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Identifying patients with mild cognitive impairment (MCI) who are at high risk of
progressing to Alzheimer’s disease (AD) is crucial for early treatment of AD. However,
it is difficult to predict the cognitive states of patients. This study developed an
extreme learning machine (ELM)-based grading method to efficiently fuse multimodal
data and predict MCI-to-AD conversion. First, features were extracted from magnetic
resonance (MR) images, and useful features were selected using a feature selection
method. Second, multiple modalities of MCI subjects, including MRI, positron emission
tomography, cerebrospinal fluid biomarkers, and gene data, were individually graded
using the ELM method. Finally, these grading scores calculated from different modalities
were fed into a classifier to discriminate subjects with progressive MCI from those with
stable MCI. The proposed approach has been validated on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) cohort, and an accuracy of 84.7% was achieved for an
AD prediction within 3 years. Experiments on predicting AD conversion from MCI within
different periods showed similar results with the 3-year prediction. The experimental
results demonstrate that the proposed approach benefits from the efficient fusion of
four modalities, resulting in an accurate prediction of MCI-to-AD conversion.

Keywords: Alzheimer’s disease, extreme learning machine, mild cognitive impairment, multimodal, prediction

INTRODUCTION

Alzheimer’s disease (AD) is the most common cognitive impairment disease, which gradually
impacts the activities of a patient’s daily life. The number of AD patients was estimated to be
approximately 30 million in 2015 (Vos et al., 2016), which has placed a huge socioeconomic burden
on those taking care of AD patients. The pathology changes of AD begin several years before the
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first clinical symptoms, and mild cognitive impairment (MCI)
is thought to be the prodromal stage of AD (Markesbery and
Lovell, 2010). Approximately 10–17% of those with MCI progress
to AD over the course of a few years, yet some MCI patients
remain stable after several years (Hamel et al., 2015). It is crucial
to identify people who are at high risk of progressing from MCI
to AD because it can help physicians treat these patients sooner
and apply suitable therapies to slow down the progression or
even improve a patient’s condition. Numerous studies have used
machine learning techniques for computer-aided diagnosis of
AD or prediction of AD conversion. The diagnosis of AD is
relatively easier than the prediction of AD because there are
apparent differences between AD and a normal control (NC), and
the accuracy of diagnosis has reached to above 96% (Lei et al.,
2016; Kim and Lee, 2018). However, the prediction of AD, more
specifically, discriminating progressive MCI (pMCI) from stable
MCI (sMCI), is more challenging because the differences between
these two groups are slight.

Different modalities of medical data have been used to detect
the pathology associated with AD. Structural magnetic resonance
imaging (sMRI) is one of the most widely used modality due
to its high resolution and non-invasive characteristics (Querbes
et al., 2009; Oliveira et al., 2010; Coupé et al., 2012; Eskildsen
et al., 2013). AD patients are always accompanied by cerebral
atrophy or ventricular expansion that is caused by the death of
neurons in the affected regions. The cerebral atrophy patterns
associated with AD can be revealed by MRI, and MRI is a
good detection technique for the atrophy of AD. Moradi et al.
(2015) calculated an MRI-based biomarker for the prediction
of MCI-to-AD conversion. Tong et al. (2017a) applied an
elastic net regression to grade MRI features and to predict
MCI-to-AD conversion. Lin et al. (2018) used a convolutional
neural network-based framework to extract high-level AD-
related features from MRI for the prediction of AD. These
methods only focused on MRI data and could only predict a
3-year AD conversion with an accuracy no greater than 80%.
Fluorodeoxyglucose positron emission tomography (FDG-PET)
is another useful neuroimaging modality for the detection of
AD. Studies (Mosconi et al., 2009; JackJr., Knopman et al.,
2010; Landau et al., 2011) have shown that AD and MCI
patients have reduced glucose metabolism in certain cerebral
regions, which occur prior to the changes in brain structure.
The brain’s metabolic activity can be quantitatively measured
by FDG-PET, which makes FDG-PET a potential tool for the
early detection of AD (Gray et al., 2013; Cheng et al., 2015;
Iaccarino et al., 2017). In a recent study (Lu et al., 2018), FDG-
PET images were used in a multiscale deep neural network to
classify AD/NC and pMCI/sMCI, where accuracies of 93.58 and
82.51% were achieved, respectively. In addition to MRI and FDG-
PET, biological biomarkers can also contribute to the detection of
AD. The abnormal concentrations of proteins in cerebrospinal
fluid (CSF), such as total tau (T-tau), hyperphosphorylated tau
(P-tau), and the 42 amino acid isoforms of amyloid β (Aβ42), are
some of the earliest signs of AD that occur many years before
the onset of clinical symptoms (Niemantsverdriet et al., 2017).
Therefore, these biomarkers can provide valuable information
for the early detection of AD. Genetics are also an important

indicator of the risk of AD. Individuals with the apolipoprotein
E (APOE) ε4 gene have a much higher risk of developing AD
than those without APOE ε4 (Vounou et al., 2012; Lambert et al.,
2013). Taking APOE ε4 into account with imaging or biological
biomarkers can improve the accuracy of AD prediction.

Different modalities of biomarkers reflect the AD-related
pathological changes in different aspects, thus there may
be complementary information among several modalities.
Combining multimodal biomarkers would provide more
information and improve the accuracy of AD prediction.
A simple way to fuse different modalities is to directly
concatenate multimodal features and feed them into a classifier
(Kohannim et al., 2010; Walhovd et al., 2010; Westman et al.,
2012). However, this is not the optimal approach, and it can
lead to bias of the modality with a larger number of features.
A better way is to map these multimodal features into a kernel
space before concatenation (Hinrichs et al., 2011; Zhang et al.,
2011; Young et al., 2013), but these methods are sensitive to the
weight assigned to each modality. In recent years, deep learning
architecture has been employed to extract multimodal feature
representations. Liu et al. (2015) used stacked auto-encoders
and a zero-mask strategy to fuse MRI and PET data. Suk et al.
(2014) proposed a joint feature representation of MRI and PET
with a multimodal deep Boltzmann machine. Liu et al. (2018)
constructed multiple deep three-dimensional (3D) convolutional
neural networks to transform MRI and PET images into compact
high-level features. These deep learning-based methods achieved
promising results in the classification of AD/NC, but the accuracy
of classifying pMCI/sMCI was just 74.58% (Suk et al., 2014). To
exploit the complementarity across multimodal data, Tong et al.
(2017b) employed a non-linear graph fusion that achieved better
results in the diagnosis of AD and a three-way classification of
AD/MCI/NC than the approaches based on a linear combination,
but the classification of pMCI from sMCI was not validated.
Although all of these multimodal data-based methods achieved
promising results in the diagnosis of AD, the performance of AD
prediction needs to be further improved for clinical use with the
help of an efficient fusion of multimodal biomarkers.

Since the efficient multimodality fusion can improve the
performance of an artificial intelligence system (Hu et al., 2018),
in this work, we present a novel extreme learning machine
(ELM)-based (Huang et al., 2012) grading method to combine
four modalities (MRI, FDG-PET, CSF, and APOE ε4) that predict
MCI-to-AD conversion. Specifically, each modality feature, from
the MCI subjects, was individually graded by an ELM that trained
with the corresponding modality features of AD and NC, and the
grading score represented the similarity of MCI-to-AD or NC.
Then, the scores of all modalities were concatenated and fed to
an ELM classifier for classification of pMCI/sMCI. The results of
the proposed method were evaluated by 100 runs of 10-fold cross-
validation with data from the ADNI cohort. The contributions of
this paper are as follows:

(i) Useful information about AD/NC was included by using the
AD/NC features when training the grading ELMs, which
improved the process of discriminating pMCI from sMCI.
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(ii) These grading ELMs were trained with discrete labels
of AD/NC and modified to output grading values,
instead of discrete labels, to represent the similarity of
MCI to AD or NC.

(iii) Each modality was graded into one single score, avoiding
bias of the modality with a greater number of features.

(iv) The proposed approach achieved promising results in the
prediction of MCI-to-AD conversion.

MATERIALS

The multimodal data used in this study included 313 MRI
features, 20 FDG-PET features, three CSF biomarkers, and one
gene feature. The MRI features, consisting of volume, surface
area, and cortical thickness of the cerebral regions, were obtained
through analysis with the FreeSurfer software using cross-
sectional processing (Fischl and Dale, 2000; Fischl et al., 2004).
There was 345 features obtained from the FreeSurfer analysis;
however, because 32 features were absent from most subjects,
only 313 MRI features were selected. For FDG-PET scans,
five regions, frequently cited in FDG-PET studies of AD, were
adopted, including left angular, right angular, bilateral posterior
cingulate, left inferior temporal, and right inferior temporal
(Landau et al., 2010; Landau et al., 2011). The mean, minimum,
maximum, and standard deviation values of the intensity in
each region were taken as the FDG-PET features. The levels
of the biomarkers Aβ42, T-tau, and P-tau in CSF were used
as the CSF features. The gene feature was a single categorical
variable indicating the presence of APOE ε4 in subjects. All
the multimodal data were downloaded from the ADNI website.
Specifically, the MRI, CSF, and gene data were provided by
the Tadpole Challenge Data files, and the FDG-PET data were
provided by the UC Berkeley FDG Analysis file.

To date, there have been over 1,500 participants, ages 55 to
90 years, recruited by ADNI, and most of them were visited
and tested multiple times in the following years for long-term
study. In this study, we only take baseline data to predict the
future state (progress to AD or remain MCI) for MCI subjects.
Because not all subjects underwent all possible examinations,
we excluded subjects without all modalities data available at the
baseline visit, which presented 200 NC subjects, 102 AD subjects,
110 pMCI subjects who converted to AD within 3 years, and
205 sMCI subjects who did not convert to AD. Demographic
and clinical information of these subjects are listed in Table 1,

including gender, age, education history, and Mini Mental State
Examination (MMSE) score.

METHODS

The overall framework of the proposed approach is shown in
Figure 1, and we also summarize the process of our proposed
approach as pseudo-code in Algorithm 1. There are three major
steps in this framework: (i) MRI features are first preprocessed by
feature selection with the least absolute shrinkage and selection
operator (LASSO) algorithm; (ii) each modality (CSF and gene
are combined as biological modality) of MCI is graded by ELM.
These ELMs are trained with corresponding modality of features
and labels from AD/NC groups. A grading score is calculated
for each modality, which represents the similarity of MCI-to-
AD or NC; (iii) these scores are combined to form the new
representative features of MCI and fed into an ELM classifier
to discriminate pMCI from sMCI. Ten-fold cross-validation is
utilized to assess the performance of the proposed approach.
Before these steps, all features of AD/NC are first normalized to
have zero mean and unit variance. The features of MCI are also
normalized with the mean and deviation of the AD/NC features.
In the following sections, we will present the details of these steps.

Feature Selection With Least Absolute
Shrinkage and Selection Operator
Different from other modalities, the MRI features are the
morphological characters of all cerebral regions. However, some
of them may be aging-related and not AD-related, which can
interfere with the classification, and thus need to be excluded. In
this study, we adopted LASSO to select only useful MRI features.
LASSO is an L2,1 norm sparse regression model (Kukreja et al.,
2006) and has the following formula:

min
α

0.5||y− Dα||22 + λ||α||1. (1)

In formula (1), y∈R1×N is the vector of N labels, and D∈RN×M

is a feature matrix that consists of N training samples with
M features in each sample. The variable λ is the penalty
coefficient that was set to 0.015 in this study, and α∈R1×M is
the target sparse coefficients. When this model is solved, only
some coefficients in α would be non-zero, where the larger
absolute value of these coefficients indicates higher usefulness
of the corresponding features. Therefore, the results of α can
be used to select discriminative features. Unlike previous studies

TABLE 1 | The demographic information of subjects.

Mean ± SD NC sMCI pMCI AD

Count (F/M) 200 (93/107) 205 (90/115) 110 (47/63) 102 (35/67)

Age 73.9 ± 6.0 71.8 ± 7.1 73.9 ± 7.2 75.7 ± 8.0

Education 16.4 ± 2.7 16.1 ± 2.7 16.2 ± 2.7 15.4 ± 3.0

MMSE 29.0 ± 1.2 28.1 ± 1.7 27.1 ± 1.7 23.2 ± 2.0

In cells of the second row, the first number is total number with numbers of female (F) and male (M) in brackets. AD, Alzheimer’s disease; MMSE, Mini Mental State
Examination; NC, normal control; pMCI, progressive mild cognitive impairment; SD, standard deviation; sMCI, stable mild cognitive impairment.
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FIGURE 1 | The overall framework of the proposed approach.

ALGORITHM 1 | The pseudo-code of the proposed method.

Input: MAD/NC, PAD/NC, BAD/NC, MMCI, PMCI, BMCI

1 α = LASSO(train = MAD/NC).coefficients;

2 MAD/NC = MAD/NC[:, α! = 0], MMCI = MMCI[:, α! = 0];

3 scoreMRI = ELM(train = MAD/NC).outputScore(MMCI);

scorePET = ELM(train = PAD/NC).outputScore(PMCI);

scoreBio = ELM(train = BAD/NC).outputScore(BMCI);

4 scores = [scoreMRI, scorePET, scoreBio]; ## scores∈RN×3

Classification and Validation:

5 for n from 1 to 100:

6 scores = scores[random_permute,:];

Ten folds cross-validation:

7 separate scores into ten folds along first dimension;

8 for i from 1 to 10:

testSet = scores[foldth = = i,:];

trainSet = scores[others,:];

record predict = ELM(train = trainSet).classify(testSet);

end for

end for

9 statistics of 100 runs

(Lee et al., 2016; Lin et al., 2018), which trained the LASSO model
with pMCI/sMCI features for the pMCI/sMCI classification task,
we thought the features of AD/NC were more representative
and used them to train LASSO model. Then, the features with
non-zero coefficients in α were selected.

Extreme Learning Machine
Extreme learning machine is a one-step learning algorithm that
is faster and has a higher performance than the support vector
machine (Huang et al., 2012; Zeng et al., 2017). There are two
types of basic ELM; the first is a feed-forward neural network
with only a single layer of randomly generated hidden nodes
(Huang et al., 2006). The second type is an ELM with kernels

(Huang et al., 2012), which avoids the random generation of an
input weight matrix. ELM with kernels yields more stable results
and has a higher performance than the feed-forward neural
network. In our previous work (Lin et al., 2018), the ELM with
kernels showed more efficiency than support vector machine and
random forest in the prediction of AD. Therefore, we adopted
ELM with a Gaussian kernel in this study. The process of ELM
with a Gaussian kernel can be described as follows:

Suppose we have N training samples [x1, x2, · · · , xN] and N
labels. The variable xn represents a vector with M features of one
sample, and Y∈RN×2 is a ground truth label matrix with N rows.
In each row, the element corresponding to the true label is set to
1, and the other is set to −1. When a new sample, x, is obtained,
the label of x can be predicted as

f (x) =


K (x, x1)

K (x, x2)
...

K (x, xN)


(
�+

I
C

)−1
Y , (2)

where K(x, xN) is the Gaussian kernel described as

K (u, v) = exp
(
−‖u− v‖2

γ

)
, (3)

and � is an N × N kernel matrix that is related to the training
samples, which is calculated in the training phase as

� =


K (x1, x1)

K (x2, x1)
...

K (xN, x1)

. . .

K (x1, xN)

K (x2, xN)
...

K (xN, xN)

 . (4)

The variable C in formula (2) is a regularization coefficient and
is set to 1. The variable γ in formula (3) is a parameter of
the Gaussian kernel, which is set to 10 times M number of
features in this study.

The output of formula (2) is a vector with two elements: [s1,
s2]. When ELM is used as the classifier, the output is the result
of comparing the values of s1 and s2. In this study, we used
the ELM to grade MCI samples, and the output of ELM was
modified as s = s1–s2. When the ELM was trained with AD/NC
and tested on MCI, the output score s can represent the similarity
of MCI-to-AD or NC.

Classification and Performance Analysis
Ten-fold cross-validation was implemented to assess the
performance of the proposed approach. All MCI subjects were
separated into 10-folds randomly. In each validation iteration,
one different fold was selected as testing data and the other
nine folds were used as training data. This process was repeated
for 10 iterations. The classification results of 10 iterations
were compared to the true labels, and the accuracy, sensitivity,
specificity, and area under receiver operating characteristic
(ROC) curve (AUC) were calculated. To avoid sampling bias,
the 10-fold cross-validation was run 100 times with randomly
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permuted samples, and the mean and standard deviation of the
accuracy, sensitivity, specificity, and AUC were given.

EXPERIMENTS AND RESULTS

Results Using Multimodality Data
To evaluate the improvement of the proposed approach,
we compared it with the method that directly concatenates
multimodal data. The results of the comparison are shown
in Figure 2. From these results, we found that the method
that directly concatenates the four modalities had a high
accuracy and specificity of 80.1 and 91.1%, respectively, but
the sensitivity was quite low. For a non-biased performance
evaluation, we calculated the balanced accuracy, which is the

FIGURE 2 | The comparison of the proposed approach with the method that
directly concatenates multiple modalities. The black lines superimposed on
each bar, and the second number in each bar represents the standard
deviations derived from 100 runs of validation. ACC, accuracy; AUC, area
under receiver operating characteristic curve; BACC, balanced accuracy;
SEN, sensitivity; SPE, specificity.

average of sensitivity and specificity, and obtained 75.3%, which
is not optimal. The proposed approach had better results in
terms of accuracy and sensitivity, with an accuracy of 84.7%
and a sensitivity of 72.7%. This is approximately 13% higher
than the direct concatenation method. The proposed approach
also has a promising balanced accuracy of 81.9%, which is
6.6% higher than the other method. Beside these scores, we
also obtained an improved AUC of 88.8% for our proposed
method. This comparison indicates that the proposed approach
is more efficient at predicting the MCI-to-AD conversion than
the method using directly concatenated multimodal data.

Contributions of Different Modalities
To reveal the contributions of the different modalities in
the proposed method, experiments were conducted with only
one modality and one modality absent. The results are listed
in Table 2. Because the APOE ε4 data failed to classify
pMCI/sMCI individually (with balanced accuracy of 55.2%), we
used CSF+ APOE ε4 to demonstrate the effect of APOE ε4.

From these results, we can see that when only one modality
was used, the performance of the CSF ranked third in terms
of accuracy and AUC, but it had the best sensitivity. The
APOE ε4 feature can slightly improve the results using CSF.
FDG-PET achieved the best results, but the best accuracy and
balanced accuracy were only 76.7 and 71.7%, respectively. When
all modalities were used, the accuracy and balanced accuracy
was greatly improved to 84.7 and 81.9%, respectively, and there
was also a significant improvement in AUC. Figure 3 shows
the improvement in the ROC curves of the proposed approach,
when all modalities were used compared with only one modality
used. In the situation with one modality absent, it shows that
the performance declined without CSF, especially a significant
decline of sensitivity, which led to the decline of balanced
accuracy. The MRI and FDG-PET had a similar impact on the
performance of the proposed method, while the APOE ε4 had
minimal influence on the performance. Even when all modalities
were used, if the LASSO was disabled, the performance suffered
from a 1.2 and 1.8% drop in the accuracy and balanced accuracy,
respectively, which illustrates the contribution of LASSO.

TABLE 2 | The contributions of different modalities.

Modalities ACC SEN SPE BACC AUC

MRI 74.5 ± 0.4% 54.8 ± 0.9% 85.0 ± 0.3% 69.9 ± 0.5% 79.2 ± 0.2%

FDG-PET 76.7 ± 0.4% 55.1 ± 0.8% 88.2 ± 0.5% 71.7 ± 0.4% 80.9 ± 0.2%

CSF 73.0 ± 0.5% 62.5 ± 1.0% 78.7 ± 0.5% 70.6 ± 0.6% 79.0 ± 0.3%

CSF + APOEε4 73.9 ± 0.4% 63.2 ± 0.7% 79.7 ± 0.6% 71.4 ± 0.4% 78.8 ± 0.3%

- MRI 81.3 ± 0.5% 67.0 ± 1.0% 89.0 ± 0.5% 78.0 ± 0.6% 86.8 ± 0.2%

- FDG-PET 81.0 ± 0.5% 67.2 ± 0.8% 88.4 ± 0.5% 77.8 ± 0.5% 86.7 ± 0.2%

- CSF 79.6 ± 0.6% 63.5 ± 1.2% 88.3 ± 0.5% 75.9 ± 0.7% 85.8 ± 0.2%

- APOEε4 83.2 ± 0.5% 69.8 ± 1.0% 90.4 ± 0.5% 80.1 ± 0.6% 88.7 ± 0.2%

- LASSO 83.5 ± 0.6% 69.0 ± 1.2% 91.2 ± 0.6% 80.1 ± 0.7% 88.8 ± 0.2%

All 84.7 ± 0.4% 72.7 ± 0.8% 91.2 ± 0.4% 81.9 ± 0.5% 88.8 ± 0.2%

“- modality” means the absence of the modality in experiments. In each cell, the two numbers represent the mean and standard deviation derived from 100 runs of
validation. ACC, accuracy; APOE, apolipoprotein E; AUC, area under receiver operating characteristic curve; BACC, balanced accuracy; CSF, cerebrospinal fluid; LASSO,
least absolute shrinkage and selection operator; SEN, sensitivity; SPE, specificity.
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FIGURE 3 | The receiver operating characteristic curves when different
modalities were used.

Prediction Within Different Periods
The 3-year cutoff period for predicting MCI-to-AD conversion is
not a unique criterion. We also conducted experiments to predict
the states of MCI patients with different periods from 1 to 5 years.
With the criterion changed, different numbers of pMCI/sMCI
for different conversion times were obtained: 46/343 (1 year),
89/268 (2 years), 110/205 (3 years), 119/146 (4 years), 117/62
(5 years). The results of predicting MCI-to-AD conversion at
different time periods are shown in Figure 4. From Figure 4A,
we can see that the accuracies are all above 83% for 1–5 years
prediction. However, from Figure 4B, we found the specificity

was high and the sensitivity was low at the point of 1 year, owing
to the disparity of the number of individuals with pMCI versus
sMCI (46/343), and the balanced accuracy was only 60.2%. At
the point of 2 years, the bias is still large: 89/268 pMCI/sMCI. As
a result, the balanced accuracy was only 74.9%. At the 3–5-year
mark, the bias reduced and the balanced accuracies stabilized at
approximately 82%. At the points of 3–5 years, we achieved an
accuracy, balanced accuracy, and AUC of 83, 81.8, and 88.8%,
respectively. These results show a promising performance of the
proposed approach for predicting MCI-to-AD conversion within
different periods.

Experiments on Other Conditions
We also conducted the experiments on different conditions,
including:

(i) An Support Vector Machine (SVM) version, in which SVM
was the classifier instead of ELM.

(ii) In some studies, neuropsychological test scores (MMSE,
clinical dementia rating-sum of boxes, Alzheimer’s disease
assessment scale-cognitive subtest, Rey’s auditory verbal
learning test, functional activities questionnaire) were
included to boost the performance of prediction. Therefore,
these neuropsychological test scores were also included and
concatenated with grading scores.

(iii) In previous studies (Moradi et al., 2015; Tong et al., 2017a),
the definition of sMCI was stricter, and the subjects who
converted to AD beyond 3 years or the diagnosis changed
from MCI to NC were removed from the sMCI group.
Therefore, we also excluded 64 subjects with the same
criterion, and then obtained 141 sMCI and 110 pMCI.

The results are listed in Table 3, from which it can be seen
that the ELM classifier has a better performance than the SVM
classifier. When neuropsychological test scores were included in

FIGURE 4 | The performance of predicting MCI-to-AD conversion at different time periods. (A) Performance of accuracy and AUC. (B) Performance of sensitivity,
specificity, and balanced accuracy. AD, Alzheimer’s disease; AUC, area under receiver operating characteristic curve; MCI, mild cognitive impairment.
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TABLE 3 | The experiments on different conditions.

Classifier Modalities pMCI/sMCI ACC AUC

SVM MRI, PET, CSF, APOE 110/205 83.6% –

ELM MRI, PET, CSF, APOE 110/205 84.7% 88.8%

ELM MRI, PET, CSF, APOE, neuropsychological scores 110/205 85.1% 92.6%

ELM MRI, PET, CSF, APOE, neuropsychological scores 110/141 (ambiguous subjects excluded) 87.1% 94.7%

ACC, accuracy; APOE, apolipoprotein E; AUC, area under receiver operating characteristic curve; CSF, cerebrospinal fluid; ELM, extreme learning machine; pMCI,
progressive mild cognitive impairment; sMCI, stable mild cognitive impairment; SVM, support vector machine.

the proposed method, there was not a significant improvement in
accuracy, but the AUC greatly improved. When the ambiguous
subjects were excluded from the sMCI group, the performance
was further improved. To the best of our knowledge, the accuracy
of 87.1% and AUC of 94.7%, achieved in this experiment, are the
best for predicting AD.

DISCUSSION

In this study, we propose a novel approach for predicting MCI-
to-AD conversion with multimodal data. To effectively fuse
different modalities and avoid the bias of a number of features in
each modality; an ELM-based grading method was employed to
calculate a grading score for each modality. The scores of multiple
modalities were combined and fed into the ELM classifier to
discriminate the pMCI from sMCI. With the help of AD/NC
information included in the grading procedure, the scores
effectively represented the states of the MCI subjects and were
used to predict the AD conversion individually. When the scores
from all modalities were combined, the accuracy of prediction
was boosted to 84.7%. The results of the experiments conducted
on the ADNI cohort demonstrate that: (i) the proposed method
with multimodality scores has a much higher accuracy than with
a single modality score, such that the proposed method has at
least a 10% higher balanced accuracy than when a single modality
is used. This means that the complementary information among
the multimodal data can be represented by these scores. (ii)
Direct concatenation of multimodal data is not the best way of
exploiting the complementary information, and the proposed
method showed a more efficient fusion of multimodal data and
achieved a much better performance. (iii) The proposed method
can predict MCI-to-AD conversion of different periods with
a high accuracy.

As more modalities bring more complementary information,
the performance of the prediction should improve. As shown in
Table 3, when the neuropsychological test scores were included
in our approach, the AUC improved, but the accuracy only had a
0.4% improvement. The assumption is that there might be an up-
boundary for discriminating pMCI from sMCI, from the fact that
the diagnosis in ADNI is not 100% reliable (Ranginwala et al.,
2008). Therefore, when we defined the sMCI more strictly and
excluded ambiguous samples, the accuracy was further boosted to
87.1% as shown in Table 3. It is also observed that the specificity
was much higher than sensitivity in Table 2, and we assume the
reason for this might be a bias in the number of pMCI against the
number of sMCI. This can be explained in Figure 4B that shows

that as the bias in the number of pMCI versus sMCI decreased, a
similar specificity and sensitivity were obtained.

Although the proposed approach achieved a promising result
in predicting AD conversion, it requires four modalities, which is
difficult to obtain in clinical practice. However, in the research
of longitudinal regression for modeling the trajectory of AD
progression, it is crucial to estimate the cognitive states of
patients. In our future work, we will consider the use of the ELM-
based grading method proposed in this study to improve the
accuracy of longitudinal regression for AD trajectory modeling.

In the proposed approach, the feature selection was only
applied to MRI features since the PET features were from five
AD-related regions and the three CSF biomarkers and APOE ε4
gene contained useful information about AD. Because the MRI
features from the FreeSurfer analysis were morphology features
of whole brain, inevitably it had to include some useless features.
As a result, LASSO was employed to do the feature selection
on MRI features, and it improved the results of prediction. To
explore which MRI features were selected, we have listed the top
10 features in Table 4. We can observe that the volumes and
thicknesses of the hippocampus, amygdala, temporal lobe, and
entorhinal cortex play an important role in the detection of AD,
which is consistent with previous studies (Van Hoesen et al., 1991;
Convit et al., 2000; Mu and Gage, 2011; Poulin et al., 2011).

CONCLUSION

In this study, we have developed an ELM-based grading method
to fuse multimodal data for the prediction of MCI-to-AD

TABLE 4 | The top 10 AD-related MRI features from LASSO feature selection.

Num. MRI features

1 Volume of left hippocampus

2 Volume of left amygdala

3 Volume of left inferior lateral ventricle

4 Surface area of left isthmus cingulate

5 Volume of right hippocampus

6 Volume of left inferior temporal

7 Cortical thickness average of left middle temporal

8 Cortical thickness standard deviation of right transverse temporal

9 Cortical thickness standard deviation of right lateral orbitofrontal

10 Cortical thickness average of right entorhinal

AD, Alzheimer’s disease; LASSO, least absolute shrinkage and selection operator.
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conversion within 3 years. With the input of four modalities:
MRI, FDG-PET, CSF, and gene presence, we achieved a promising
result with an accuracy of 84.7% and AUC of 88.8%. When
compared with method that directly concatenates multiple
modalities, the proposed approach outperformed the other in
terms of accuracy and AUC. The experiments demonstrated that
this approach can also predict AD conversion of other periods
with a similar performance of the 3-year prediction.
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