proteins

Serum amyloid A proteins are mediators of metabolism and
inflammation, and they are therefore correlated with the
metabolic syndromes (Lin et al., 2001; Yang et al., 2006). Hitherto,
four functional isoforms of SAA (SAA 1-4) have been identified
in mice (Uhlar and Whitehead, 1999), among which SAA3
is predominantly expressed in the adipose tissue (Meek and
Benditt, 1986; Reigstad et al., 2009). Scheja et al. (2008) found
SAA3 upregulation in the adipose tissue of high-fat-fed mice
and suggested SAA3 as a mediator of chronic inflammation and
insulin resistance (Scheja et al., 2008). SAA3 is also found on
the myelin sheath and underlying axonal membrane of cortical
projection neurons, where large quantities of cholesterol are
present. This leads to amyloidosis in the brain that eventually
causes chronic inflammation and promotes AD (Chung et al.,
2000). Furthermore, the systemic inflammation was suggested to
increase the SAA proteins and found to enhance the amyloid
deposition in the brain (Guo et al., 2002). SAA proteins, however,
were never found to be associated with neuronal autophagy.

CHEMOKINES

Chemerin

Chemerin is a chemoattractant protein and adipokine (Wittamer
et al., 2003), secreted by the adipose tissue (Ernst and Sinal,
2010), which appears to promote adipocyte differentiation (Jialal
et al., 2013). Several studies have shown the increased chemerin
expression during adipogenesis in 3T3 L1 adipocytes (Bozaoglu
et al., 2007; Goralski et al., 2007). In contrast, Sell et al. (2009)
reported that chemerin mediates a negative crosstalk between
adipose tissue and skeletal muscle, thereby contributing to the
negative relationship between obesity and insulin sensitivity (Sell
et al., 2009). Chemerin also serves as a ligand for CMKLR1
(chemokine-like receptor 1) (Kulig et al., 2011). Peng et al. (2015)
reported a higher mRNA expression of CMKLR1 in the brain of
AD patients and mice in response to systemic administration of
LPS (Peng et al., 2015). In transgenic mice (ABPP/PS1), CMKLR1
and AP42 are co-localized in the hippocampus and cortex. There
was a specific interaction between AB42 and CMKLRI1 in rat
basophilic leukemia (RBL) cells, which suggest CMKLRI1 as a
receptor for AP42. Furthermore, AB42 stimulates CMKLRI-
RBL cells and primary glial cells to internalize the AP42-
CMKLR1 complex, which helps in the clearance of AP42
(Kulig et al, 2011). Very recently, chemerin was reported
to induce autophagy in bovine mammary epithelial cells (Hu
et al, 2019). Therefore, it is reasonable to speculate that it
might induce autophagy in microglial cells also, which needs
to be explored.

Regulated Upon Activation, Normally T
Cell Expressed and Secreted (RANTES)

Regulated upon activation, normally T cell expressed and
secreted, otherwise known as chemokine ligand 5 (CCL5), is a
pro-inflammatory chemokine strongly involved in inflammation
(Fischer et al., 2001). Wu et al. (2007) observed an increase
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in RANTES in WAT of obese mice and humans. In morbidly
obese cases, RANTES expression was higher in visceral adipose
tissue compared to subcutaneous adipose tissue (Wu et al,
2007). However, physical exercise was suggested to overcome
the deleterious effects of RANTES-associated obesity (Baturcam
etal., 2014). RANTES induces neuroinflammation and promotes
the onset of neurodegenerative diseases, such as multiple
sclerosis, AD, Parkinson’s disease (PD), and HIV-associated
dementia (Galimberti et al., 2006). Kester et al. (2012) reported
decreased expression of RANTES mRNA in the blood of AD
patients (Kester et al., 2012). Tripathy et al. (2010) revealed
RANTES upregulation in cerebral microcirculation of AD
patients. They further confirmed that the treatment of neurons
in vitro with RANTES offered a neuroprotective effect. Therefore,
they suggested using RANTES to develop a novel therapeutic
strategy for AD (Tripathy et al., 2010). Even though RANTES was
proven to be involved in AD, its role in autophagy has not been
established so far.

PROTEINS AFFECTING THE
FIBRINOLYTIC SYSTEM

Plasminogen Activator Inhibitor 1 (PAI-1)
Plasminogen activator inhibitor 1 is, in part, secreted by the
adipose tissue (Alessi et al., 2007). PAI-1 is increased in obese
humans and found to be decreased during weight loss. It is also
associated with type-2 diabetes as a potential circulating marker.
However, its role in obesity is not fully revealed (Alessi et al.,
2007). In the AD mice model, the level of PAI-1 was increased
(Kutz et al., 2012). Melchor et al. (2003) reported that the tissue
plasminogen activator (tPA)-plasmin system plays a vital role
in the degradation of AP in vivo. In AD patients, the chronic
elevation of AP peptide in the brain correlates with the increased
level of PAI-1 and inhibition of tPA-plasmin system. The
tPA-plasminogen proteolytic cascade increases AP degradation
and prevents AP-induced neurodegeneration (Melchor et al.,
2003). This indicates that PAI-1 inhibits the plasmin activity
and results in increased accumulation of AP. Positively, PAI-1
inhibitors were also suggested to use for therapeutic approaches
against AD (Skrzypczak-Jankun and Jankun, 2010; Kutz et al.,
2012). Conversely, the function of PAI-1 is not established in
neuronal autophagy.

COMPLEMENT AND
COMPLEMENT-RELATED PROTEINS

Complement Factor B (CFB)

Complements are part of innate immunity and play
crucial roles in assisting the antibodies and phagocytic
cells to eliminate pathogens. It was observed that adipose
tissue explants of obese patients were able to produce
complement factors B, D, and C3 (Fain et al., 2004). CFB
when overexpressed in the 3T3-L1 cell line, the genes
associated with adipocytes differentiation/maturation were

also enhanced. This proves the efficacy of CFB in adipocyte
differentiation (Matsunaga et al., 2018). Interestingly, a study
by Manral et al. (2012) compared the CSF samples of AD
patients and control and revealed the differential expression
of CFB. This advocates CFB as a marker for AD (Manral
et al, 2012). A very recent meta-analysis study showed
that the concentration of CFB was lowered in AD (Krance
et al., 2019). However, the evidence is lacking about CFB in
inducing autophagy.

Complement Factor H (CFH)

The expression of CFH was significantly increased in the
subcutaneous fat of humans. Furthermore, the expression was
also highly correlated with insulin resistance (Moreno-Navarrete
et al, 2010). In a study by Thambisetty et al. (2008), the
plasma CFH level was increased up to 13-fold in AD patients
compared to control patients (Thambisetty et al., 2008). The
CFH was also found to be accumulated in the amyloid plaque.
Toledo et al. (2014), however, indicated that CFH is not a
suitable biomarker for AD (Toledo et al., 2014). The current
understanding of the role of CFH in autophagy is limited and
needs to be established.

PROTEINS IN METABOLIC PROCESS

Adiponectin

Adiponectin is one of the cytokines produced by adipose
tissue. It is involved in many physiological processes, such as
insulin sensitivity, glucose homeostasis, and fatty acid catabolism
(Dzielinska et al., 2003; Ouchi et al, 2003). Adiponectin
levels are inversely proportional to the adipose tissue mass,
and they are therefore found to be at low concentrations
during obesity. The role of adiponectin in cognition and brain
activity remains controversial. For instance, Une et al. (2011)
showed that elevated adiponectin levels were associated with
AD (Une et al, 2011). In contrast, van Himbergen et al.
(2012), in a population-based study, showed an elevated level
of adiponectin in dementia-free individuals (van Himbergen
et al,, 2012). On the other hand, Gu et al. (2010) found
no significant association between adiponectin levels and the
risk of cognitive decline and dementia (Gu et al, 2010).
A similar observation was made by Bigalke et al. (2011).
This view was further supported by other researchers as well.
Teixeira et al. (2013) inferred that there is no correlation
between adiponectin levels and mild cognitive impairment,
and AD (Teixeira et al, 2013). Adiponectin has been proven
to induce autophagy in skeletal muscle and reduce insulin
sensitivity (Liu et al., 2015). However, the role of adiponectin
in the modulation of neuronal autophagy is still unclear and
needs to be explored.

Cholesteryl Ester Transfer Protein (CETP)

Adipose tissue majorly contributes to the secretion of CETP,
which, in turn, helps adipocytes in the accumulation of
cholesteryl ester from the HDL of a dietary source (Radeau
et al., 1998). CETP concentration is found to be elevated during
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hyperlipoproteinemic states. This implies the enhanced delivery
of lipoproteins to adipose tissue and increased CETP gene
expression in adipocytes (Radeau et al, 1995). The brain, in
part, also synthesizes CETP, which might play an important
role in the transport and redistribution of cholesterol within
the brain, possibly by enhancing the neuronal uptake of HDL
particles. Furthermore, it has also been proven that cholesterol
positively regulates the production of A (Rodriguez et al., 2006).
Cholesterol, on the other hand, was also reported to impair
AP degradation, eventually culminating its role in autophagy
(Barbero-Camps et al., 2018). Sanders et al. (2010) found that
single nucleotide polymorphism (SNP) at CETP codon 405
homozygosity is associated with slower memory decline and a
lower incidence of dementia and AD risk (Sanders et al., 2010).
Therefore, it is reasonable to speculate CETP as a causative
agent of AD. However, the role of CETP in autophagy is
not established.

Lipoprotein Lipase (LPL)

Lipoprotein lipase plays a crucial role in the physiology
of adipocytes because it majorly contributes to the production
of fatty acids. In general, lipoprotein particles transported out
of the vasculature system contribute to a significant source
of fatty acids for adipocyte storage (Mead et al, 2002).
Apart from adipose and muscle, LPL is also secreted by the
brain. In mouse primary astrocytes, LPL binds to AP and
promotes cell-surface association and uptake of AP (Nishitsuji
et al, 2011). LPL is thus a novel AP-binding protein that
promotes cellular uptake and degradation of AP. LPL is also
co-localized with senile plaques in the brains of AD patients,
and if there are any mutations they are associated with
the severity of pathophysiological features of AD (Gonzales
and Orlando, 2007). The role of LPL in autophagy has
not been reported.

Retinol Binding Protein 4 (RBP4)

In adipocytes, systemic glucose metabolism is regulated by
the release of serum RBP4 (Yang et al., 2005). Therefore,
RBP4 overexpression causes insulin resistance, while the
reduced expression ameliorates insulin resistance. Furthermore,
elevated levels of RBP4 were associated with type 2 diabetes.
Altogether, adipocytes utilize RBP4 to regulate whole-body
insulin sensitivity. The presence of cellular retinol-binding
protein 1 (CRBP1) and cellular retinoic acid-binding protein 1
(CRABP1) was confirmed in the dendritic layers and dentate
gyrus (Shudo et al, 2009). Retinoid signaling is pivotal in
the brain and is suggested to have a physiological role in
hypothalamus, amygdala, hippocampus, etc. This underscores
the importance of retinoid signaling and RBP4 in AD (Lane and
Bailey, 2005). To date, however, there was no evidence available
on RBP4 in the regulation of autophagy.

Resistin

Resistin is an adipokine, which hostile insulin action. Resistin
is upregulated with genetic forms of obesity and downregulated
with anti-diabetic drugs (Letra et al., 2014). In postmenopausal
women, increased resistin mRNA expression causes insulin

resistance and culminates in obesity-related disorders (Sadashiv
et al, 2012). Lu et al. (2013) attributed neuroprotective
effects to resistin due to its efficacy in acting against AP
deposition. Resistin inhibits AD, perhaps by decreasing the
level of reactive oxygen species, improving the mitochondrial
function, and preventing apoptosis (Lu et al., 2013). Resistin
was recently suggested as a potential biomarker to diagnose
AD (Yu et al,, 2018). In the SH-SY5Y human neuroblastoma
cell line, resistin inhibits autophagy through the repression of
autophagic markers. In wild-type mice, resistin treatment was
found to inhibit the mRNA expression of autophagy markers.
This suggests resistin as a potential inhibitor of autophagy
(Miao et al., 2018).

ENZYMES FOR STEROID METABOLISM

118-Hydroxysteroid Dehydrogenase Type

1 (118-HSD1)

118-HSD1 generates active glucocorticoids (cortisol and
corticosterone) that are strong inhibitors of angiogenesis.
11B-HSD1 supports the increased expression of angiogenic
factors such as VEGF, TGF-B, and HGE which are directly
involved in the augmentation of adipose tissue. Thus, it is
prudent to consider the role of 118-HSD1 in adipose tissue
dysfunction during obesity and angiogenesis (Lee et al,
2013). Age-related cognition was found to be declined upon
chronic exposure to glucocorticoids, and this is inhibited by
the 11B-HSDI1 inhibitor (UE2316). Treatment with UE2316
consequently decreased the number of B-amyloid plaques and
improved the memory in the AD mice model (Sooy et al., 2015).
Furthermore, selective inhibitors of 118-HSD1 also improved the
memory and ameliorated the condition of AD in aged rodents
(Mohler et al., 2011). Therefore, inhibition of 118-HSD1 would
be a novel strategy for the treatment of age-related cognitive
disorders. Interestingly, another potent inhibitor of 118-HSDI,
RL-118, improved autophagy markers such as Beclinl, light
chain 3B (LC3B), AMP-activated protein kinase alpha (AMPK
a), and mammalian target of rapamycin (mTOR), which signified
the role of 118-HSD1 in autophagy. Additionally, RL-118 was
proven to prevent neuroinflammation and cognitive decline
associated with AD (Puigoriol-Illamola et al., 2018). 11-HSD1
is thus a key player associated with adipose tissue, AD, and
autophagy. Therefore, we suggest it as a potential target to
manage the complications.

17B-Hydroxysteroid Dehydrogenase
(17B-HSD)

Adipose tissues from rats and humans express 17p-HSD, which is
involved in the peripheral synthesis of androgens and estrogens
(Martel et al., 1992). It was also reported that 178-HSD binds with
the B-amyloid peptide (He et al., 1999). The high levels of 17f-
HSD abolished the steroid hormone homeostasis in synapses and
eventually lead to the loss of synapses in the hippocampus of the
AD mouse model (He et al., 1999). The role of 178-HSD has never
been explored in autophagy.
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Cytochrome P450 Enzymes

Cytochrome P450 is induced in the WAT of rats (Ellero et al,,
2010). The brain also secretes low levels of cytochrome P450
in various isoforms. These enzymes are likely to be involved
in neurosteroid synthesis, the metabolism of drugs, and the
protection of the brain from toxins (Nicholson and Renton,
1999). Cytochrome P450 46A1 (CYP46A1) helps in the clearance
of cholesterol from the brain. Increased CYP46A1 expression in
mice improves cognition and decreases the manifestations of AD
(Mast et al., 2014). CYP46A1 could, therefore, be exploited for its
beneficial role in AD. However, the role of cytochrome p450 has
not been studied in autophagy.

CONCLUSION AND FUTURE DIRECTION

Recent evidences have pointed out that obesity is a predisposing
factor for the development of AD and there is a strong
association between dementia and adiposity. The current review
advocates the possible correlation between the expressions of
biomolecules secreted by adipose tissue with dysregulation in
neurons thereby leading to progression toward AD. Obesity-
mediated signaling may evoke AD by secreting a variety of
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