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Background: An increasing lifespan and the resulting change in our expectations of later

life stages are dependent on a good health state. This emphasizes the importance of the

development of strategies to further strengthen healthy aging. One important aspect of

good health in later life stages is sustained skilled motor function.

Objective: Here, we tested the effectiveness of robotic upper limb motor training in a

game-like scenario assessing game-based learning and its transfer potential.

Methods: Thirty-six healthy participants (n = 18 elderly participants, n = 18

young controls) trained with a Pacman-like game using a hand-held Cellulo robot on

2 consecutive days. The game-related movements were conducted on a printed map

displaying a maze and targets that had to be collected. Gradually, the task difficulty

was adjusted between games by modifying or adding different game elements (e.g.,

speed and number of chasing ghosts, additional rules, and haptic feedback). Transfer

was assessed by scoring simple robot manipulation on two different trajectories.

Results: Elderly participants were able to improve their game performance over time

[t(874) = 2.97,p < 0.01]. The applied game elements had similar effects on both

age groups. Importantly, the game-based learning was transferable to simple robot

manipulation that resembles activities of daily life. Only minor age-related differences were

present (smaller overall learning gain and different effects of the wall-crash penalty rule in

the elderly group).

Conclusions: Gamified motor training with the Cellulo system has the potential to

translate into an efficient and relatively low-cost robotic motor training tool for promoting

upper limb function to promote healthy aging.

Keywords: tangible robots, healthy aging, gamified exercise, robotic exercise, motor learning, transfer learning,

task performance and analysis
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1. INTRODUCTION

Life expectancy is constantly rising. According to the current
World Health Organization’s statistics, the global life expectancy
at birth has increased from 64 years in 1990 to 71 years in
2013 (World Health Organization, 2016). For many individuals,
this opens up for new opportunities, such as starting a new
career, continuing education, or pursuing a neglected passion
at later stages in life (Beard et al., 2016). To be able to benefit
from these opportunities, an important prerequisite is healthy
aging, which corresponds to good physical and especially mental
health. One important aspect of healthy aging is the capacity
to acquire and maintain skilled motor abilities at a later life
stage to be able to adjust to the challenges and requirements
of the changes of daily life, such as the constant adjustment to
novel communication devices. These skills enable us to interact
with our environment and allow functional independence for
many activities of daily living. One key factor for functional
independence in the elderly are skilled upper limb functions and
the acquisition of novel motor skills (Scherder et al., 2008). This
feature typically exhibits age-related performance declines, which
can be characterized by slowing of movement (Ketcham et al.,
2002), increased variability (Cooke et al., 1989), and coordination
difficulties, especially at increased complexity, e.g., for multi-joint
movements (Seidler et al., 2002); to read a review please see
Seidler et al. (2010). Moreover, elderly people often change their
strategy to achieve their goals, favoring movement accuracy over
speed (Salthouse, 1979).

Motor training protocols can partially ameliorate the
described deficits common in the elderly population (Levin
et al., 2017) via the recruitment of motor learning mechanisms
and promotion of neuroplasticity (Cai et al., 2014). A current
constraint is that motor learning abilities are often reduced
in the elderly population; for a review please see King et al.
(2013). This restricted ability can be evident by reduced learning
rates and magnitude, especially in early learning stages (fast
learning) (Curran, 1997; Shea et al., 2006; Zimerman et al., 2013),
impaired in-between session learning (offline learning) (Spencer
et al., 2007), or slower relearning after a longer interval without
training (savings) (Rodrigue et al., 2005).

In this paper, we evaluated the combination of a motor
training method using tangible robots in addition to the
application of gamification strategies. For the robotized motor
training, small-sized, graspable, haptic-enabled Cellulo robots
were used (Özgür et al., 2017b), and these operate on printed
paper sheets (Guneysu Ozgur et al., 2018). These tangible
robots serve as a “computer-mouse-like” interface to interact
with printed elements on paper, directing trajectories, and can
provide visual and haptic feedback. In the present motor training
approach, by using tangible robots both as game agents and
objects to be moved, we aimed to provide an intuitive easy-to-
use and easy-to-set-up system for motor training. Recent studies
showed that utilizing tangible objects that the elderly are familiar
with and providing a tangible interface with simplified elements
may facilitate learning of using these technologies among elderly
(Apted et al., 2006; Hung et al., 2016; Garcia-Sanjuan et al., 2017;
Wang et al., 2017; Guneysu Ozgur et al., 2018). Furthermore,

making the learning of using these devices easiermight be crucial,
since the lack of familiarity and the steep learning curve of using
training devices may reduce the training efficiency among elderly
users (Aarhus et al., 2011; Gerling et al., 2011; Guneysu Ozgur
et al., 2018). Direct contact via touch interfaces is proposed to
provide lower cognitive loads and a more suitable and intuitive
alternative, especially for aging users (Garcia-Sanjuan et al., 2017;
Guneysu Ozgur et al., 2018).

The Cellulo system also provides the opportunity to integrate
gamification aspects within the motor training sessions. These
gamification aspects have been conceptualized as the use of
design elements characteristic for games in non-game contexts
(Deterding et al., 2013). By this means, the participants are
exposed to typical elements of game playing, such as rule-
based and goal-oriented behavior, problem-solving, feedback, or
competition (Sailer et al., 2017). Furthermore, gamification can
increase participants engagement (Looyestyn et al., 2017).

We hypothesized that, with this combined approach
(robotized motor training combined with gamification
strategies), age-related constraints in motor skill learning
can be partially ameliorated via the enhancement of participants
engagement and concurrent training of cognitive processing.
For instance, this cognitive training could involve executive
(planning, decision-making, and flexibility), attentional
(processing speed and divided attention) or memory (implicit
learning) domains (Sachdev et al., 2014). By this means, the
Cellulo platform may also translate into a rehabilitation tool for
neurological patients with an elderly age profile including, for
example, stroke.

To pursue our aim, we first assessed the feasibility of a Cellulo-
based gameplay with a group of healthy elderly participants,
characterized the learning process and compared it to young
adults, identified game elements with a different impact in the
elderly group, and investigated transfer to simple input device
manipulation. In detail, we examined the impact of age group on
overall learning, daily learning, overnight learning, and transfer
learning, and we also examined the effect of game elements and
configurations on the performance. These different analyses were
done to answer various research questions:

• RQ1–Overall Learning: Do participants have a better game
performance on the second day compared to the first day, and
is this performance impacted by age group?

• RQ2–Online Learning: Do participants improve their game
performance within a day, and is this performance impacted
by age group?

• RQ3–Overnight Learning: Is there evidence of overnight
learning operationalized as the participants performing better
on the first game of the second day compared to the last
game of the first day after having slept in between, and is this
performance impacted by age group?

• RQ4–Transfer Learning: RQ4A: Did the game intervention
impact participant performance on transfer activities between
pre and post-intervention, and is this performance impacted
by age group? RQ4B: Is there evidence of overnight learning
on transfer activities operationalized as the participants
performing better on the first activity of the second day
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TABLE 1 | Participants’ characteristics.

Age

group

Number of

subjects

Mean age ±

SD

Mean MMSE

± SD

Gender ratio

Old 17 66.65± 5.79 29.18± 0.81 4 female/13 male

Young 16 23.38± 4.76 29.31± 0.79 4 female/12 male

compared to the last activity of the first day after having slept
in between, and is this performance impacted by age group?

• RQ5–Impact of the Game Elements: RQ5A: How does each
game element impact the performances of different age
groups? RQ5B: How do the configurations of game elements
impact the performances of different age groups?

Each subsection under the results in section 3 shows the
corresponding test results of each research question. Similarly,
each corresponding subsection under section 4 includes our
discussion for the corresponding results and the state of the art.

2. MATERIALS AND METHODS

2.1. Subjects
Thirty-six healthy individuals were included in this study.
Among the 18 elderly and 18 young participants, one elderly
participant dropped out of the experiment and did not complete
the whole gameplays due to time limitations, and two young
participants’ data were excluded because of missing data.
There were several inclusion criteria: (1) right-handedness,
(2) normal values of Mini-Mental-State-Examination (>26/30)
(Folstein et al., 1975), (3) 18–35 years for the young group,
and (4) >60 years for the elderly group. Exclusion criteria
were (1) neuropsychiatric diseases, (2) history of seizures, (3)
musculoskeletal dysfunction that compromise finger movement,
(4) pregnancy, (5) professional musicians or intense professional
usage of a computer keyboard, (6) intake of narcotic drugs, and
(7) request of not being informed in case of incidental findings.
For 2 days of consecutive study and to compensate for travel
expenses, each elderly participant was compensated with a gift
card worth 50 Swiss Francs for a shopping center, while young
participants were paid the same amount with cash. The study
protocol was approved by the Cantonal Ethics Committee Vaud,
Switzerland (project number 2017-00765). All subjects gave
written informed consent in accordance with the Declaration of
Helsinki. For further participant characteristics, information of
age, gender ratio, and Mini-Mental State Examination (MMSE)
assessment scores see Table 1.

2.2. Cellulo Robotic Platform
Cellulo is a small-sized tangible robot that operates on printed
paper sheets. Cellulo is accurately 2D-localized in (x, y, θ) with
sub-millimeter precision, and its magnet-ball drive locomotion
system allows it to move and to be moved freely by the user. Its
design enables it to be used as a haptic interface to render, for
instance, 2D planar force information (Özgür et al., 2017a).

Cellulo robots offer a unique perspective in game design,
where mobile, physical game elements can be programmed to

FIGURE 1 | Cellulo robotic platform: elderly participant playing the Pacman

game by controlling a Cellulo robot with his right hand. The aim of the game is

to collect the fruits by not crashing the walls of the maze (green bars) and by

not getting caught by the chasing robots.

act as agents (rival, ally, or neutral), and input devices invoke
physical exercise while transparently capturing kinematic data
from the user.

The robots are designed to be simple to operate; all robots are
connected wirelessly to a mobile device (a tablet or smartphone)
that runs the activity and game logic. The current system includes
self-localization on the activity sheet covered with a dot pattern
(Hostettler et al., 2016), holonomic motion robust against human
manipulation (Özgür et al., 2016), six capacitive touch buttons
(independently back-illuminated in full RGB that can provide
visual feedback), and wireless Bluetooth communication (Özgür
et al., 2017b). The platform provides fast (>90 Hz) and accurate
localization (sub-mm) of many robots, which can be logged to
record all the interactions during the game, such as user motion.

The scenery of the activity is printed on paper sheets that
can feature any desired graphical game elements defined as
active zones. These zones can be associated with specific robot
behaviors to design game logic. For instance, in Figure 1, green
walls activate assistive haptic behavior of the robot, while fruits
represent target objects to be collected in a game. The raw
robot positions are also used, for example, for onboard closed-
loop motion control (including haptic feedback) and on the
external controller for multi-robot formation control. Therefore,
an activity is the combination of the paper elements, the robots
with particular interaction modalities, and the tablet that runs
the activity-specific software. As such, the role of the robots and
paper depends on the design of each particular activity.

2.3. Pacman Game
In order to test the potential of Cellulo for upper arm motor
training regimes, we used an iterative approach to design
a game using the robots as game agents and objects. Our
first game, inspired by Pacman, was designed iteratively with
the participation of stroke, brachial plexus, and cerebral palsy
patients (18 in total) and seven therapists in four different therapy
centers (Guneysu Ozgur et al., 2018).

In the game, the printed map displays the maze and the fruits
to be collected by the player. The player holds the Pacman robot
in his/her hand and is chased by one or two autonomous robots
that are referred as ghosts. The player is expected to collect all six
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apples as quickly and precisely as possible to finish the game (we
define precision as not crashing into the maze walls). The active
agents (called ghosts) chase the user’s robot during the game in
order to catch it; all previously collected apples are lost and the
ghosts return to their initial positions if this happens. The game
finishes when all six apples are collected.

Several game elements are designed for tuning speed,
accuracy, range of motion, and challenge of the game play. These
game elements are:

• Different maps with different maze designs or sizes (orange
and green maps with size of 96 × 42 cm and yellow map with
size of 62 × 42 cm, see Figure 2 for these three different maps
with different maze designs)

• One or two ghost robot(s) chasing the Pacman
• Speed of the chasing robot(s) (mm/s)
• Turn rule: the user can only collect the fruits by rotating the

robot on top of them, it can be switched on/off
• Cross border penalty rule: the user loses the last eaten fruit

when he/she crashes into a wall, it can be switched on/off
• Haptic feedback: the Pacman robot provides haptic

informative assistance when the user crashes into a wall,
it can be switched on/off.

These parameters, as described in Guneysu Ozgur et al. (2018),
allow us to adapt the difficulty of the game according to the ability
of the player.

2.4. Pre-post Tests
Like other forms of real-world learning, one of the important
desired learning goals of a motor training is transfer to other
contexts and tasks (Schmidt and Bjork, 1992; Krakauer, 2006;
Gudberg and Johansen-Berg, 2015). In order to investigate the
transfer of the learning to a simple device manipulation,
we designed two different line following activities as
pre-post tests.

Both activities are simple robot manipulation activities on
a defined trajectory, activities similar to holding a towel and
cleaning a table-top surface as a daily activity. The straight pre-
post test activity includes a trajectory with a start and an end
point including sharp rectangular turns similar to the Cellulo
Pacman Game maze. On the other hand, the curvy pre-post test
activity includes a curved trajectory including smoother direction
changes with a start and an end point that is closer to daily life
motions, such as wiping a table. The approximate distance that is
traveled on the curvy trajectory is 310 cm in length while it is 390
cm on the straight one. However, the range of motion limits of
both maps are the same: ∼90 cm on the horizontal axis and ∼38
cm on the vertical axis of the maps. Both test maps can be seen
in Figure 4.

During the activity, one robot automatically goes to the start
point, and the user holds the robot to manipulate it on the path
through the trajectory from the start point to the finish trophy
figure. In this pre-post test, as well as in the Pacman game, we
use the back drivability. Indeed, because of the robot design, we
have to compensate for the friction between the magnet and the
ball wheel.

2.5. Experimental Timeline
The experiment was performed in two sessions in our laboratory
at the EPFL Lausanne Campus or through two sessions at
the EPFL Campus Biotech in Geneva. During the experiment,
participants were sitting comfortably in front of a table with
their dominant hand positioned on the table to play the game.
The game rules were made known to participants: “There are six
apples on themap; in order to collect the apples, you shouldmove
your robot along the paths and come to the apple. Your robot will
come in front of you before the game starts. In order to finish the
game, you should collect all the apples with your robot in any
order you want. There will be one or two ghost robots chasing
you. You should collect the apples without being caught by the
ghost and without crashing into the walls. If you are caught by
the ghost, all of your collected apples are eaten by the ghost and
you have to recollect them to finish the game. Sometimes you can
lose one apple if you crash into a wall. We will tell you when you
have this rule.”

Each participant played 53 games across three different
maps (see the maps in Figure 2) within 2 consecutive days of
experiments with changing game configurations and increasing
difficulty per map. Each day was split into two sub-sessions.
In 2 days, each participant had four sub-sessions in total.
The overall experimental timeline can be seen in Figure 3.
The set of repeating game configurations throughout the four
sub-sessions were conceptualized as game chunks. In Table 2,
the game configurations having blue color are the repeated
game configurations for each map type. Within this study,
these gameplay blocks of 11 games have been referred to as
game chunks.

Each participant started the experiment each day with pre-
tests consisting of the two line-following activities. We started
from the easiest game configuration and progressively increased
the difficulty by introducing a new game element one at a time,
as can be seen in Table 2. We started with 20 mm/s ghost speed
for the very first game of each day for each user, which we then
set to 40, 60, and 60 mm/s for the next three games. Next, the
assistive haptic feedback was enabled, and two more games with
60 mm/s ghost speed were played. Following that, the cross-
border penalty rule was enabled and twomore games were played
with 60 and 100 mm/s ghost speed. Next, the turn rule was
introduced, and two more games were played with 60 and 100
mm/s ghost speed. Finally, a second ghost was introduced and
threemore games were played with 60 and 100mm/s ghost speed,
and then 100 mm/s ghost speed was played with the turn rule,
which marked the end of the games (total of 13) played with the
first map.

For the second map, all above configurations except the first
two (with 20 and 40 mm/s ghost speed and no rules) were
repeated. After this repetition, two extra games were played
with the hardest configuration, which includes the cross-border
penalty rule, turn rule, 100 mm/s ghost speed, and two ghosts
(again, a total of 13 games), which marks the end of the first
day. In the second day, the aforementioned games were repeated.
After the training session with the games, each day, the line-
following activities were repeated as a post-test for the day.
For the first day only, a 27th game was played with an easy
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FIGURE 2 | Three maps with different mazes and sizes. The game was played on three different maps with an ABBC order, and the maps are composed of different

combinations of (A) a yellow map, (B) an orange map, and (C) a green map. The first map was played on the first half of day 1, the second map on the second half of

day 1 and the first half of day 2, and third map on the second half of day 2.

FIGURE 3 | Experimental timeline.

configuration for the purposes of measuring the presence of any
overnight learning effect.

The map order had an ABBC design, where each participant
played with two of the three maps on the first day (see maps
in Figure 2). By starting from the last map of the first day,
the participant continued with a third map on the second day
(the order of the maps is changed for each person). The overall
daily game configurations and gameplay order can be seen
in Table 2.

2.6. Data Analysis
During the gameplay, the position (x, y) and the orientation
(θ) of each robot were recorded with around 93 Hz and sub-
mm accuracy, including the robot controlled by the user. All
events and interactions within the game (e.g., fruit collection,
kidnapping of the robot from the map, and wall crashes)
were also recorded with their time stamps. Pre-post test
data and gameplay data were preprocessed using Python 3.
Continuous robot pose data were filtered by the start and end
time of each gameplay. Some of the participants had initial
pauses in some games even though the game had already
started, and in these cases we filtered game start times by

counting the first movement of the user as the start time
instead of the time when the ghost(s) had started to chase
the Pacman.

The performance-related metrics of a participant’s gameplay
motion were calculated using the end-effector (hand) position
data of the participant’s playing hand, which was the hand
holding the robot.

As our primary outcome, we defined a performance index.
The index encompassed a metric of speed as well as accuracy
to account for their tradeoff, which is often observed in
behavioral (Heitz, 2014) and motor skill learning tasks (Reis
et al., 2009; Ana et al., 2014). The performance index was
defined as Performance = 1/(Deviance_Mean ∗ Time_Total).
The Time_Total metric was our surrogate for speed and was
defined by the total time to complete a game, namely, a pre-
post test. Our accuracy metric (Deviance_Mean) was defined
by the mean Euclidean distance between the performed and
optimal movement trajectory. For the Pacman game, this optimal
trajectory was estimated as the middle line of each path to
account for the rectangular structure of the game maze. For
the pre-post tests, optimal trajectories are the given straight and
curvy lines as in Figure 4.
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TABLE 2 | Game configurations per day per map.

Day 1 Map A Day 1 Map B Day 2 Map B Day 2 Map C

1, 20, – 1, 60, – 1, 20, – 1, 60, –

1, 40, – 1, 60, – 1, 40, – 1, 60, –

1, 60, – 1, 60, H 1, 60, – 1, 60, H

1, 60, – 1, 60, H 1, 60, – 1, 60, H

1, 60, H 1, 60, P 1, 60, H 1, 60, P

1, 60, H 1, 100, P 1, 60, H 1, 100, P

1, 60, P 1, 60, T 1, 60, P 1, 60, T

1, 100, P 1, 100, T 1, 100, P 1, 100, T

1, 60, T 2, 60, – 1, 60, T 2, 60, –

1, 100, T 2, 100, – 1, 100, T 2, 100, –

2, 60, – 2, 100, T 2, 60, – 2, 100, T

2, 100, – 2, 100, T, P 2, 100, – 2, 100, T, P

2, 100, T 2, 100, T, P, H 2, 100, T 2, 100, T, P, H

Each configuration consists of the number of ghosts (1 or 2), speed of the ghost(s) in

mm/s (20, 40, 60, or 100), and the applied rules (H, Haptic rule; P, Penalty rule; T, Turn

rule; –, No rule). Blue colored texts represent the repeated game configurations that are

defined as chunks.

To investigate the motor learning through time, we focused
on overall learning over 2 days, online learning within each
day, overnight learning between 2 days, and the transfer motor
learning to a simpler activity. Overall performance for research
question RQ1 was analyzed by considering the difference
between all game performances of all users on day 1 and all game
performances of all users on day 2.

For research question RQ2, online learning for each day was
measured by testing the difference between all repeated game
performances of all users in the first and the second game chunk
of the corresponding day. In order to measure combined online
learning of both days, we defined a term chunk order. Since there
were two chunks in both days, the chunk order of the first chunks
of each day was defined as 0, and the chunk order of the second
chunks of each day was defined as 1.

Offline learning for research question RQ3 is supposed to be
calculated as the difference between the very last performance
on day 1 and the very first performance on day 2. However, this
comparison has a limitation in our study design. We selected the
60 mm/s condition as the last game of the first day to test the
overnight effect and the third game of the second day since they
have the same configuration.

Transfer learning for research question RQ4 was measured
by the performance metric calculated by pre-post tests. For
research question RQ4A, overall learning in the transfer activity
was measured by testing the difference in performance changes
between the very first pre-test and the very last post-test. For
research question RQ4B, overnight learning in the transfer
activity was measured by testing the difference in performance
changes between the post-test of day 1 and the pre-test of day 2.
In the analysis of the curvy pre-post test, one elderly participant’s
data was excluded because of the missing data of a curvy pre-test
of day 1.

In order to answer research question RQ5A, we investigated
the effect of game elements, including the map type, speed of

the ghost, number of ghosts, turn rule, haptic rule, and penalty
rule, on game performance. We also investigated the effect
of combinations of the game elements for research question
RQ5B by checking the performance differences between game
configurations across time. Since each chunk was composed of
the same set of games with the same configurations, we used
chunks as a measurement of time to explore the performance
difference across time.

2.7. Optimal Game Trajectory
In tasks in which the primary outcome is based on time, e.g., in
race driving, the optimal strategy for going around corners is to
follow a curved trajectory. Specifically, a race driver would choose
an optimal trajectory by optimizing between the shortest track
and the one which would allow the highest speed, normally the
one with the lowest curvature (Braghin et al., 2008). Unlike the
race scenario, our Pacman game relied on speed and accuracy
equally. Potentially fast curved trajectories at the corners increase
the risk of hitting a wall, especially in a design in which the
agent – the Cellulo robot – is already occupying a large majority
of the path. For a realistic depiction of the special constraints
see Figure 1.

In the design of our maps, the path is just wide enough for the
robot, which visually does not provide room for the participant
to cut the corner. For this reason, we have estimated the optimal
trajectory as the middle line of each path. However, due to
the nature of human arm motion, our method to estimate the
optimal trajectory-the middle line of each path–might slightly
deviate from the theoretical optimal trajectory, which might be
to some extent curved in the corners. In order to see whether
the mean deviance around the corners is different than the
overall deviance throughout the game, we did an analysis for
justifying the current analytical approach. First, we took the data
around the corners in the map (turnovers in the map maze)
and calculated mean deviance of only corner data. Corner data
corresponded to 33% of the overall data. We then compared the
corner deviance with the overall deviance by checking the group
interaction with the corners. We found no significant difference
between corner deviance and overall deviance and no interaction
between corner and the age. These results indicated that there
was not an optimal path that participants were taking around
the corners.

2.8. Statistical Analysis
To account for the repeated measures within the participant
for pre-post test measures and game performance, we used a
multilevel approach for analyzing the data. Specifically, we used
a hierarchical linear model (HLM) with a test time or game at the
first level and participant at the second level. Using HLMs, each
main and interaction effect was reported as a t-value. In other
words, a single model can produce multiple t-value comparisons
that are corrected for within the model. For all comparisons,
the p-value was set at 0.05, and we measured the effect size
with Pearson’s correlation coefficient (r), where 0.1 is considered
a small effect size, 0.3 a medium effect size, and 0.5 a large
effect size.
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FIGURE 4 | Pre-Post tests served as a measure to score transfer of game learning effects to simple robot manipulation. (A) is curvy trajectory line with smooth turns

and (B) is straight trajectory line with sharp turns. The participants were instructed to complete the path from “start” to “finish” by following the respective line.

To conduct follow-up analyses to the HLMs for specific
comparisons, we conducted t-tests for binary comparisons and
ANOVAs for multiple comparisons. For all post-hoc analyses, we
applied a Bonferroni correction. In contrast to the t-test and
HLM, for the effect size for the ANOVA, we computed η2, where
0.01 is considered a small effect size, 0.06 a medium effect size,
and 0.14 a large effect size.

All of the HLMs were implemented in the R version 3.5.3
using package nlme version 3.1-137 (Pinheiro et al., 2020). To
implement the HLMs used for the analysis, we used the linear
mixed-effects models (lme) function within the nlme package.
The lme function makes the assumption that the residual error
and the random effects in the model are normally distributed.
Within the lme function, we fitted the model using maximum
likelihood. In the analysis, for all t-tests that were conducted,
we used the t-test function in the R package stats version 3.5.3.
Finally, to conduct an ANOVA that accounts for the repeated
measures of the data, we used a combination of the R packages
lme4 version 1.1-21 (Bates et al., 2015), stats version 3.5.3, and
psycho version 0.4.0 (Makowski, 2018). In the lme4 package, we
used the function lmer to build the model. Like the lme function,
the assumptions are that the residual error and the random effects
in the model are normally distributed.We conducted an ANOVA
on the model using the anova function from the stats package.
Finally, we used the psycho package to conduct a post-hoc analysis
on the contrasts using the get_contrasts function. For all figures,
error bars represent the standard error.

3. RESULTS

3.1. Overall Learning (Across Day Game
Performance)
To investigate the differences between day 1 and 2 game
performance and how the age of the participant may impact
the performance, we ran a hierarchical model to account for the
repeated measures design. At the first level, we took into account
the time when a participant was interacting with the Pacman
game. At level two, we accounted for the individual participants.
To control differences in the game configurations, we included
the game features as covariates in the model. This included the
map type, speed of the ghost(s), the number of ghosts, haptic rule,
penalty rule, and turn rule. We found a significant main effect

FIGURE 5 | Overall learning: averaged normalized game performance plotted

per day per group.

for time, t(1705) = 2.93, p < 0.01, r = 0.07, with participants
overall having a higher performance on the second day (M =

0.27, SD = 0.15 for day 1, M = 0.30, SD = 0.14 for day 2).
We also found a main effect for age group, t(31) = 2.18, p <

0.05, r = 0.36, with young group having a higher performance
in both days compared to the elderly (M = 0.32, SD = 0.15 for
young,M = 0.26, SD = 0.14 for elderly). Additionally, there was
a significant interaction between time and age group, t(1705) =

2.56, p < 0.05, r = 0.06, with the performance change being
stronger in the young age group (see Figure 5). To investigate if
the learning of both groups was significant, we repeated the tests
separately for each group and found significant effect of time in
the old group, t(874) = 2.97, p < 0.01, r = 0.1 and in young
group, t(822) = 6.45, p < 0.001, r = 0.23.

In summary, both age groups improved in game performance
over time, with the young group demonstrating higher
performance levels and a larger slope of improvement.

3.2. Online Learning
To analyze if there was online learning within the participants,
we conducted a hierarchical linear model to take into account
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FIGURE 6 | Online learning: normalized game performance plotted per group

per chunk (repeating games in each subsession).

the repeated games for each participant. At the first level, we
included day, chunk order, and age group to test their effects on
the normalized performance. To allow for an equal comparison
both within a day and between days, we analyzed only the game
chunks that were consistent across days.

We did find a trend for the main effect of order or age group,
t(1413) = 1.83, p = 0.07 and t(31) = 1.71, p = 0.09, respectively.
We did find a significant main effect of day, t(1413) = 3.02, p <

0.01, r = 0.08, with day 2 having better performance than day
1 (M = 0.28, SD = 0.15 for day 1, M = 0.31, SD = 0.14 for
day 2), which was consistent with our overall learning results
that assessed all games played in a day rather than only games
in repeated chunks.

In terms of the interaction effects, we found a significant
interaction between chunk order and day, t(1413) = −2.39, p <

0.05, r = 0.06, with the online learning occurring on day 1
being significantly more positive than the learning that occurred
on day 2. There was not a significant interaction between age
group and chunk order or day, t(1413) = 0.39, p = 0.69, and
t(1413) = 1.42, p = 0.15, respectively. For the third order effect,
we did not find a significant difference, t(1413) = 0.05, p = 0.96.

To investigate if the learning within each day was significant,
we ran two paired t-tests comparing chunk performances within
each of the days separately. We found significant learning gains
in day 1, t(362) = 2.98, p < 0.01, r = 0.15, with a mean difference
of test times being 0.028, but we did not find a significant decrease
in learning in day 2, t(362) = 1.84, p = 0.07, with the mean
difference of test times being −0.017 (see Figure 6). Overall,
across both age groups, stronger online effects were present on
day 1.

3.3. Offline Learning
To address whether or not there was offline learning and whether
or not age group had an impact on offline learning, we conducted
a hierarchical model to account for the repeated measures design

FIGURE 7 | Offline learning: averaged normalized game performance in offline

probe games per group (1 Ghost 60 mm/s, last game of day 1 and third game

of day 2).

with two game data being recorded for a single participant.
Specifically, we compared the performance on the last game
of day 1 and the third game of day 2, as they had the same
configurations. We did not find a significant main effect for day
or age group, t(31) = 0.16, p = 0.87 and t(31) = 1.60, p =

0.12, respectively. Additionally, we did not find a significant
interaction between day and age group, t(31) = 0.18, p = 0.86
(see Figure 7). This indicated that no offline enhancement was
present in either age groups.

3.4. Impact of the Game Elements
3.4.1. Effect of Each Game Element on Game

Performance
Several elements can be adapted within a game setting that
might change the user’s performance. We investigated the effect
of game elements, including map type, speed of the ghost, the
number of ghosts, turn rule, haptic rule, and penalty rule, on
the performance and their interactions with the age groups. To
investigate these effects, we ran a hierarchical model to account
for the repeated measures design. At the first level, we considered
the game configurations. At level two, we accounted for the
individual participants as each participant playedmultiple games.
We found a significant main effect of the number of ghosts
(M = 0.31, SD = 0.14 for one ghost, M = 0.23, SD = 0.13
for two ghosts), ghost speed (M = 0.19, SD = 0.13 for 20 mm/s,
M = 0.28, SD = 0.13 for 40 mm/s, M = 0.31, SD = 0.14 for
60 mm/s, M = 0.26, SD = 0.14 for 100 mm/s), turn rule (M =

0.31, SD = 0.15 for turn rule is off,M = 0.24, SD = 0.12 for turn
rule is on), and orange map (M = 0.26, SD = 0.12 for orange
map,M = 0.29, SD = 0.14 for green map,M = 0.31, SD = 0.17
for yellow map) (see Table 3, Figures 8A–C).

For differences in the age group, we only found an interaction
in the cross-border penalty rule (see Table 3 and Figure 8D). In
order to investigate the effect of cross-border penalty, we did a
separate analysis for each age group. We found a trend for the
main effect of cross-border penalty in the elderly group t(874) =
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TABLE 3 | Impact of individual game elements.

Game element Main effect Age group interaction

2 Ghosts t(1698) = −7.78, p < 0.0001, r = 0.19 t(1698) = 0.04, p = 0.97

Speed 40 t(1698) = 2.69, p < 0.01, r = 0.07 t(1698) = 0.32, p = 0.75

Speed 60 t(1698) = 6.07, p < 0.0001, r = 0.15 t(1698) = 0.49, p = 0.63

Speed 100 t(1698) = 6.07, p < 0.0001, r = 0.15 t(1698) = 0.29, p = 0.77

Turn t(1698) = −6.08, p < 0.0001, r = 0.15 t(1698) = −0.57, p = 0.57

Haptic wall t(1698) = 1.04, p = 0.29 t(1698) = 0.12, p = 0.9

Cross border penalty t(1698) = −1.89, p = 0.06 t(1698) = 2.36, p < 0.05, r = 0.06

Orange map t(1698) = −4.15, p < 0.0001, r = 0.1 t(1698) = −0.35, p = 0.73

Yellow map t(1698) = −0.58, p = 0.56 t(1698) = 1.26, p = 0.21

Blue font indicates p < 0.05.

FIGURE 8 | Impact of individual game elements on normalized performance: effect of (A) number of ghosts, (B) speed in mm/s, (C) turn rule, (D) cross-border

penalty rule.

−1.95, p = 0.05 while we did not find a significant effect of
cross-border penalty in the young group t(822) = 1.42, p = 0.15.

In summary, most game elements had a significant main
effect but showed similar performance differences in both
groups. However, the cross-border penalty rule was the only
game element with a differential effect on age group. When
enabled, it resulted in a trend of disturbed performance in the
elderly, but it did not affecting the performance of the young
group significantly.

3.4.2. Effect of Game Configurations on Learning
To investigate the learning that occurred within each
game configuration not just the impact of the individual
elements on performance, we compared the performance
on different game configurations across time. Since each
chunk consisted of the same set of games, we used chunks
as a measurement of time. Additionally, because each game
configuration had a different hardness level, we normalized
the performance of game play for each configuration
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type by its baseline performance (i.e., the performance
in chunk 1). This normalization allowed us to compare
learning between configuration types without the influence
of hardness.

We ran anHLM to analyze the differences between chunk and
age group while accounting for the repeat of chunk within users.
We found that chunk 2, 3, and 4 all had greater performance than
the baseline, chunk 1, t(1413) = 4.08, p < 0.05, r = 0.11, t(1413) =
5.75, p < 0.05, r = 0.15, and t(1413) = 3.83, p < 0.05, r = 0.10,
respectively (M = 0.27, SD = 0.14 for baseline chunk 1, M =

0.30, SD = 0.15 for chunk 2, M = 0.32, SD = 0.14 for chunk 3,
and M = 0.31, SD = 0.14 for chunk 4). There was not a main
effect of age group, t(31) = 0.00, p = 0.99. Additionally, there
was no significant interaction between age groups and chunks,
t(1413) = −0.98, p = 0.33 (chunk 2), t(1413) = −0.86, p = 0.39
(chunk 3), and t(1413) = −0.21, p = 0.84 (chunk 4).

To investigate how the learning may have changed
between any two chunks, we ran an ANOVA to account
for the specific differences. To better delineate the
learning that may occur within each age group, we ran
the analysis for the young and old users separately. For
each age group, we used a repeated measures ANOVA to
account for the repeated chunks for each user. For any
significant results, a post-hoc analysis was used to assess
the contrasts.

For the young users, we found a significant main effect of
configuration (F(8, 653) = 2.01, p < 0.05, η2 = 0.22) and
a significant main effect of chunk [F(3, 653) = 13.18, p <

0.05, η2 = 0.58]. We did not find a significant interaction
between configuration and chunk [F(24, 653) = 0.60, p = 0.94].
In a post-hoc comparison, the only significant difference between
configurations was between the configuration with “1 Ghost
100 Speed Turn On” and the configuration with “2 Ghosts 100
Speed Turn On,” which is the hardest configuration in the chunk
[t(653) = 3.70, p < 0.01, r = 0.14].

In the post-hoc analysis of chunks, we found a significant
difference between chunk 1 and chunk 2, 3, and 4 (as was the
case in the overall analysis), t(653) = −3.38, p < 0.01, r =

0.13, t(653) = −5.99, p < 0.001, r = 0.23, and t(653) = −4.64, p <

0.001, r = 0.18, respectively. Additionally, there was a significant
difference between chunk 2 and chunk 3 [t(653) = −2.61, p <

0.05, r = 0.10].
Similar to the young users, for the old users, we found a

significant main effect of configuration [F(10, 688) = 2.83, p <

0.05, η2 = 0.41] and a significant main effect of chunk
[F(3, 688) = 8.14, p < 0.05, η2 = 0.35]. We did not
find a significant interaction between configuration and chunk
[F(30, 688) = 0.58, p = 0.97]. In a post-hoc comparison, we found
two significant differences between game configurations, both
including configuration with “2 Ghosts 100 Speed Turn On.”
The significant game differences included configuration with “1
Ghost 100 Speed Penalty On” [t(688) = 3.44, p < 0.05, r = 0.13]
and configuration with “1 Ghost 100 Speed Turn On” [t(688) =

3.67, p < 0.05, r = 0.14].
In the post-hoc analysis of chunks, we found a significant

difference between chunk 1 and chunk 2, 3, and 4 (as was the
case in the overall analysis), t(688) = −3.39, p < 0.01, r =

0.13, t(688) = −4.77, p < 0.001, r = 0.18, and t(688) = −3.18, p <

0.01, r = 0.12, respectively.
In summary, the results confirm that both age groups

demonstrated learning over time in all applied game
configurations. Performance significantly increased until
the first session of day 2 for both groups, and the performance
level stayed similar until the last session on day (see Figure 9).
Similar to the previous results, age difference was very slight,
which is related to the cross-border penalty rule effect on elderly.

3.5. Transfer Learning
3.5.1. Overall Learning in Transfer Activity
To address research question RQ4A, if there was transfer learning
for the participants in both line following activities, we ran two
hierarchical linear models to take into account the repeated tests
within the participant. For each line we did a separate analysis
since the performance value for each line following activity
was different due to the design differences. We did not find a
significant main effect of age group for curvy and straight lines,
t(31) = 1.25, p = 0.23 and t(31) = 1.18, p = 0.25, respectively.

We did find a significant main effect of day in the curvy
test, which was overall learning from pre-test of day 1 to post-
test of day 2, t(30) = 2.24, p < 0.05, r = 0.38, with the last
post-test having higher performance than the very first pre-test
(M = 0.19, SD = 0.11 for the curvy pre-test of day 1, M =

0.27, SD = 0.10 for the curvy post-test of day 2). Similarly, a
significant main effect of day was found in the straight test, which
was overall learning from pre-test of day 1 to post-test of day 2,
t(31) = 3.92, p < 0.001, r = 0.58, with the last post-test having
higher performance than the very first pre-test (M = 0.08, SD =

0.05 for straight pre-test of day 1, M = 0.16, SD = 0.07 for
straight post-test of day 2).

3.5.2. Overnight Learning in Transfer Activity
To address research question RQ4B, we investigated overnight
learning in transfer activity by comparing the post-test of day 1
and pre-test of day 2. As with the overall transfer learning, we ran
two HLMs, one for each line type. We did not find a significant
offline learning in curvy and straight tests, t(31) = 0.2, p = 0.85
and t(31) = 1.42, p = 0.17, respectively (see Figure 10).

These results indicated that game-based learning transferred
to simple robot manipulation measured with the applied straight
line test (which is similar to the Pacman maze) but also with the
curvy line (which is closer to the daily activity motions). The
performance levels and learning were similar in both age groups.

4. DISCUSSION

The present project was designed to determine whether healthy
elderly subjects are able to utilize and acquire novel motor skills
through the use of the Cellulo Pacman game. Furthermore,
we investigated the impact age exerts on different features of
learning. Onemain finding was that elderly participants were able
to improve with the usage of (and thus learn) the Cellulo Pacman
game over time. This was evident by an overall significantly
improved game performance. Importantly, game-based learning
was transferred to simple, non-trained robot manipulations,
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FIGURE 9 | Relative performances: average game performance normalized to Chunk 1 of each group.

FIGURE 10 | Transfer: average performance in pre and post-tests. C, curvy trajectory; S, straight trajectory and angled trajectory.

which emphasized the Cellulo interface as a potential tool to
conduct motor training regimes to promote healthy aging or
support motor rehabilitation in pathological conditions. Age-
related differences were apparent during the learning process,
such as a reduced overall game performance and the effect of
cross-border penalty rules.

4.1. Overall Learning
Elderly participants presented lower performance levels and
smaller overall performance gains when training with the Cellulo
Pacman task. This resembles a frequently described pattern of
the elderly population throughout a variety of motor tasks,
e.g., reduced performance gains in fine motor skill learning
(Voelcker-Rehage, 2008; Zimerman et al., 2013). The extent of
these age-related differences has been shown to be dependent
on several factors, such as task structure, complexity, difficulty,
and the familiarity level (Voelcker-Rehage, 2008). A possible
underlying mechanism could be a reduction in neuroplastic
capacities in the elderly population, based, for instance, on

age-related deficits in long-term potentiation (Watson et al.,
2002; Di Lazzaro et al., 2008).

4.2. Online Learning
Subsequently, we assessed different temporal components of the
learning process. Both groups showed similar characteristics in
online learning. Interestingly, online learning on day 1 (chunk 2
vs. chunk 1) was significantly higher than online learning on day
2 (chunk 4 vs. chunk 3), indicating that there was manifest online
learning within the first day for both groups. On the contrary,
there was no manifest learning, but also no forgetting, on the
second day. Several factors could explain this pattern, such as
fatigue, novelty effect, or ceiling. A supporting argument for the
fatigue hypothesis could be that, during the first chunk of day 2,
the participants started at a higher performance level compared
to the first chunk of day 1. They may thus have recruited more
endurance resources early during the daily session and may have
reached their physical exhaustion phase faster on day 2 (Finneran
andO’Sullivan, 2010). It is shown that motor learning procedures
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lead to better results when the practice is done over several days
or even weeks (Shea et al., 2000). Therefore, rather than having a
large amount of exercise, distributing practice trials over several
days may result in better improvement (Baddeley and Longman,
1978; Savion-Lemieux and Penhune, 2005; Blischke and Erlacher,
2007). In our trial sessions, resting times between trials and
between chunks were short and daily sessions were intense. In
order to provide a better training regime, breaks between games
could be increased, and sessions could consist of fewer games.

Secondly, the loss of gain in online performance at the end
of day 2 could be attributed to a novelty effect, which postulates
that novel environments and interactions promote plasticity and
learning (Schomaker, 2019). This may have been saturated by
the end of day 2. Novelty effects are a reported phenomenon for
human robot interactions (e.g., Kanda et al., 2004).

Lastly, this discrepancy in the amount of online learning
between days could be explained by ceiling effects. In general,
one would expect faster ceiling in motor tasks with low difficulty
compared with tasks with high difficulty (Guadagnoli and Lee,
2004). Our data partially resembles this expected pattern, as the
easier game configurations tend to show an early decrease in
slope, when compared to the harder game configurations, such
as games having 2 ghosts (represented by the lines having colors
closer to pink), see also Figure 9.

4.3. Offline Learning
Sleep has been shown to benefit many processes of learning and
memory, and may also have an important role in the homeostatic
regulation of neural mechanisms (Walker et al., 2002; Gudberg
and Johansen-Berg, 2015). After the initial online learning, sleep
can enhance the performance level of procedural motor skills
(Walker et al., 2002). Mechanistically, the amount of stage 2
NREM sleep (Walker et al., 2002) and the local increase of
slow wave activity in parietal regions has been associated with
the amount of offline learning (Huber et al., 2004). These and
complementary findings led to the postulation of the sleep-based
enhancement hypothesis. This sleep-based enhancement (offline
learning) has been shown to be impaired in the elderly population
(e.g., Spencer et al., 2007).

We did not observe offline learning for either the young or
elderly group in the present game-based task. However, there was
also no loss of skill (forgetting) after the overnight interval. Our
findings are in line with current findings that suggest that the
classically described sleep-dependent offline gains are dependent
on the task demands, task condition, and phase in lifespan
(Adi-Japha and Karni, 2016). Moreover, in addition to sleep-
dependent effects, different confounding variables, namely the
time of day of testing, confounds introduced by data averaging,
or performance-to-break ratio, have been discussed (Pan and
Rickard, 2015). We speculated that the task-nature and the rather
low complexity (Blischke and Malangré, 2017) of the offline
probe prevented the evolution of positive offline learning effects
in the young cohort. The absence of offline losses, previously
described in elderly (Spencer et al., 2007), might be explained
by the study design, since we employed two easy “warm-up”
game configurations on day 2 first before scheduling our offline
learning probe (game configuration 1 ghost 60 mm/s). Since we

focused on performances related to motor learning measured by
accuracy and total time, the present result might not reflect other
aspects of the game that might be improved overnight.

4.4. Impact of the Game Elements
4.4.1. Effect of Each Game Element on Game

Performance
The effects of game elements, such as the number of ghosts, ghost
speed, and turn rule, on the performance were similar in both
groups. Only slight age-related differences were apparent for the
application of the cross-border penalty rule, which had a larger
impact in the elderly population.

The effect of the cross-border penalty rule on elderly
participants’ different performance metrics was analyzed to
understand the reason behind this group difference.We observed
an increase in mean accuracy, a decrease in mean velocity, and
therefore, an increase in total time to complete the game. The
cross-border penalty rule increases the importance of accuracy
during the game. Therefore, it might result in a decrease in
the speed. One of the reasons for this age-related difference
might be that older adults are reluctant to make mistakes; they
value accurate responses over responding quickly (Rabbitt, 1979;
Smith and Brewer, 1995; Starns and Ratcliff, 2010; Forstmann
et al., 2011). As a consequence, in order to circumvent mistakes
and to reach a better performance, older adults adjusted a
balance between the opposing demands of accuracy and speed,
resulting in a relatively slow performance (Rabbitt, 1979; Smith
and Brewer, 1995; Ratcliff et al., 2007; Starns and Ratcliff, 2010;
Forstmann et al., 2011).

Adding an extra ghost, turn rule, and increasing the speed
to 100 mm/s in the game decreases the performance of the
users. The possible explanation to that decrease could be the
increase in the hardness or the challenge of the game. Speed
of enemies, frequency of enemies, power of player (e.g., skills,
speed, and tools), and duration of game-play experience are the
most common game elements with which to define or adjust
the difficulty of a game (Sicart, 2008; Adams and Dormans,
2012). Similarly, in our proposed Pacman game, these elements
corresponded to the speed of the ghost, number of ghosts, speed
of the user (which slows down with the turn rule to collect
the apple by rotating the robot), and total time to collect six
apples. When the ghost speed increases to 100 mm/s, a second
ghost is added to the game, or a turn rule is added to the
game; the probability of being caught by the ghost thus increases,
and the user should run away from the ghost faster, which
might result in them not collecting apples in a time-efficient
order. The user also should be more attentive toward the ghosts
in these cases since the probability of being caught increases.
This might also decrease the attention toward walls and the
overall accuracy of the motion may decrease. On the other hand,
increasing the speed from 20 to 40 mm/s and 60 mm/s pushes
the user to perform better. The reason behind this result might
be that increasing the speed from 20 to 60 mm/s increases
the user’s speed without making game challenging enough to
perform worse.

The relationship between ghost speed and performance might
also be explained by the Challenge Point Framework proposed
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by Guadagnoli and Lee (2004). Increases in functional task
difficulty (e.g., increasing ghost speed) is expected to result in
decreased performance; however, depending on the skill level of
the performer, the optimal challenge point changes. The decrease
in the performances of the participants after 60mm/s ghost speed
might show that the optimal challenge point in Pacman game for
healthy users starts with ghosts having 60 mm/s speed.

Map design also affects the performance of the user. Even
though the yellowmapwas smaller in range ofmotion, the overall
performances on the yellow map and green map were similar.
This result might imply that the yellow map provided as much
challenge as the green map. This challenge can be explained with
the limited space for running away from the ghosts. On the other
hand, even though the sizes of the green and orange maps are
the same, performance of the users on the orange map was less
than the green one. This can be due to the internal maze and
connection design. A more detailed challenge analysis will be
conducted in future studies.

4.4.2. Effect of Game Configurations on Learning
Following the effect of each game element, we also assessed the
learning behavior in more detail by separating learning curves
for each individual repeating game configuration to investigate
the effect of configurations on learning between game chunks.

The effect of different configurations on learning between
chunks were found to be similar in both groups; we did
not see any group level differences in either group. It is of
note, that we accounted for the easiest and hardest games
in the overall learning, but not in the online learning, since
the online analysis was based on chunks. This created the
existing group effect in overall learning. There was an increase
in performance from the very first chunk to the last chunk.
Similarly to the previously discussed online learning results, in
the relative performance change per configuration, we also found
a significant performance increase within day 1, while there was
no significant learning or forgetting within day 2, as can be seen
in Figure 8.

When we compared each configuration to the other
configurations, in both groups, the hardest game with turn, two
ghosts, and maximum speed had the higher increase in learning,
while the game with turn, one ghost, and maximum speed had
the lowest improvement compared to their own baseline level. In
both groups, there was a significant difference between these two
configurations. The reason behind this result might be that, when
the turn rule is applied while the ghost is fast, compensating for
the total time or speed of the game could be harder because of
the nature of the turn rule. However, the same condition with
two ghosts can be improved by providing strategies against two
ghosts over time.

The only difference between groups was that the elderly group
had a significant difference between the hardest condition and
the penalty rule in the fast ghost condition. These results are
coherent with the results of the effect of game elements on the
performances where we observed no group differences for several
game elements except the wall crash penalty rule. The reasons for
this age-related difference might be that older adults are more
reluctant to make mistakes and that the learning process of a

game where the user has to be accurate under the high speed
forced by the ghost is prolonged.

4.5. Transfer Learning
To determine whether the acquired skills during the game
have any impact on daily life, we tested the transfer of these
improvements to non-trained simple tasks similar to daily life
activities. Both groups improved in the robot manipulation task
on both straight and curved trajectories and thus showed a
clear transfer of the acquired motor skill. Contrary to the game
performance difference between groups, the performance level
and the improvement rate in transfer learning were similar for
both groups. This might be due to the simplicity of the transfer
activity, which does not require a high cognitive effort rather than
simple physical manipulation.

This successful transfer to simple robot manipulation is an
important first hint that is indicative of the translational potential
of the Cellulo system into an evidence-based motor training tool
to promote healthy aging. Simple Cellulo robot manipulation
resembles activities of daily living, such as using a computer
mouse, wiping a table, or the general transfer of objects in the
horizontal plane. Ultimately, translation of improvements in a
robot-assisted motor therapy to measure upper limb capacity,
e.g., the Action Research Arm Test (ARAT) or Wolf Motor
Function Test (WMFT), and measures of basic activities of daily
living will be the crucial benchmark for successful translation
toward real life situations. In this regard, the current effectiveness
of available robot-assisted motor training systems addressing the
upper limb remains still limited (Veerbeek et al., 2017).

4.6. Future Directions
In the current study, the potential effects of robotic motor
training and gamification were not assessed separately in
individual control conditions, preventing us from disentangling
specific contributions of the individual strategies on the training
effects. We aim to assess this open question in future studies.

In this study, the performance metric was calculated by
movement deviation and movement time. However, the amount
of motion performed by the user and its correlation with different
muscle groups’ activities was also important to an adaptive
exercise system.We aim to address this point in our future studies
focusing on motor training aspects by accounting the motion
trajectories and range of motion.

Apart from the physical aspects, like motor learning, the game
also included several cognitive aspects, such as remembering
which apples had been collected, remembering the last apple
eaten, being aware of the positions of the chasing ghosts, and
creating a strategy to trick them or run away from them. These
cognitive aspects will be addressed by extracting the information
related to strategy of the user through gameplay data.

In order to provide an adaptive personalized exercise
of activities of home usage, the system should provide
in- and between game adaptations. Through our proposed
game configurations, providing adaptivity between games by
measuring the user’s previous performance was possible. In
future studies, the aim will be to design and implement changing
ghost behaviors as an adaptive in the game mechanism. In
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addition, more studies are needed to assess the long-term impact
of Cellulo robotic training on improvement in motor functions,
and this is also true for the effect of gamification compared to a
task-based training with the same platform. Providing social play
through our platform is also another future direction that we will
follow to increase the enjoyment and motivation to do gamified
exercise activities at home.

Furthermore, the Cellulo system also has considerable
potential to translate toward clinical applications. It provides
the advantage that different behavioral domains, such as
motor functions (e.g., dexterity) and cognitive functions (e.g.,
decision-making and planning), could be trained conjointly
in an entertaining way with as system potentially suitable
for home-based use. This approach may provide a benefit
for several neurocognitive disorders, including Alzheimer’s,
Parkinson’s disease, or stroke, which frequently affect both
behavioral domains (Scarmeas et al., 2004; Poewe, 2008;
Ramsey et al., 2017).

4.7. Limitations
One of the limitations of this study was that the potential of
the system was shown through only one game. Other games can
be designed to include reaching and catching motions without
having a focus on path following, and cognitive games can be
designed by focusing on attention and memory. Using the same
robot within the transfer activity is also a limitation of the study.
Additional assessment tool for transfer activities would have been
ideal and should be used in future studies.

Another limitation of the study is related to the experimental
design, which ordered games from easy to hard. An attempt
was made to limit this effect via chunk design, but, still,
in order to provide a smooth learning process of the
game, we had to start from easier games and increase the
difficulty. Apart from this, gender distribution was also not
equal, and this prevented us from determining the potential
effects of gender. This gender bias might also have an
effect on the results. In the young and elderly groups, the
distribution of education and professions were not balanced,
and we did not ask if they were active or motivated “game
players”. These might have an effect on the performance of
the task.

Because the technology used in this study is new to motor
training, it was not clear before the study what the expected
effect size would be. A natural limitation that follows from the
exploratory nature of our study is that we did not conduct
a power analysis to avoid an inaccurate assessment based on
unsupported assumptions. However, moving forward, our study
can be used as an anchor point for target effect sizes for

motor training with similar technologies to conduct a priori
power analyses.

5. CONCLUSION

Elderly people showed learning success when training a gamified
motor task with the Cellulo platform. Importantly, the game-
based learning gain translated to the performance of simple
robot manipulation, which resembles activities of daily life. By
this, the Cellulo platform has the potential to develop into
a tangible, low-cost, motor training solution with the goal
of facilitating healthy aging. It complements available motor
training paradigms and may also be suitable for home-based,
gamified, and motivational use.
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