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Cerebral autosomal dominant arteriopathy with subcortical infarcts and
leukoencephalopathy (CADASIL), a hereditary cerebral small vessel disease caused
by mutations in NOTCH3, is characterized by recurrent stroke without vascular risk
factors, mood disturbances, and dementia. MRI imaging shows cerebral white matter
(WM) hyperintensity, particularly in the external capsule and temporal pole. Missense
mutations related to a cysteine residue in the 34 EGFr on the NOTCH3 extracellular
domain (N3ECD) are a typical mutation of CADASIL. On the other hand, atypical
mutations including cysteine sparing mutation, null mutation, homozygous mutation,
and other associate genes are also reported. From the viewpoint of gain of function
apart from Notch signaling or loss of function of Notch signaling, we review the research
article about CADASIL and summarized the pathogenesis of small vessel, stroke, and
dementia in this disease.
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INTRODUCTION

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy
(CADASIL) is one of the most common hereditary cerebral small vessel diseases caused by
mutations in NOTCH3. C was first recognized as a clinical and genetic hereditary small-
vessel disease entity that induces cerebral infarction, white matter (WM) disease, microbleeds,
and finally, vascular dementia. Understanding the impact of this disease is important for
analyzing small-vessel diseases as well as vascular dementia. This review article is summarized
in terms of whether CADASIL is caused by the gain of NOTCH3 function or by loss of
NOTCH signaling function. Supporting data for a gain of function is pro-aggregatory property
of cysteine related or cysteine-sparing NOTCH3 mutations as well as homozygous NOTCH3

Abbreviations: ADAM10, A disintegrin andmetalloprotease 10; ADC, apparent diffusion coefficient; BPF, brain parenchymal
fraction; CADASIL, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; CARASIL,
cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy; CM, cerebral microbleeds;
CSL, CBF1-Su(H)-Lag1; DAD, Disability Assessment for Dementia; DSL, Delta/Serrate/LAG-2; ExAC, exome aggregation
consortium; EGFrs, epidermal growth factor-like repeats; ICAS, intracranial arterial stenosis; Jag1, Jagged1; LTBP-1, latent
TGF-β–binding protein 1; mean-ADC, mean apparent diffusion coefficient; NECD, Notch extracellular domain; NICD,
Notch intracellular domain; N3ECD, Notch3 extracellular domain; N3ICD, Notch3 intracellular domain; Non-NOTCH3,
NOTCH3-negative CADASIL–like patients; GOM, granular osmiophilic material; PVS, perivascular spaces; RNF213, ring
finger protein 213; TGF-β, transforming growth factor-β; TIMP3, tissue inhibitor of metalloproteinases 3; VSMC, vascular
smooth muscle cell; VTN, vitronectin; WM, white matter; WMH, white matter hyperintensity; WML, white matter lesion.
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FIGURE 1 | NOTCH3 is related to small vessel disease. ECD, extracellular domain; N3ECD, Notch3 extracellular domain; EGFrs, Epidermal Growth Factor repeats;
GOM, granular osmiophilic material; TIMP3, tissue inhibitor of metalloproteinases 3.

mutation. Also, pathological findings of the accumulation of
extracellular matrix and granular osmiophilic material (GOM)
supported the hypothesis that Notch extracellular domain
(NECD) can be a core of aggregation. Looking from the other
side, nonsense NOTCH3 mutation or constitutive activation of
NOTCH3 signaling can be related to the pathogenesis of different
cerebral small vessel disease from CADASIL (Figure 1).

GENETICS

NOTCH3 Mutations
Notch signaling is evolutionarily conserved, and four members
of the Notch receptor family: NOTCH1-4 exist in humans.
NOTCH3 encodes a single-pass transmembrane receptor,
NOTCH3, which consists of a NECD including 34 epidermal
growth factor-like repeats (EGFrs) and an Notch intracellular
domain (NICD). The Notch protein is thought to undergo
complex proteolytic processing events. The first cleavage, named
as S1 cleavage of the receptor occurs on the Golgi for
the maturation of the receptor (i.e., the formation of the
NECD-NICD heterodimer). The second proteolysis, named as
S2 cleavage by A disintegrin and metalloprotease 10 (ADAM10),
occurs on the cell surface when the receptor interacts with
NOTCH ligand, Jagged or Delta/Serrate/LAG-2 (DSL), on
neighboring cells (Brou et al., 2000). The third cleavage,

named as S3 cleavage: γ-secretase–dependent intra-membrane
proteolysis, NICD ismoved into the cytoplasm and shuttles to the
nucleus. Finally, NICD activated target genes with transcriptional
cofactors of the CBF1-Su(H)-Lag1 (CSL) family (Bray, 2006).
While NOTCH3 mainly expressed in the central nervous system
in the fetus, NOTCH3 is expressed predominantly in vascular
smooth muscle cells (VSMCs) to maintain vascular contractility
in adults (Joutel et al., 2000).

NOTCH3 MUTATIONS IN
CADASIL PATIENTS

Cysteine-Related
To date, more than 200 cysteine-related mutations, most
of which are single nucleotide changes, have been reported
(Supplementary Table S1, Joutel et al., 1997; Rutten et al.,
2014; Koizumi et al., 2019; Leiden Open Variation Database,
or references therein). A few exceptions include in-frame
insertion/deletion mutations and splicing-site mutations (Tikka
et al., 2009). Also, a rare mutation of in-frame 15 bp duplication
in exon 7 is reported (Lee et al., 2011). CADASIL-associated
mutations are localized from exon2 to 24, which encode EGFrs.
Each EGFr contains six cysteine residues that likely participate
in forming three pairs of disulfide bonds to maintain the normal
NOTCH3 protein conformation.Most of themutations are of the
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missense type, resulting in an even number to an odd number
of cysteine residues (Joutel et al., 1997; Mizuta et al., 2017).
The resulting unpaired cysteine is predicted to cause abnormal
disulfide bridge formation that leads to aggregation of NECD
(Duering et al., 2011).

The mutations accumulate in EGFrs 1–6, apart from the
ligand-binding domain, EGFrs 10 and 11. Cellular experiments
showed that most of the mutations do not affect Notch signaling,
suggesting that CADASIL is not caused by signaling dysfunction.
However, NOTCH3 harboring a p.Cys428Ser mutation in
EGFr 10 and p.Cys455Arg in EGFr 11 exhibits attenuated
ligand-binding activity, resulting in a significant reduction of
NOTCH3 signaling (Joutel et al., 2004; Peters et al., 2004b). A
previous report showed that mutations in EGFrs 10 and 11 are
associated with milder cognitive deficits and a trend toward a
lower volume of lacunar infarcts compared with the common
mutations in EGFrs 2–5 (Monet-Leprêtre et al., 2009). This
association remains to be elucidated, but it is possible that Notch
signaling may affect the clinical symptoms.

Cases with duplication (Lee et al., 2011) or deletion of
NOTCH3 (Dichgans et al., 2000) are reported. These mutations
also change the number of Cysteine residue as well as point
mutation and GOM was detected in the cases with these
mutations (Lee et al., 2011).

Biological Effect of CADASIL-Associated
Mutations
A popular hypothesis holds that theNOTCH3mutations causing
CADASIL are gain-of-function rather than loss-of-function
mutations (Carare et al., 2013). One of the evidence supporting
this hypothesis was the identification of hypomorphic mutations
in individuals without the CADASIL phenotype. Rutten et al.
(2013) reported two NOTCH3 nonsense mutations, c.307C>T,
p.Arg103*, in two brothers aged in their 50s; brain MRI
and skin biopsy results showed incompatible with CADASIL.
Also, they reported a CADASIL patient with compound
heterozygous for a pathogenic NOTCH3mutation, p.Tyr710Cys,
and an intragenic frameshift deletion. In that patient’s family,
p.Tyr710Cys segregated with the affected parent, whereas the
intragenic frameshift deletion was also identified in the normal
parent of the patient. They concluded that these hypomorphic
NOTCH3 alleles do not cause CADASIL (Rutten et al., 2013).
According to previous case reports, complete loss of, and
also constitutive activation of NOTCH3 signaling are thought
to cause arteriopathy. Pippucci et al. (2015) reported a 24
years-old man with childhood-onset arteriopathy and cavitating
leukoencephalopathy. Exome analysis of the patient and his
consanguineous parents identified homozygous NOTCH3 null
mutation c.C2898A (p.C966*) in the patient. Fouillade et al.
(2008) reported a 53-year-old woman with 35-years-onset
stroke and MRI finding of WM hyperintensity. They identified
NOTCH3 c.4544T>C resulting in p.L1515P mutation which
localizes in the C-terminal end of NOTCH3 extracellular domain
(N3ECD). Although the precise mechanism remains unknown,
cellular experiments suggested increased NOTCH3 signaling
of this mutation in a ligand-independent manner (Pippucci
et al., 2015). It is of note that the pathological hallmark of

CADASIL, GOM, was not detected in either of these patients
(Fouillade et al., 2008; Pippucci et al., 2015), suggesting that
arteriopathy related to abnormal NOTCH3 signaling is different
from CADASIL. In a study using a transgenic mouse model of
CADASIL, Joutel described the toxic gain-of-function properties
of mutant NOTCH3. Mice harboring human NOTCH3 with
p.Arg90Cys, p.Cys428Ser, or p.Arg169Cys mutations exhibited
CADASIL-like pathologic changes, N3ECD accumulation, and
deposition of GOM (see below). Notably, transgenic mice with
p.Cys428Ser, which cannot mediate Notch signaling (see above),
also showed GOM deposition, suggestive of toxic gain-of-
function mutations leading to aggregation of mutated N3ECD
(Joutel, 2011).

Cysteine-Sparing Mutations
Muino et al. (2017) recently reviewed cysteine-sparing NOTCH3
missensemutations and proposed criteria for their pathogenicity:
(a) typical clinical CADASIL syndrome; (b) diffuse white
matter hyperintensity (WMH); (c) 33 NOTCH3 exons analyzed;
(d) mutations that were not polymorphisms; and (e) GOM
deposits noted in skin biopsy. Of the 25 mutations reviewed,
they concluded that p.Arg61Trp, p.Arg75Pro, p.Asp80Gly, and
p.Arg213Lys fulfilled these criteria. To uncover the pathogenicity
of cysteine-sparing mutations, analysis of pro-aggregatory
property may be important. Some cysteine-involving mutations
(Duering et al., 2011) and also p.Arg75Pro and p.Asp80Gly
(Wollenweber et al., 2015) was reported to be prone to
aggregation by using a single-particle aggregation assay. In
the very recent report of the patient with p.Gly73Ala,
unfortunately, skin biopsy was declined, cellular and in vitro
experiments showed pro-aggregatory property of the mutation
(Huang et al., 2020).

Of the pathogenic cysteine-sparing mutations, p.Arg75Pro
is probably the most frequent, and this mutation is primarily
reported in eastern Asians (Kim et al., 2006; Mizuno et al.,
2008; Ueda et al., 2015). In addition to positive skin biopsy
findings, we also noted co-segregation in a p.Arg75Pro family
and demonstrated the predicted conformational change in the
EGFr harboring this mutation (Mizuno et al., 2008). Japanese
CADASIL patients with p.Arg75Cys exhibit atypical and mild
phenotypes, including a lower frequency of stroke/TIA and
temporal pole lesions, with a tendency toward an older age at
onset (Ueda et al., 2015; Koizumi et al., 2019).

Homozygous Mutations
Although CADASIL is generally caused by heterozygous
mutations in NOTCH3, several CADASIL cases involving
homozygous mutations have been reported (Mukai et al., 2018).
Interestingly, some cases involving homozygous mutations
showed a more-severe clinical phenotype than cases involving
heterozygous mutations, but other cases were within the
spectrum of the heterozygous phenotype.

The most frequent homozygous mutation is p.Arg544Cys.
Mukai et al. (2018) reported a 63-year-old male case presenting
first stroke attack with only mild weakness of the left leg and
recovered well, involving a homozygous p.Arg544Cys mutation;
GOM around the basement membrane of VSMCs on skin biopsy
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were detected in this case. No other stroke patients were detected
in his parents and siblings indicated the tendency toward a mild
phenotype with the p.Arg544Cys mutation in agreement with
previous reports (Liao et al., 2015; Lee et al., 2016). p.Arg544Cys
locates not in EGFr, but between the 13th and 14th EGFrs.
Therefore, we hypothesize that p.Arg544Cys may contribute to
a milder effect to a conformational change of EGFr resulting in
a milder phenotype. The p.Arg544Cys mutation is also notable
because of its geographic accumulation. The frequency of this
mutation in CADASIL patients is 93.6% in Jeju Island, Korea,
and 70.5% in Taiwan (Liao et al., 2015; Lee et al., 2016).

DISEASE-MODIFYING GENES

Genome-Wide Association Study
of CADASIL
Opherk et al. (2014) performed a genome-wide association study
to identify geneticmodifiers ofWMHvolume in CADASIL. They
analyzed SNP array data for 466 patients and found no SNPs
reaching genome-wide significance. However, polygenic score
analyses which included SNPs with weak p-values, indicated
significant association with WMH volume when 10,574 SNPs
(each p-value < 0.1) or 52,125 SNPs (each p-value < 0.5) were
included. They suggested thatmultiple variants exert small effects
on the WMH burden in CADASIL.

RNF213
We recently reported ring finger protein 213 (RNF213)-related
susceptibility to intracranial arterial stenosis (ICAS) in CADASIL
patients (Yeung et al., 2018). The frequency of RNF213 variants
was 23.5% in CADASIL patients with ICAS, compared with 1.9%
in those without ICAS. CADASIL is recognized as a small-vessel
disease, but intracranial major artery stenosis was reported in
some CADASIL patients (Choi et al., 2005). The susceptibility
variant rs112735431, c.14576G>A (p.R4859K) or c.14429G>A
(p.R4110K) in RNF213, was originally identified as prominently
associated with moyamoya disease, mainly reported in eastern
Asia. Miyawaki et al. (2012) found the variant was linked to
susceptibility to ICAS even in sporadic cases. These associated
genes may contribute to the clinical phenotypes of CADASIL.

PATHOMECHANISM FROM THE
PERSPECTIVE OF MUTATION
AND PATHOLOGY

Pathology
CADASIL affects small vessels in the brain WM and deep gray
matter, resulting in thickening of vascular walls and luminal
stenosis. In the tunica media, degeneration of VSMCs, positive
PAS staining, and granular deposits of N3ECD immunoreactivity
are observed (Baudrimont et al., 1993; Joutel et al., 2000).
In the tunica adventitia, accumulation of various fibrous
extracellular matrices is observed, including collagen, laminin,
and clusterin. However, vessel occlusion or thrombosis is rarely
found (Ruchoux et al., 1995). Therefore, the direct pathogenic
mechanism leading to lacunar infarction in CADASIL remains to

be elucidated. A popular hypothetical pathomechanism involves
hemodynamic disturbance of lesion-affected arterioles and loss
of compliance and autoregulation (Tikka et al., 2014).

GOM
The first ultrastructural descriptions of perivascular deposits
surrounding small, penetrating arteries in the brain, designated
GOM, were reported by Baudrimont et al. (1993). This material
has been examined mainly in the brain, but GOM is also found
surrounding VSMCs in other tissues, including muscle and
skin (Ruchoux et al., 1995). Tikka et al. (2009) investigated
the GOM in CADASIL patients and concluded that COM is
specific to CADASIL. Immunohistochemistry and immunogold
electron microscopy studies revealed the distribution of GOM
and N3ECD protein in the microvasculature of brain gray
matter and WM. Immunogold electron microscopy using
an antibody to N3ECD revealed abundant particles in the
GOM within microvessels, VSMC membranes, and perivascular
cells (Yamamoto et al., 2013). These results suggest that
NOTCH3 fragments are major components of GOM deposits.

Transendocytosis of NOTCH3
Cisendocytosis of either the DSL ligands or the Notch receptor
itself into the cytoplasm has been recognized as playing an
important role in regulating Notch signaling (Bray, 2006; Fortini
and Bilder, 2009; Pratt et al., 2011). Also, genetic and cellular
biological studies have shown that Notch is endocytosed into
neighboring ligand-expressing cells in Drosophila (Klueg and
Muskavitch, 1999) and that endocytosis of NECD promotes
Notch proteolysis and downstream signaling in mammals
(Nichols et al., 2007). Therefore, endocytosis of NECD into
ligand-expressing cells, known as trans-endocytosis, is believed
to be more critical for Notch activation than proteolytic events
(Nichols et al., 2007). Because CADASIL causing mutations
localize in N3ECD, we hypothesized that impairment of
N3ECD trans-endocytosis may be a pathological mechanism
of CADASIL. We addressed this issue by using HEK293 cells
harboring a single copy of mutant or wildtype human NOTCH3
cDNA cocultured with Jagged1-expressing cells (Watanabe-
Hosomi et al., 2012). In this co-culture system, Notch signaling
quantified by HES1 expression was similar between mutant and
wildtype N3ECD, in agreement with previous reports. However,
we found that C185R mutant N3ECD on the cell surface is
degraded significantly more slowly than wild-type N3ECD in
NOTCH3 cells. While vesicles containing N3ECD were observed
in Jag1-expressing cells co-cultured with wild-type NOTCH3,
vesicles with mutant N3ECD within the Jag1-expressing cells
were significantly fewer in number. These results indicate that
the process of degradation of mutant N3ECD on the cell
surface is disturbed due to the impairment of trans-endocytosis
(Watanabe-Hosomi et al., 2012). It can also explain the abnormal
accumulation of N3ECD in vascular walls without accumulation
of the intracellular domain of Notch3 intracellular domain
(N3ICD) or full-length protein, and signaling is activated
normally. Further approach is necessary to uncover the process
between impaired trans-endocytosis and abnormal accumulation
of N3ECD and GOM deposit.
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TIMPS3 and VTN
Using cultured cells, Monet-Leprêtre et al. (2013) provided
evidence that excess levels of or multimerization of mutant
Notch3 ECD facilitate interactions with key components of
the vascular extracellular matrix, including tissue inhibitor of
metalloproteinases 3 (TIMP3) and VTN. Brain vessels from
transgenic mice and patients with CADASIL exhibit elevated
levels of both insoluble cross-linked and soluble TIMP3 species
(Monet-Leprêtre et al., 2013). Later, Capone et al. (2016) showed
that reducing TIMP3 or VTN ameliorated CADASIL phenotype
using transgenic mice, suggesting TIMP3 or VTNmay be a novel
therapeutic target of CADASIL.

Downstream Signaling Related to TGF-β
It is well known that transforming growth factor-β (TGF-β)
signaling is important in the regulation of fibrotic events in
vessels and other various tissues. Increased TGF-β signaling was
reported as the pathophysiology of cerebral autosomal recessive
arteriopathy with subcortical infarcts and leukoencephalopathy
(CARASIL; Hara et al., 2009), suggesting TGF-β signaling as
a key pathway to cerebral small vessel diseases. Kast et al.
(2014) examined molecules involving in the regulation of
TGF-β bioavailability, fibronectin, fibrillin-1, and latent TGF-
β–binding protein 1 (LTBP-1), in post-mortem brain tissue from
CADASIL patients. All the three molecules were enriched in
the CADASIL vessel. However, fibronectin and fibrillin-1 did
not colocalize with N3ECD deposits, whereas, LTBP-1 showed a
striking co-localization with N3ECD deposits, suggesting specific
recruitment of LTBP-1 into aggregates. Also, increased levels
of the TGF-β prodomain indicate dysregulation of the TGF-β
pathway in CADASIL development. In vitro co-aggregation
assay showed a direct interaction between LTBP-1 and mutant
N3-ECD but no interaction between LTBP-1 and wildtype N3-
ECD. These suggested a specific co-aggregation of LTBP-1 with
mutant NOTCH3 and possible TGF-β signaling impairment in
CADASIL (Kast et al., 2014).

Reconstruction of Small Vessels
To examine the degree and extent of the pathologic changes,
Okeda et al. (2002) analyzed the entire length of vessels by
reconstructing 1,000 serial sections of the 11 cerebral medullary
arteries in an autopsy of a CADASIL patient who was 75 years
old. The predominant findings were loss of VSMCs in the
tunica media and fibrosis in the tunica adventitia. Most arteries
exhibited continuous complete loss of VSMCs in theWM. Severe
adventitial fibrosis was found in all arteries but restricted to
WM. However, no stenosis or occlusion was found in the arteries
studied. Considering their results collectively, they used a ‘‘so-
called earthen pipe state’’ to describe the state of lesioned arteries
and proposed failure of autoregulation of cerebral blood flow
due to the earthen pipe state as underlying the pathogenesis of
CADASIL (Okeda et al., 2002).

Pericytes
As the receptor protein encoded by the NOTCH3 gene is
expressed not only on VSMCs but also on pericytes, pericytes
and capillary vessels can be damaged by CADASIL (Dziewulska

and Lewandowska, 2012). Degeneration and loss of pericytes
in capillary vessels were detected in the microvessels in the
autopsy of the brain and skin-muscle biopsy in CADASIL
patients (Dziewulska and Lewandowska, 2012). GOM was
usually seen near pericyte cell membranes or within infoldings
(Dziewulska and Lewandowska, 2012). These findings suggested
increased permeability of the capillary vessels and disturbances
in cerebral microcirculation; this degeneration can also cause
defective vasomotor reactivity in CADASIL (Okeda et al., 2002;
Qin et al., 2019).

Why Clinical Symptoms Occur Only
in the Brain
Because NOTCH3 is expressed ubiquitously in VSMCs, it is
not surprising that pathological changes including GOM can
be detected not only in the brain but also in other organs. It
is reported that peripheral vascular function, as well as in the
brain, was also impaired in patients with CADASIL and also a
transgenic mice model of CADASIL (Fujiwara et al., 2012).

Clear phenotypes are restricted to the brain, but several
studies suggested cardiovascular (van den Boom et al., 2003; Rufa
et al., 2007) and renal (Kusaba et al., 2007; Guerrot et al., 2008;
Ragno et al., 2012) involvement, though their causal relationship
is still unclear. A recent article by Kelleher et al. (2019) showed
that CADASIL iPSC-derived mural cells, including VSMCs and
pericytes were susceptible to apoptotic stress. This may explain
why major symptoms are restricted to the brain, because the
blood-brain barrier, the crucial structure to maintain brain
homeostasis, consists of astrocytes and pericytes (Ihara and
Yamamoto, 2016).

CLINICAL FEATURES OF CADASIL

Incidence
To date, thousands of families with CADASIL have been
diagnosed worldwide in many different ethnic groups. The
disorder is often overlooked and misdiagnosed. Its minimum
prevalence has been estimated at between 2 and 5 in 100,000 but
may vary between populations (Razvi et al., 2005; Narayan et al.,
2012; Moreton et al., 2014; Bianchi et al., 2015).

Genotype-Phenotype Correlation
There have been a limited number of studies involving genotype-
phenotype analyses, some of which reported negative results
(Adib-Samii et al., 2010). On the other hand, a German study
including 371 CADASIL patients showed positive findings in
genotype-phenotype analyses of eight of the most frequent
genotypes: p.Arg90Cys, p.Cys117Phe, p.Arg133Cys, p.Arg14.

1Cys, p.Arg153Cys, p.Arg169Cys, p.Cys174Tyr, and
p.Arg182Cys (Opherk et al., 2004). Both p.Cys174Tyr and
p.Cys117Phe was significantly associated with a lower median
age at death, and p.Cys117Phe alone was significantly associated
with a lower median age at onset of stroke and immobilization
(Opherk et al., 2004). Genotype-phenotype correlation analyses
of each mutation should be carefully conducted due to the wide
phenotype distribution, even in the same family harboring the
same mutation.
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EGF Repeats 1–6 vs. 7–34
Rutten et al. (2019) recently demonstrated the effect of mutation
location on the severity of the disease. By comparing CADASIL
patients with mutations in EGFr 1–6 and EGFr 7–34, those
in the EGFr 1–6 group had a 12-year earlier onset of stroke,
lower survival, and higher WMH volume than those in the
EGFr 7–34 group. As described above, NOTCH3 mutations
in CADASIL patients accumulate in EGFr 1–6, at 71.8% in
Europeans (Rutten et al., 2019). It is noteworthy that NOTCH3
pathogenic variants were identified in a recent analysis of a
large-scale genome variation database of a general population
(Rutten et al., 2016). NOTCH3 pathogenic variants in a
general population accumulated in EGFr 7–34, at 97.5% in the
general European population, based on the Genome Aggregation
Database (Rutten et al., 2016). Taken together, the results of
Rutten et al. (2019) suggest a predisposition toward EGFr
1–6 in the classical, more-severe CADASIL phenotype. They also
suggest a broad disease spectrum involving EGFr 7–34, from a
mild phenotype to possible non-penetrance, and these results
highlight the significant role of NOTCH3 pathogenic variants in
general populations.

Environmental Factors
The difference between clinical symptoms and course in the
same family harboring the sameNOTCH3mutation indicates the
importance of environmental factors. Of the two twin studies
of CADASIL, the first reported one found apparent different
phenotypes, including 14 years difference of the age at onset
between the twins, suggesting an effect of environmental factors
on the disease (Mykkänen et al., 2009). The second reported
one found similar phenotypes, including the age at onset of
74–75 years old and parkinsonism in the twin (Ragno et al.,
2016). A similar phenotype indicates similar lifestyle-related
factors, and Ragno’s cases did not contradict the possible effect
of environmental factors on the CADASIL phenotype (Ragno
et al., 2016). Conventional vascular risk factors may influence
the severity of the disease. Adib-Samii et al. (2010) analyzed
200 symptomatic CADASIL patients in the UK; they found
that hypertension (odds ratio 2.57) and pack-years of smoking
(odds ratio 1.07) were associated with an increased risk of
stroke. Ciolli also assessed the influence of vascular risk factors
and revealed that hypertension was related to both disability
assessment for dementia (DAD) score and disability (Ciolli
et al., 2014). In our cohort, 62.9% of CADASIL patients had
vascular risk factors, including hypertension, diabetes mellitus,
hyperlipidemia, smoking, or alcohol consumption, and they were
more prone to stroke (Mizuta et al., 2017). Management of these
factors are essential in CADASIL as well as sporadic cases.

DIAGNOSIS

Criteria for CADASIL Diagnosis
Original criteria for CADASIL diagnosis were proposed by
Davous in 1997 (Davous, 1998). This precious work contributed
to the core concept of CADASIL when CADASIL was not
well recognized by physicians yet. However, genetic tests of

NOTCH3 revealed atypical cases, and the clinical phenotype of
CADASIL was diverse, ranging from asymptomatic to severe.
The Davous’s criteria cannot be applied to atypical CADASIL
cases because the criteria are strict and have low sensitivity. In
particular, cases involving elderly onset, no family history, or
positive cardiovascular risk factors might be overlooked using
these criteria. To avoid missing suspected CADASIL patients
before genetic testing, we proposed more-sensitive criteria from
Japanese CADASIL cases (Mizuta et al., 2017; Supplementary
Table S2). The sensitivity of our new criteria is 97%, sufficient
to screen candidates for CADASIL and to aid genetic testing
(Mizuta et al., 2017).

CADASIL Scale and CADASIL Scale-J
To prioritize access to genetic testing for suspected CADASIL
patients, a quantitative evaluation of CADASIL-specific features
possessed by each patient is necessary. Markus proposed a
diagnostic procedure based on skin biopsy and involvement of
the anterior temporal lobe on MRI (Markus et al., 2002). As
pre-genetic screening approaches are desirable, Pescini et al.
(2012) developed the CADASIL scale, a screening tool applied
in the clinical setting due to the high cost and time-consuming
nature of genetic testing. The weighted scores to common disease
features based on frequencies obtained in a pooled analysis
of selected international CADASIL series. The cut-off score
of the definitive CADASIL scale had a sensitivity of 96.7%
and specificity of 74.2%. Unfortunately, the sensitivity of the
CADASIL scale was 52.1% in our Japanese cohort because of
some clinical differences about the CADASIL group as well
as NOTCH3-negative CADASIL-like patients (non-NOTCH3)
group between the European population and the Japanese
population (Koizumi et al., 2019). Several studies revealed a low
prevalence rate of migraine in Japanese CADASIL compared to
European CADASIL patients (Uchino et al., 2002). Although
WM lesion at the temporal pole is specific CADASIL patients
in both cohort, WM lesion at the external capsule was different
in the non-NOTCH3 group in each cohort. These differences
decreased the sensitivity and specificity of the original CADASIL
scale when applied to the Japanese cohort. Therefore, we
modified the CADASIL scale based on the clinical features
of 126 Japanese CADASIL patients and 53 Non-NOTCH3 to
develop CADASIL scale-J (Supplementary Table S3; Koizumi
et al., 2019). In CADASIL scale-J, the score ranged from 0 to
25 and a cut-off value of 16, using eight items. The sensitivity
and specificity of the CADASIL scale-J were enough quality for
prioritizing tool before genetic testing.

IMAGING

White Matter Lesions
MRI can visualize the characterization of WM lesions and
lacunar infarction in stroke syndromes. In CADASIL,
T2-weighted hyperintensity was noted in the deep WM,
internal and external capsules, and the temporal pole. Temporal
pole hyperintensity on T2-weighted and FLAIR MR sequences
can be detected even in the early 20s of CADASIL patients
(Chabriat et al., 1998; Mizuno, 2012). Dilated perivascular spaces
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(PVS) in CADASIL patients are located in the lentiform nuclei
(94%) and subcortical WM of the temporal lobes (66%; Chabriat
et al., 1998). PVS around small perforating arteries are pial-lined,
interstitial fluid-filled spaces, readily seen to be enlarged in the
WM of elderly subjects. Yamamoto et al. (2009) performed a
postmortem study to quantify the degree and extent of PVS
and arteriopathic changes within the temporal pole WM of
CADASIL subjects. They concluded that the MRI hyperintensity
in the temporal pole of CADASIL patients could be explained
by enlarged PVS and degeneration of myelin rather than
lacunar infarcts.

Lacunar Infarction
Viswanathan analyzed clinical data from 147 consecutive
patients and revealed a significant independent association
between age, volume of lacunar lesions, and global cognitive
function scales, although WMH and microbleeds had no
independent influence on cognitive function. Disability was
associated with the volume of lacunar lesions, microbleeds,
systolic blood pressure, and age but not with WMH
(Viswanathan et al., 2007). Liem et al. (2007) analyzed
62 symptomatic and 15 asymptomatic members of CADASIL
and revealed that the severity of cognitive dysfunction in
mutation carriers is independently associated with MRI infarct
lesion load. In contrast, WMH lesion load and microbleeds were
not associated with cognitive dysfunction after correcting for
age. These data indicate the importance of lacunar infarction in
the progression of CADASIL.

Viswanathan examined the relative impact of lesion burden
and location of these MRI markers on cognitive impairment
and disability combined with whole-brain mean apparent
diffusion coefficient (mean-ADC) and brain parenchymal
fraction (BPF). In multivariate models accounting for lesion
burden and location, the volume of lacunar lesion, mean-
ADC, and BPF each had an independent influence on
global cognitive function and disability (Viswanathan et al.,
2010). Particularly, brain atrophy was shown to have the
strongest independent influence on clinical impairment in
CADASIL when all MRI markers in the disease are considered
together. These results suggest that the clinical impact of
cerebral cortical loss is important for CADASIL dementia
(Viswanathan et al., 2010).

7-T MRI Reveals Micro-cortical Infarction
Jouvent et al. (2011b) used high-resolution postmortem 7-TMRI
to examine infarcts of the cerebral cortex in a CADASIL patient
with pathology examination. These lesions were not visible on the
in vivoMRI obtained at 1.5 T. They examined cortexmorphology
and clinical worsening in 190 CADASIL patients and showed
that reduction of sulcal depth is independently associated with

increased time to complete trail making test A and B and that
of cortical thickness to increased disability. They also showed
that the impact of volume of lacunar lesions on cortical changes
is greater than that of the volume of WMH and that cortical
changes related to lacunar lesions evolve parallel to clinical
worsening. These results support the hypothesis that cortical
changes in CADASIL play a role in disease pathophysiology
(Jouvent et al., 2011a).

Natural History
Few prospective studies have examined the natural history
of CADASIL. Davous summarized the natural history of
134 documented cases and showed a mean age at onset of
40.3 years. The mean duration of the disease was 13.6 years, and
the mean age at death was 56.7 years (Davous, 1999). Opherk
summarized the natural history of a larger CADASIL cohort and
reported a median age at onset of stroke of 50.7 years in men
and 52.5 years in women, the median age at death of 64.6 years
in men and 70.7 years in women (Opherk et al., 2004). In our
cohort including 200 CADASIL patients, the mean age at onset of
stroke was 48.3 years in men and 52.2 years in women (Koizumi
et al., 2019). These results indicated a similar clinical course in
any ethics, but more studies need to clarify a difference in each
ethics before starting a disease-modifying-therapy on CADASIL.

Peters et al. (2004a) reported that their cohort deteriorated
for all clinical scales over 2 years. There were 18 strokes within
173 person-years, giving an average incidence rate of stroke of
10.4 per 100 person-years. Age at baseline was found to be a
predictor of clinical progression (Peters et al., 2004a). These data
indicate a younger age of onset of stroke and death compared
with the general population. CADASIL researchers should thus
develop new approaches to improve this natural history.
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