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Adult reading tests (ART) have been widely used in both research and clinical settings
as a measure of premorbid cognitive abilities or cognitive reserve. However, the
neural substrates underlying ART performance are largely unknown. Furthermore, it
has not yet been examined whether the neural substrates of ART performance reflect
the cortical regions associated with premorbid intelligence or cognitive reserve. The
aim of the study is to identify the functional neural correlates of ART performance
using 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging
in the cognitively normal (CN) middle- and old-aged adults. Voxel-wise analyses
revealed positive correlations between glucose metabolism and ART performance in
the frontal and primary somatosensory regions, more specifically the lateral frontal
cortex, anterior cingulate cortex and postcentral gyrus (PCG). When conducted again
only for amyloid-β (Aβ)-negative individuals, the voxel-wise analysis showed significant
correlations in broader areas of the frontal and primary somatosensory regions. This is
the first neuroimaging study to directly demonstrate the cerebral resting-state glucose
utilization associated with ART performance. Our findings provide important evidence at
the neural level that ART predicts premorbid general intelligence and cognitive reserve,
as brain areas that showed significant correlations with ART performance correspond to
regions that have been associated with general intelligence and cognitive reserve.

Keywords: adult reading test, cerebral glucose metabolism, cognitive reserve, beta-amyloid, cognitively
normal adults

INTRODUCTION

Estimation of premorbid cognitive ability is essential in both research and clinical settings to
quantify and diagnose cognitive impairment. The most widely applied approach to estimating
premorbid cognitive function is the use of an adult reading test (ART), which comprises of oral
reading of orthographically irregular words. Premorbid intelligence can be estimated from ART
based on the rationale that the reading ability of irregular word correlates strongly with measure
of IQ in healthy adults (Nelson and Willison, 1991; Crawford et al., 2001; Yi et al., 2017), and
is relatively resistant to cognitive declines in patients with neurological or psychiatric disorders
(Sasanuma et al., 1992; McGurn et al., 2004; Matsuoka et al., 2006). It is assumed that better
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performance on ART implies prior knowledge of a word’s
pronunciation and therefore a higher premorbid intelligence
(Lezak et al., 2004). Moreover, numerous studies on Alzheimer’s
disease (AD) have reported that an ability to pronounce irregular
words is a retained skill even in advanced stages of the disease
(Sasanuma et al., 1992; McGurn et al., 2004; Matsuoka et al.,
2006), suggesting that ART is able to provide a reasonable
estimate of premorbid intelligence for AD patients.

ART has also been used as an index for cognitive reserve
(CR)—a theoretical concept referring to the cognitive capacity to
cope with brain damages (Stern et al., 2003; Lo and Jagust, 2013;
Rentz et al., 2017). The concept of CR has been widely used to
explain the discrepancy between the clinical manifestations and
degree of brain damage or pathology (Stern et al., 2003, 2008).
It is also considered as a contributing factor toward individual
differences of resilience to brain pathology. In epidemiologic
studies, higher intelligence has consistently been shown to be
protective against the progression of AD (Snowdon et al., 1996;
Whalley and Deary, 2001; Yeo et al., 2011). Moreover, high
prevalence of AD-related abnormal biomarkers at a given level of
cognitive performance was associated with higher scores onART,
indicating that those with higher ART scores cope better with AD
pathology (McGurn et al., 2004; Vemuri et al., 2011; Rentz et al.,
2017). Taken together, these findings support that performance
on ART reflects CR.

While there is ample evidence demonstrating that ART
provides a good estimate of intelligence and CR at the behavioral
level, the neural basis of ART performance is largely unknown.
Furthermore, it has not yet been identified whether ART
performance reflects the neural function of the regions associated
with intelligence or CR. Previous neuroimaging studies on
ART focused largely on examining whether CR measured by
ART helps to cope against neuropathology in individuals with
cognitive impairment (Alexander et al., 1997; Vemuri et al., 2011;
Rentz et al., 2017). To our knowledge, however, there are no
studies to date that looked directly into the neural substrates of
ART performance.

Therefore, the present study aimed to identify the neural
correlates of ART performance in cognitively normal (CN)
adults. To achieve this aim, the correlation between ART
performance and regional cerebral glucose metabolism was
examined with brain 18F-fluorodeoxyglucose (FDG)-positron
emission tomography (PET), which has been known to provide
a reliable index of neural activity (Teipel et al., 2006; Melrose
et al., 2013; Han et al., 2015). In addition, the neural correlates
were reexamined in individuals without a significant level
of amyloid-β (Aβ) deposition in the AD signature regions
shown on 11C-labelled Pittsburgh Compound B (PIB)-PET, in
order to eliminate the influence of AD pathology on cerebral
glucose metabolism.

MATERIALS AND METHODS

Subjects
This study included 271 healthy CNmiddle- and old-aged adults
who participated in the Korean Brain Aging Study for the Early
Diagnosis and Prediction of Alzheimer’s disease (KBASE), which

is an ongoing prospective cohort study established in 2014 (Byun
et al., 2017). All subjects underwent comprehensive clinical
and neuropsychological assessments and multi-modal brain
imaging including brain FDG-PET and PiB-PET. Details of the
inclusion and exclusion criteria were described previously (Byun
et al., 2017). The inclusion criteria for participants with normal
cognition were: (a) aged 55–90 years (inclusive); (b) Clinical
Dementia Rating score of 0; and (c) no diagnosis of mild
cognitive impairment or dementia. Participants who met the
following criteria were excluded: (a) any present serious medical,
psychiatric, or neurological disorder that could affect mental
functioning; (b) presence of severe communication problems
that would make a clinical examination or brain scan difficult;
(c) contraindications forMRI; (d) absence of a reliable informant;
(e) illiteracy; and (f) participation in another clinical trial and
treatment with an investigational product.

All subjects provided written informed consent prior to the
administration of the study procedure. The study protocol was
approved by the Institutional Review Boards of Seoul National
University Hospital (C-1401-027-547) and SNU-SMG Boramae
Center, Seoul, South Korea (26-2015-60), and was conducted in
accordance with the recommendations of the current version of
the Declaration of Helsinki.

Clinical Assessments
All participants received standardized clinical assessments by
trained psychiatrists based on the KBASE clinical assessment
protocol (Byun et al., 2017) which corresponded with the
Korean version of the Consortium to Establish a Registry
for AD Assessment Packet (CERAD-K; Lee et al., 2002). In
addition, the KBASE neuropsychological assessments (Byun
et al., 2017) incorporating the CERAD-K neuropsychological
battery (Lee et al., 2004) were administered to all participants by
a neuropsychologist or trained psychometrists.

FDG-PET Acquisition and Preprocessing
FDG-PET scans were performed using a 3.0T Biograph mMR
(PET-MR) scanner (Siemens, Germany) and 3D T1-weighted
magnetic resonance imaging was simultaneously performed with
PET. Details of the acquisition were described previously (Byun
et al., 2017).

The FDG-PET data were preprocessed using Statistical
Parametric Mapping 12 (SPM12; Institute of Neurology,
University College of London, United Kingdom) implemented
in Matlab 2015ba (Mathworks, Natick, MA, USA). In the first
step, static FDG-PET images were co-registered to individual
T1 structural images. Next, transformation parameters were
calculated from the individual T1 images that were coregistered
to the MNI template image. The forward parameters were
used to spatially normalize individual T1 and FDG-PET images
to the MNI template. The spatially normalized FDG-PET
images were smoothed with a 12-mm Gaussian filter and pons
were used as the reference region for intensity normalized
(Minoshima et al., 1995).

PIB-PET Acquisition and Processing
All participants also underwent 3-dimensional (3D) PiB-PET
using the same PET-MR machine as the FDG-PET scans.
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Details of the acquisition were described previously (Byun
et al., 2017). Image preprocessing for statistical analyses was
performed using SPM 12 implemented in Matlab 2015b. First,
the PiB images were coregistered to individual T1 structural
images that were coregistered to the MNI template space, and
inverse transformation parameters were obtained for spatial
normalization. The inverse transformation parameters were
used to transform coordinates from the automatic anatomic
labeling (AAL) 116 atlas (Tzourio-Mazoyer et al., 2002)
into an individual space for each subject (resampling voxel
size = 1 × 0.98 × 0.98 mm) with the IBASPM software. The
segmented cerebral gray matter segment image from each subject
was used to mask the non-gray matter portion of the atlas.

Mean cerebral PiB uptake values were extracted using the
individual AAL 116 atlas from the T1-coregistered PiB-PET
images and quantitative normalization was performed using the
cerebellar gray matter as the reference region (Lopresti et al.,
2005). The probabilistic cerebellar atlas (Institute of Cognitive
Neuroscience, UCL; Cognitive Neuroscience Laboratory, Royal
Holloway) that was transformed into individual space was used
to obtain mean cerebellar PiB uptakes from the cerebellar lobular
regions except for the vermis. The AAL algorithm (Tzourio-
Mazoyer et al., 2002) and a region-combining method (Reiman
et al., 2009) were applied to determine regions of interest
(ROIs) to characterize the PiB retention level in the frontal,
lateral parietal, posterior cingulate-precuneus (PC-PRC), and
lateral temporal regions. Each participant was classified as Aβ-
positive if the standardized uptake value ratio (SUVR) value
was >1.4 in at least one of the four ROIs or as Aβ-negative if
the SUVR value of all four ROIs was ≤1.4 (Reiman et al., 2009;
Villeneuve et al., 2015).

The Korean Adult Reading Test (KART)
The KART, the validated Korean version of ART, was
administered to all participants (Yi et al., 2017). KART-estimated
Wechsler Adult Intelligence Scale, 4th edition (K-WAIS-IV)
full-scale IQ (FSIQ) was used as a measure for ART performance.

Statistical Analyses
Statistical analyses were performed with SPSS 22.0 and
SPM12. Correlation between KART-estimated FSIQ score and
regional cerebral glucose metabolism was examined using
voxel-wise regression with age and gender as covariates.
For explorative purposes, the statistical threshold was set
at p < 0.005 (uncorrected) and a cluster size threshold of
1,062 voxels was applied to correct for multiple comparisons.
The cluster size threshold was determined based on a cluster
correction procedure in Analysis of Functional and Neural
image (i.e., 3dClustSim), with 10,000 iterations of Monte Carlo
simulations on anatomical cerebral mask dataset (Forman
et al., 1995). The results with the statistical threshold set
at p < 0.001 (uncorrected) and a cluster size threshold of
527 voxels based on the same cluster correction procedure as
the above are presented in the Supplementary Tables S1, S2.
In addition, the mean FDG-PET metabolism SUVR values were
extracted from the clusters presenting a significant correlation
with the KART-estimated FSIQ score. Partial correlation

analyses controlling for age and gender were implemented
with the FDG-PET SUVR data to examine the strength of the
correlations between KART-performance and FDG uptake. The
abovementioned analyses were performed again after excluding
the Aβ-positive participants.

RESULTS

Subject Characteristics
The demographic characteristics of the study sample are
summarized in Table 1. The sample consisted of 271 participants,
of which 51.7% (n = 140) were female and 86.7% (n = 235) were
Aβ-negative. Participants had a mean age of 69.0 years (SD = 8.1)
and average years of education of 11.8 (SD = 4.8). The mean
KART error score was 5.0 (SD = 4.9) and the mean FSIQ score
estimated from the KART error score was 116.0 (SD = 9.9).

Correlation Between Regional Cerebral
Glucose Metabolism and KART
Performance in all CN Subjects
The voxel-wise analysis using age and gender as nuisance
covariates revealed significant positive correlations between
KART-estimated FSIQ score and regional cerebral glucose
metabolism in the frontal and primary somatosensory regions,
particularly in the left middle frontal gyrus (MFG), right anterior
cingulate gyrus (ACG) and left postcentral gyrus (PCG; Table 2,
Figure 1A).

In order to further examine the strength of the correlations,
raw mean FDG-PET SUVR values were extracted from each
cluster showing a significant association with the KART
performance and partial correlation analyses were performed
controlling for the effects of age and gender. There were
positive and moderately significant correlations between
KART-estimated IQ score and mean FDG-PET SUVR values in
all clusters (whole cluster: r = 0.21, p = 0.001; left MFG: r = 0.20,
p = 0.001; right ACG: r = 0.19, p = 0.002; left PCG: r = 0.18,
p = 0.003; Figure 2).

Correlation Between Regional Cerebral
Glucose Metabolism and KART
Performance in Aβ-Negative CN Subjects
For Aβ-negative subsample (n = 235), the voxel-wise analysis
showed positive correlations in more widespread clusters of the
bilateral frontal and primary somatosensory regions including

TABLE 1 | Demographic characteristics.

Characteristics CN

N 271
Age, mean (SD, range) 00069.0 (8.1, 55–87)
Female, N (%) 140 (51.7)
Years of education, mean (SD) 11.8 (4.8)
KART error score, mean (SD) 5.0 (4.9)
KART-estimated FSIQ, mean (SD) 116.0 (9.9)
Aβ-negative, N (%) 235 (86.7)

Values are mean (SD) or count. SD, standard deviation; N, count; KART-estimated
FSIQ, Wechsler Adult Intelligence Scale Full-Scale IQ estimated using the KART; Aβ,
amyloid-beta.
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TABLE 2 | Positive correlations between regional cerebral glucose metabolism and The Korean Adult Reading Test (KART)-estimated full-scale IQ (FSIQ) score after
adjusting for age and gender in all cognitively normal (CN) subjects.

Regions BA Coordinates (mm) Extent voxels T-value Cluster number

x y z

L middle frontal gyrus 6/9 −21 −1 46 1,990 3.57 C1
R anterior cingulate gyrus 32 5 8 43 5,623 3.38 C2
L postcentral gyrus 3 −30 −25 46 1,545 3.35 C3

p < 0.005 (uncorrected) with significance of k > 1,062. Adjusted for age and gender. Coordinates are in Montreal Neurological Institute (MNI) space. Cluster numbers are labeled for
each cluster (i.e., C1 denotes cluster no.1). BA, approximate Brodmann area; L, left hemisphere; R, right hemisphere.

FIGURE 1 | (A) Results of whole-brain voxel-wise analysis presenting significant associations between cerebral glucose metabolism and korean adult reading test
(KART)-estimated full-scale IQ (FSIQ) score in all cognitively normal (CN) subjects. Positive correlations were shown in the left middle frontal gyrus (MFG), right
anterior cingulate gyrus (ACG) and left postcentral gyrus (PCG). Cluster numbers (e.g., C1) correspond to those in Table 2. (B) Results of whole-brain voxel-wise
analysis presenting significant associations between cerebral glucose metabolism and KART-estimated FSIQ score in amyloid-β (Aβ)-negative CN subjects. Positive
correlations were shown in the bilateral middle frontal gyri, bilateral anterior cingulate gyri, bilateral postcentral gyri and right inferior frontal gyrus (IFG). Cluster
numbers correspond to those in Table 3.

the bilateral MFC, bilateral ACG, bilateral PCG and right inferior
frontal gyrus (IFG; Table 3, Figure 1B). Particularly, additional
positive correlations were found in the right lateral frontal cortex
(LFC; middle and inferior frontal gyri), left ACG and right PCG
after Aβ-positive subjects were excluded.

Partial correlation analyses adjusted for the effects of age and
gender were repeated to see the strengths of the correlations
with the rawmean FDG-PET SUVR values from these significant
clusters and the KART performance. Relatively modest and
significant correlations were found in all clusters (whole cluster:
r = 0.23, p = 0.001; right IFG: r = 0.19, p = 0.004; left MFG:
r = 0.21, p = 0.001; right MFG: r = 0.20, p = 0.002; left ACG:
r = 0.21, p = 0.001; right ACG: r = 0.21, p = 0.001; left PCG:
r = 0.19, p = 0.003; right PCG: r = 0.19, p = 0.004; Supplementary
Figure S1).

DISCUSSION

The current study identified the brain regions correlated
with ART performance by examining the associations between

resting-state glucose metabolism and KART scores using a
voxel-wise approach in CN adults. To sum up, in the whole
sample including individuals both with and without significant
levels of Aβ deposition, KART performance was positively
correlated with regional glucose metabolism in the frontal and
primary somatosensory areas—more specifically the left MFG,
right ACG, and left PCG. After excluding Aβ-positive subjects,
positive correlations with KART performance were found in
much larger areas of the frontal and primary somatosensory
regions including the bilateralMFG, right IFG, bilateral ACG and
bilateral PCG. These findings suggest that the neural substrates
of ART performance are located primarily in the frontal and
primary somatosensory areas.

These results emphasize the involvement of the frontal
and primary somatosensory areas in premorbid function,
as estimated by ART. The patterns of brain metabolic
impairment typical of AD begins in the precuneus and posterior
cingulate cortex, spreads to parieto-temporal regions, and finally
progresses to frontal and sensory cortices (Mosconi et al., 2007,
2008). The frontal and primary somatosensory regions have been
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FIGURE 2 | Scatterplots demonstrating the strength of correlations between KART-estimated FSIQ score and regional glucose metabolism in all CN subjects. Mean
FDG-PET SUVR values were extracted from the clusters of voxels showing a significant association with KART performance and examined the correlation with KART
performance with using a partial correlation analysis adjusted for age and gender. There were positive significant correlations between KART-estimated IQ score and
mean FDG-PET SUVR values in all clusters: (A) whole cluster; (B) left middle frontal gyrus; (C) right anterior cingulate gyrus; (D) left postcentral gyrus.

TABLE 3 | Positive correlations between regional cerebral glucose metabolism and KART-estimated FSIQ score after adjusting for age and gender in Aβ-negative CN
subjects.

Regions BA Coordinates (mm) Extent voxels T-value Cluster number

x y z

L middle frontal gyrus 6,8 −21 −2 45 3,071 3.66 C4
L anterior cingulate gyrus 32 −6 37 9 14,444 3.52 C5
R middle frontal gyrus 6 23 −4 48 1,878 3.38 C6
L postcentral gyrus 3 −29 −25 47 1,194 3.21 C7
R anterior cingulate gyrus 32 6 16 34 14,444 3.19 C5
R inferior frontal gyrus 9 42 12 19 1,092 3.01 C8
R postcentral gyrus 3 38 −20 60 1,543 2.95 C9

p < 0.005 (uncorrected) with significance of k > 1,062. Adjusted for age, and gender. Coordinates are in Montreal Neurological Institute (MNI) space. Cluster numbers are labeled for
each cluster (i.e., C1 denotes cluster no.1). BA, approximate Brodmann area; L, left hemisphere; R, right hemisphere.

identified as being typically affected in the late stages of AD
(Braak and Braak, 1991; Mosconi et al., 2007, 2008). Indeed,
the regional neural functions that are found to be associated
with KART performance are relatively less vulnerable in AD.
Therefore, it may be posited that ART can predict premorbid
function by reflecting the neuronal functions of regions that are
relatively preserved in AD.

The largest region that showed positive correlations between
glucose metabolism and KART performance was the frontal
area, particularly the ACC and LFC. The ACC and LFC are
components of the frontoparietal network (FPN), which has
been reported to be the neural substrates of general intelligence
(Margulies et al., 2007; Cole et al., 2012, 2015). The ACC,
in particular, is known to support intelligence by handling

and processing conflicting streams of information (Botvinick
et al., 1999; Cohen et al., 2005; Brown, 2009). In addition to
being recognized as a core region for intelligence, the LFC is
functionally responsible for regulating the flow and integration of
information between other regions (Cole et al., 2012, 2013, 2015).

The postcentral gyri, also known as the primary
somatosensory cortex (SSC), were significantly associated
with KART performance. While the roles of the SSC pertaining
to intelligence are less clear, previous studies showed positive
associations between general intelligence and cortical thickness
or gray matter volumes of the SSC (Colom et al., 2009, 2013;
Karama et al., 2009). Given that the SSC is involved in not only
the processing of somatosensory input but also in the integration
of sensory and motor signals (Borich et al., 2015), it is therefore
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possible that this region supports intelligence by working in
tandem with the frontal area towards high-level cognitive
functions such as perceptual decision making (Colom et al.,
2009, 2013; Santarnecchi et al., 2015). While the exact underlying
mechanism for the involvement of SSC when performing ART
is unclear, the current findings demonstrate that the same SSC
region associated with general intelligence is also associated with
the proxy for general intelligence.

Notably, the LFC has also been suggested as a putative neural
substrate of CR, in addition to being associated with general
intelligence. The neural mechanism underlying CR is largely
unclear, but several possible mechanisms have been postulated
including the task-invariant networks (TIN; Stern et al., 2008;
Stern, 2009, 2017). The TIN, which remains active throughout
multiple tasks with various levels of processing demands, has
been suggested to support CR by serving as a compensatory
neural network against brain pathology (Stern, 2006, 2009, 2017).
The LFC has been reported to have strong connectivity with
multiple TINs and is considered as the hub region of the TINs
(Cole et al., 2015; Franzmeier et al., 2017b,c). Given that the
TIN is reported to support CR and the hub of the TIN is
thought to reside in the LFC, it can be posited that the LFC
subserves CR (Franzmeier et al., 2017a,b,c). A recent resting-
state fMRI study, which showed that the association between
AD-related biomarkers and lower memory performance was
attenuated by the global functional connectivity of the LFC in
patients with mild cognitive impairment, provides support for
the current findings (Franzmeier et al., 2017b). Taken together,
the current findings further corroborate the possible role of
the LFC—the region most significantly associated with KART
performance—as the neural substrate of CR.

An additional interesting finding of the current study is that
the regions associated with KART performance became larger
when individuals with high levels of Aβ were excluded in the
analysis. Considering the fact that accumulated AD pathology
generates structural and functional changes in the brain (Perl,
2010; Beason-Held et al., 2013; Mattsson et al., 2014), the
neural correlates related to ART performance may vary due
to AD pathology, as also observed in the current analyses.
Such variation (i.e., the inclusion of much broader regions of
functional activity after excluding Aβ-positive subjects) may
signify several points. First, this demonstrates that the neuronal
functions may be affected by AD neuropathology even in
individuals without clinical manifestation of AD. Second, it may
indicate that the broader regions found after eliminating Aβ-
positive subjects are a more precise representation of the neural
correlates of ART performance. Last, given that the associations
of the left LFC, left PCG and right ACC—the regions found in
the initial analyses with the entire sample—persisted even when
those with AD pathology were included, it can be inferred that
ART performance is indeed resistant against AD.

In conclusion, this is the first functional neuroimaging
study describing the neural substrates associated with
ART performance. The positive correlation between ART
performance and glucose metabolism in the frontal and primary
somatosensory areas indeed corresponds to regions that
have been previously reported to be associated with general

intelligence and cognitive reserve. The current study provides
support, at the neural level, for the use of ART as a measure of
premorbid functioning in both research and clinical settings.
Moreover, the identification of the neural correlates of ART
performance helps to gain an understanding of the neural
mechanism underlying CR. Future studies using a multimodal
approach such as combining FDG-PET with task-fMRI will
provide more detailed information regarding the functional
neural substrates that underlie ART performance. Furthermore,
future studies utilizing more advanced atlases than AAL will
be informative.
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