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The risk of breast cancer increases with age, with the majority of women diagnosed
with breast cancer being postmenopausal. It has been estimated that 25–75% of
women with breast cancer experience changes in cognitive function (CF) related to
disease and treatment, which compromises psychological well-being, decision making,
ability to perform daily activities, and adherence to cancer therapy. Unfortunately, the
mechanisms that underlie neurocognitive changes in women with breast cancer remain
poorly understood, which in turn limits the development of effective treatments and
prevention strategies. Exercise has great potential as a non-pharmaceutical intervention
to mitigate the decline in CF in women with breast cancer. Evidence suggests that
DNA methylation, an epigenetic mechanism for gene regulation, impacts CF and brain
health (BH), that exercise influences DNA methylation, and that exercise impacts CF and
BH. Although investigating DNA methylation has the potential to uncover the biologic
foundations for understanding neurocognitive changes within the context of breast
cancer and its treatment as well as the ability to understand how exercise mitigates
these changes, there is a dearth of research on this topic. The purpose of this review
article is to compile the research in these areas and to recommend potential areas of
opportunity for investigation.
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INTRODUCTION

Despite tremendous research efforts, breast cancer continues to be the second leading cause of
all cancer deaths worldwide and the most commonly diagnosed cancer among women (Bray
et al., 2018). In the United States, the lifetime probability of being diagnosed with cancer is
38.4% (National Cancer Institute, 2018). Currently, more than 3.1 million women are living
with breast cancer in the United States (Siegel et al., 2019). Aging is a primary risk factor for
cancer due to the gradual decline in physiological integrity experienced with aging that decreases
the integrity of the cell and leaves it vulnerable to disease, such as cancer. A phenotype of
accelerated aging has been associated with breast cancer and breast cancer treatment (López-
Otín et al., 2013; Aunan et al., 2016). Advances in science and technology have led to earlier
cancer detection and treatments that have resulted in better overall and disease-free survival rates.
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In 1976, the 5-year survival rate for women with breast cancer
was 75%, but that number has risen to 90% in 2019 (Chang
et al., 2019; Siegel et al., 2019). As the number of individuals
surviving cancer continues to grow, so does the number of those
who are living with the side effects of their cancer and cancer
treatment. For this reason, there is an increasing demand for
research devoted to the prevention or amelioration of unwanted
late and long-term effects of cancer and its treatment.

Breast cancer and its treatment can produce significant
decreases in neurocognitive function in 25–75% of women with
the disease (Wefel et al., 2004a; Bender et al., 2014, 2018).
Between 30% and 35% of women with breast cancer have
poorer cognitive function (CF; compared to healthy age and
education-matched women) before they begin adjuvant therapy
(Wefel et al., 2004b; Hardy et al., 2018). This suggests that
factors in addition to cancer therapy contribute to poorer
CF in this group. These neurocognitive changes compromise
psychological well-being, decision making, performance of daily
activities, employment, and adherence to cancer therapy (Bender
et al., 2014, 2015). Unfortunately, little is known about the
mechanisms that underlie the neurocognitive changes in women
with breast cancer and its therapy, which in turn limits the
development of effective treatment and prevention strategies
(Falk and Dickenson, 2014; Borrie and Kim, 2017; Fukuda et al.,
2017; Boyette-Davis et al., 2018). In contrast, exercise has been
studied as a promising approach to positively impact CF and
reduce the risk of cognitive loss and impairment (Erickson
et al., 2019). However, we still have a poor understanding of
the mechanisms by which exercise influences brain health in
humans. We consider here the role of DNA methylation: (a)
there is evidence suggesting that DNAmethylation, an epigenetic
mechanism for gene regulation, impacts CF and overall BH in

the general population (Masser et al., 2017; Liu et al., 2018;
Marioni et al., 2018; Gaiteri et al., 2019); and (b) there is evidence
that exercise influences both DNAmethylation and CF (Marioni
et al., 2015; Fernandes et al., 2017; McCullough et al., 2017; Gale
et al., 2018; McEwen et al., 2018; Voisey et al., 2019). Thus,
changes in DNA methylation may reflect one mechanism by
which exercise enhances cognitive and BH while also mediating
the BH changes related to breast cancer. The purpose of this
review is to summarize the research in these areas, provide a
thoughtful and critical review of the field indicating that DNA
methylation might be an important mechanism of exercise-
induced improvements in BH, and recommend potential areas
of opportunity for future investigation.

EFFECT OF BREAST CANCER AND
TREATMENT ON BRAIN AGING

Cellular aging includes changes to a variety of processes
including the attrition of telomeres, decline in mitochondrial
function and cellular energies, genome instability, epigenetic
alterations, DNA damage that affects the suppressor checkpoints
and othermarkers of cellular senescence, and altered intracellular
communication (Table 1, Aunan et al., 2016; Chang et al., 2019).
These hallmarks can be grouped into categories such as damage
to cellular function (telomere attrition, genome instability, and
epigenetic alterations), responses to the damage in cellular
function (a decline of mitochondrial function and cellular
energies, DNA damage that affects cell suppressor checkpoints
and other markers of cellular senescence), and foundations of the
clinical phenotype (altered intracellular communication; Aunan
et al., 2016). These characteristics provide a basis for the complex
biological connections between aging and cancer (Figure 1).

TABLE 1 | Exemplar hallmarks of molecular aging.

Hallmark Description

Attrition of telomeres Most mammalian somatic cells do not express telomerase, an enzyme that is responsible for replicating the
terminal ends of linear DNA molecules. Therefore, the DNA sequences at the end of the chromosome
progressively lose their telomere protection with each new cell division (López-Otín et al., 2013; Chang et al.,
2019).

A decline in mitochondrial function and cellular
energies

Declines in mitochondrial function and mutations in mitochondrial DNA appear to affect cellular energetics.
Elevated levels of ROS resulting from mitochondrial dysfunction may decrease apoptosis and lead to resistance
of chemotherapeutic agents thereby promoting breast cancer malignancy (López-Otín et al., 2013; Chang et al.,
2019)

Genome Instability Over time DNA damage accumulates in normal cells as the result of endogenous cellular activity such as DNA
replication errors or DNA damage due to ROS (López-Otín et al., 2013; Chang et al., 2019). These damages not
only lead to accelerated aging, but also make the cell vulnerable to cancer development.

Epigenetic Alterations Epigenetic changes are alterations in gene expression that do affect the DNA sequence. These changes involve
processes such as posttranslational histone modifications, DNA methylation patterns, and chromatin
remodeling. Aging cells experience random DNA methylation drift creating mosaic aging stem cells that could
lead to cancer (López-Otín et al., 2013; Aunan et al., 2016; Chang et al., 2019).

DNA damage that affects cellular senescence Cellular senescence is by which a cell ceases to divide. The primary objective of senescence is to inhibit the
proliferation of impaired cells and to mark the cells for destruction by the immune system. The process is
associated with aging and age-related conditions. In older individuals, the widespread damage and poor
clearance of senescence results in cell accumulation, which contributes to aging (López-Otín et al., 2013; Aunan
et al., 2016; Chang et al., 2019).

Altered intracellular communication As part of aging, inflammatory reactions increase leading to alterations in neurohormonal signaling. There is also
a decrease in immunosurveillance against premalignant cells and pathogens and a change in the structure of
both the extracellular and pericellular environments (López-Otín et al., 2013).
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FIGURE 1 | Effects of breast cancer and breast cancer treatment on brain
aging.

The complexities of altered biological function with aging are
also the hallmarks of cancer growth and include the ability of
the cell to sustain rapid signaling, elude growth suppressors,
stimulate invasion and metastasis, enable the immortality of
replication, produce angiogenesis, and evade death (Hanahan
and Weinberg, 2011). Each of these hallmarks is unique in
function, but they all work together to support the growth of
tumors and metastasis. New treatments are generally designed
to work against these functions to stop tumor growth and
the spread of disease. For example, epidermal growth factor
receptor (EGFR) inhibitors are a type of targeted therapy that
is designed to specifically target and block EGFR to halt the
growth of cancer cells by blocking the EGFR protein, which
plays a prominent role in tumor growth. Recent reviews on
aging (López-Otín et al., 2013; Aunan et al., 2016), cancer
(Hanahan and Weinberg, 2011), as well as the effect of
breast cancer treatment on cellular aging (Chang et al., 2019)
have covered the molecular mechanisms of these topics in
greater depth.

Estrogen loss is one mechanism through which aging may
be accelerated resulting in cognitive decline in women with
breast cancer. Over three-quarters of women with breast cancer
in the United States are postmenopausal at diagnosis (DeSantis
et al., 2016), 96% percent of these women are diagnosed with
hormone receptor-positive disease (Clark et al., 1984; Osborne,

1998; Cheang et al., 2015), and the majority of these women
will receive aromatase inhibitor therapy (Bender et al., 2014)
that dramatically reduces estrogen. Estrogen exposure augments
memory and learning and influences areas of the brain, such
as the hippocampus, that are both rich in estrogen receptors
and support episodic memory function (Bean et al., 2014;
Duarte-Guterman et al., 2015; Hadjimarkou and Vasudevan,
2018; Korol and Wang, 2018; Paletta et al., 2018). Decreasing
levels of estrogen are associated with cognitive decline (Luine,
2014; Frick, 2015; Gholizadeh et al., 2018; Yoon et al., 2018).
Treatment for breast cancer often further reduces estrogen levels.
Women who are on aromatase inhibitor therapy to reduce
breast cancer occurrence can experience up to a 98% inhibition
of the aromatase enzyme that leads to reduced estrogen
(Brueggemeier et al., 2005; Kang et al., 2018) while women
who receive chemotherapy also experience estrogen deprivation
that has been associated with osteoporosis (Jonat et al., 2002;
Ottanelli, 2015).

Estrogens serve a neuroprotective role against
neurodegeneration. A recent review describes the
neuroprotective effect of estrogen and the suggested mechanisms
by which estrogen achieves this neuroprotection (Siddiqui et al.,
2016). Estrogens have been cited to increase the expression of
genes important for cell survival; shield neurons against injury
due to oxidative stress, lack of glucose, and certain toxicities
(glutamate, amyloid beta-peptide, iron sulfate); and lower the
risk of cognitive decline and neurological deficits in women
(Siddiqui et al., 2016). Estrogens exert neuroprotective properties
via direct and indirect gene regulation mechanisms (Klinge,
2009). Direct gene activation is accomplished through nuclear
binding estrogen receptors (alpha and beta) which serve as
ligand-activated transcription factors. Indirect activation is
the result of estrogen activation of plasma-associated estrogen
receptors, which initiates an intracellular signaling cascade that
results in altered gene expression (Klinge, 2009).

There are also epigenetic changes that occur with breast
cancer and its treatment that can influence brain aging.
Evidence suggests that abnormal DNA methylation patterns are
well-established features of cancer and aging (Singhal et al.,
2016; Pérez et al., 2018). Age is recognized as an important
risk factor for cancer, but the DNA methylation patterns that
serve as a link between aging and cancer are complicated
and not well understood (Pérez et al., 2018). Some DNA
methylation patterns in normal breast tissue are associated with
heightened breast cancer risk (Daraei et al., 2017; Johnson et al.,
2017; Hofstatter et al., 2018). The estrogen receptor 1 gene
promoter is highly methylated in women with increased age
indicating a possible mechanism by which breast cancer tissue
is at a greater risk for developing cancer (Daraei et al., 2017).
Environmental exposures such as alcohol intake and smoking
disrupt the placement of methyl groups on the epigenome,
leading to an increased risk for the development of breast
cancer particularly in regulatory regions of DNA, including
MYC proto-oncogene and CCTC-binding factor, that are further
aggravated in cancer (Johnson et al., 2017). It has also been
shown that women with breast cancer display significant
acceleration of epigenetic age (an estimate of biological age
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based on DNA methylation patterns) in normal nearby breast
tissue when compared to samples from unaffected women
(Hofstatter et al., 2018).

EFFECT OF BREAST CANCER AND
TREATMENT ON COGNITIVE FUNCTION

Along with experiencing normal biological changes associated
with aging, including changes to the brain, women treated for
breast cancer may also experience cancer and cancer treatment-
related cognitive decline. One theory of accelerated aging is based
on the idea that aging is the result of reactive oxygen species
production (ROS) and mitochondrial stress giving rise to DNA
damage, and that in the tumor environment cancer cells can
stimulate ROS production in adjacent normal cells resulting in
inflammation and the metabolism of cancer (Lisanti et al., 2011).
Accelerated aging precipitates inflammation, DNA damage,
autophagy, and aerobic glycolysis that stimulates tumor growth
andmetastasis (Lisanti et al., 2011). Themechanism is that cancer
cells produce ROS, which activates the innate immune system
via nuclear factor kappa beta production and cancer metabolism
through hypoxia-inducible factor 1 activation (Lisanti et al.,
2011). To counteract the effects of aging, both cognitive and
brain (biologic) reserves may be necessary (Figure 2). Cognitive
and brain reserve may account for the preservation of CF in
the presence of disease and treatment (Barulli and Stern, 2013).
Yet, the effects of cancer and cancer treatment may diminish
cognitive and brain reserves, thereby leading to a weakened
defense against aging-related outcomes that include decreased
CF (Mandelblatt et al., 2014; Bender et al., 2018). This theory
is further complicated when considering older patients at the
same chronological age, with the same diagnosis, who vary
from being biologically younger than their actual age (elevated
reserve) to being biologically older than their age (i.e., in poorer
health; reduced reserve; Mandelblatt et al., 2014; Kresovich et al.,
2019). Multiple environmental factors may enhance cognitive
reserve including education, lifestyle (e.g., physical activity), and
occupational history (Treanor et al., 2016). Promoting factors
such as physical activity may enhance cognitive and brain reserve
and improve CF (Cheng, 2016), although these associations
have not been well-documented in women with breast cancer
(Zimmer et al., 2016).

Changes in cognition have been detected using self-report,
standardized neuropsychological instruments and neuroimaging
approaches. Cancer-related changes in CF can be detected
across several cognitive domains including difficulties in
learning, concentrating, remembering, and decision-making.
They may also experience deficits in executive functioning,
which is an umbrella term referring to many higher-order
functions including planning, coordination, attentional control,
and working memory (Nelson et al., 2007; Treanor et al.,
2016). These cognitive differences have been supported by
neuroimaging studies. Morphological brain changes and reduced
activity in several areas (prefrontal/frontal cortex, hippocampus,
parahippocampus) have been found in cancer patients (Gehring
et al., 2012; Scherling and Smith, 2013; Simó et al., 2013; Treanor
et al., 2016; Chen et al., 2018a,b, 2019).

FIGURE 2 | Influences of cognitive and brain reserve on brain aging.

Individuals diagnosed with cancer have poorer CF than
their healthy age-matched counterparts (Ahles et al., 2010;
Wefel et al., 2010). Cancer patients and survivors report
decreased CF with breast cancer and its treatment that includes
interference with psychological well-being, decision making,
ability to efficiently perform daily activities, as well as adherence
to life-prolonging cancer therapy (Ahles and Root, 2018). There
is also evidence suggesting that adjuvant therapy is associated
with decreased CF (Wefel et al., 2004a; Ahles et al., 2008;
Bender et al., 2015, 2018). A subgroup of cancer patients
and survivors can experience a delay in cognitive decline
months or even years after the completion of chemotherapy
(Wefel et al., 2010; Ahles and Root, 2018). Adults who were
treated for childhood cancer suffer from various age-related
diseases that are normally experienced by older individuals,
including neurocognitive dysfunction (Hudson et al., 2013;
Hodes et al., 2016). Poorer cognitive performance has also been
found in cancer patients before definitive diagnosis, surgery, or
chemotherapy treatment (Ahles and Root, 2018). A recent review
exploring the cognitive effects of cancer and cancer treatment
offers a summary of the topic, arguing that cognitive decline
is not a problem of pharmacological toxicity but rather the
result of a multitude of factors including cancer biology, cancer
treatment, as well as predisposing and modifiable risk factors
(Ahles and Root, 2018).

Studies are also being conducted to detect if differences
exist in cognitive dysfunction for women treated for breast
cancer based on a treatment regime. Healthy controls (women
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without breast cancer matched for important variables related
to CF, i.e., age, education) perform better on cognitive tasks
compared to women with breast cancer post-surgery, and
there is evidence for cognitive decline after exposure to
adjuvant therapy with aromatase inhibitors (Bender et al., 2015).
Another study found equivalent levels of cognitive impairment
based on neuropsychological performance across treatment
groups (radiation alone, chemotherapy alone, radiation and
chemotherapy) in women with breast cancer before initiation of
adjuvant endocrine therapy (Van Dyk et al., 2018). Interestingly,
this is contrary to results that examined self-report of CF in the
same study in which women who received a combination of
chemotherapy and radiation reported significantly higher levels
of cognitive problems (Ganz et al., 2013). This discordance
between scores on neuropsychological and self-report measures
is common and raises a question as to whether or not
neuropsychological methods accurately represent the cognitive
effects of cancer and its treatment (Janelsins et al., 2017;
Van Dyk et al., 2018) or that they are assessing different
aspects of behavior. For example, scores on self-report cognitive
measures are more likely to be correlated with other symptoms
frequently experienced by women with breast cancer such
as fatigue or depressive symptoms (Pendergrass et al., 2018).
Ahles found that women with breast cancer who had a
greater pre-therapy cognitive reserve, assessed with the Wide
Range Achievement Test Reading score, had better processing
speed post-chemotherapy (Ahles et al., 2010), It is also
important to note that the treatment received by breast cancer
patients is based on cancer biology and we cannot rule
out that the differences in CF are related to differences in
cancer biology.

Further studies have aimed to explore alterations in brain
activity that occur as a result of chemotherapy in older
women diagnosed with breast cancer. In a series of studies,
magnetic resonance imaging was used to explore changes that
occur in the brain using different chemotherapy regimens.
It was found that gray matter density was decreased in
women over the age of 60 with breast cancer who had
been exposed to chemotherapy (Chen et al., 2018b) and that
women who received certain chemotherapy drugs (docetaxel
and cyclophosphamide) experienced a reduction of volume in
their temporal lobe that was not present before chemotherapy
(Chen et al., 2019). Alterations in intrinsic brain activity have
also been detected in areas such as the bilateral subcallosal
gyri, right anterior cingulate cortex and left precuneus in
older women with breast cancer treated with endocrine therapy
(Chen et al., 2019).

NEUROPLASTICITY AND EPIGENETICS

Due to the dearth of information related to neuroplasticity
specifically concerning epigenetic processes linked to CF and
higher-order brain function in women with breast cancer,
this review offers an examination of epigenetic modifications
related to synaptic plasticity in various other conditions.
Synaptic plasticity is a fundamental neuronal property that
is the basis for memory formation in the brain, and several

genes required for the formation of memory are regulated by
epigenetic modifications (Sen, 2015). Examples of conditions
were epigenetic modifications are associated with potential
cognitive failures include Alzheimer’s disease, schizophrenia,
and stress.

In Alzheimer’s disease, epigenetic alterations include
noncoding RNAs (ncRNA), DNA methylation, and histone
modifications. These modifications result in expression
changes in genes such as brain-derived neurotrophic factor
(BDNF) and cAMP response element-binding protein (CREB),
both important for synaptic processes such as long-term
potentiation and memory (Li et al., 2018). Changes in
each of these processes contribute to Alzheimer’s disease.
Epigenetic changes related to decreased function of N-methyl-
D-aspartate receptor (NMDAR), a glutamate receptor that
is essential for synaptic plasticity, learning and memory
have been suggested to contribute to synaptic dysfunction
and symptoms in schizophrenia (Snyder and Gao, 2019)
as well as DNA methylation of certain polymorphisms
in the BDNF gene (Ursini et al., 2016). There are also
epigenetic factors associated with neural plasticity that results
from chronic stress that includes gene expression changes
resulting in the activation of the excitatory neurotransmitter
glutamate, which increases depolarization of neurons
(Tarai et al., 2019).

Research exploring epigenetic modifications linked to
synaptic plasticity are continually ongoing in each of the above-
mentioned conditions. As the body of literature related to these
specific subjects increases, so will the knowledge in the general
area of neuroplasticity and epigenetics. The results of these
studies can be used to inform the area of CF and higher-order
brain functions in other conditions such as in women with
breast cancer.

EPIGENOMICS OF COGNITIVE FUNCTION

Epigenomics is a branch of science that considers those
modifications to the DNA that influence gene expression but do
not alter the underlying DNA sequence (Baumgartel et al., 2011).
The prefix ‘‘epi’’ implies ‘‘above,’’ therefore it can be thought
that epigenomics involves all those modifications that take place
above the genetic code (McCue and McCoy, 2017). Epigenetic
modifications are the result of epigenetic markers that modify
gene regulation, which in turn has an effect on transcription and
protein production and hence the function of the cell. These
markers include histone modification impacting chromatin
condensation, noncoding RNA, and DNA methylation (Fessele
and Wright, 2018).

DNA methylation is a key regulator of neuronal activation,
neuronal plasticity, and memory formation (Levenson et al.,
2006; Miller and Sweatt, 2007; Lubin et al., 2008; Miller et al.,
2008, 2010; Guo et al., 2011; Grigorenko et al., 2016). The
adult brain possesses the ability to dynamically alter its DNA
methylation patterns. These changes, in turn, have an impact
on neuronal functioning, learning, new memory formation, and
other cognitive processes (Zovkic et al., 2013; Fischer, 2014;
Guan et al., 2015). Mutations that affect DNA methylation can
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TABLE 2 | Publications highlighting epigenomics, cognitive function, and exercise.

Name Population Phenotypic focus Study description Findings

Bradburn et al. (2018) Physically and mentally healthy
adults, young and old, from the
MyoAge cohort (n = 361)

Cognition Investigated a panel of
35 cytokines in participants to
identify age-related immune
markers associated with
specific cognition measures.

In blood samples, there is
age-related hypomethylation at
specific CpG sites in the
promoter region of the CXCL10
gene. A polymorphism in the
CXCL10 gene (rs56061981)
alters methylation at one of
these CpG sites and is
associated with working
memory.
The cytokine CXCL10 was
significantly associated with
special working memory in
older adults.

Gale et al. (2018) Members of the Lothian Birth
Cohort all aged 79 (n = 248)

Cognition and exercise Investigated the cross-sectional
relationship between biological
age (using DNA methylation for
extrinsic and intrinsic epigenetic
age acceleration) and sedentary
and walking behavior in older
adults.

No convincing evidence that
biological age is associated with
sedentary or walking behavior.

Liu et al. (2018) African Americans from the
Genetic Epidemiology Network
of Arteriopathy (GENOA) study
(n = 289)

Cognition Investigated the association
between peripheral blood
leukocyte methylation levels in
the APOE genomic region
(APOE, TOMM40, PVRL2,
APOC1) and cognitive function.

Methylation levels at many of
the CpGs in the APOE genomic
region have an inverse
association with delayed recall
during the normal cognitive
aging process.

Marioni et al. (2015) Members of the Lothian Birth
Cohort of 1936 [at ages 70
(n = 920); 73 (n = 299); 769
(n = 273)]

Cognition and exercise Examined the association
between the epigenetic clock
and lung function, walking
speed, grip strength, and
cognitive ability

Cross-sectional correlations
were significant between age
acceleration and cognition as
well as lung function and grip
strength.

Yao et al. (2019) Breast cancer patients and
healthy non-cancer controls
from the National Cancer
Institute Community Oncology
Research Program (n = 93)

Cognition Characterization of changes in
leukocyte DA methylome and
examination of significant
methylation changes with
perceived cognitive
impairments.

Chemotherapy alters the DNA
methylation pattern in
leukocytes of breast cancer
patients and the CpG
cg16936953 in the
VMP1/MIR21 gene is
associated with cognitive
decline in breast cancer
patients.

McCullough et al. (2017) Women with breast cancer that
were part of the Long Island
Breast Cancer Study Project
(total n = 1,254; n = 807 with
tumor methylation data)

Exercise Examined modification of
recreational physical
activity-mortality association by
gene-specific promoter
methylation and global
methylation.

Promotor methylation of
TWIST1, HIN1, CCND2, APC
might alter the inverse
association between
recreational physical activity
and mortality after breast
cancer diagnosis. Higher
methylation/lower mortality.
No interaction between
recreational physical activity
and global methylation.

McEwen et al. (2018) Community-dwelling older
women aged 55–70 from
Vancouver, Canada (n = 20)

Exercise Investigated epigenetic
modifications after 6-month
self-management intervention
with group education, individual
personal training sessions, and
use of an activity monitor
(Fitbit).

No significant association
between DNA methylation and
physical activity but did find
epigenetic changes in
weight-associated genes
RUNX3 and NAMPT.

cause cognitive abnormalities including intellectual disabilities
and Alzheimer’s disease (Amir et al., 1999, 2000; Xu et al.,

1999; Fuso et al., 2011a,b; Jiraanont et al., 2017; Hartin et al.,
2018; Polonis et al., 2018). Impairments in cognition in children
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are associated with DNA methylation linked to malnutrition
(Peter et al., 2016). DNA methylation patterns generated
from blood samples have also been significantly correlated
with neuroimaging outcomes, for example, the relationship
between BDNF promotor methylation and cortical thickness
(Na et al., 2016).

There is a need for increased research in the area of epigenetics
of CF of women diagnosed with breast cancer. In a review
of the literature of clinical studies, only three studies were
found that used epigenetics to investigate changes in cognition
(Table 2, Bradburn et al., 2018; Liu et al., 2018; Yao et al.,
2019). All three of these studies explored the relationship of
epigenetics to inflammation and the effect of inflammation on
CF (Bradburn et al., 2018; Liu et al., 2018; Yao et al., 2019), with
one of these studies using a population of breast cancer patients
(Yao et al., 2019).

In healthy young adults compared to healthy older
adults hypomethylation at specific CpGs within the specific
inflammatory chemokine (CXCL10) corresponded with higher
expression of the CXCL10 gene in blood leukocytes and was
negatively associated with working memory function. Using
fresh frozen human samples of the prefrontal cortex, the same
researchers also found higher levels of the CXCL10 protein
in individuals with Alzheimer’s disease compared to older
healthy adults (Bradburn et al., 2018). Overall, they showed that
age-related loss of DNA methylation of the CXCL10 promoter
was associated with an upregulation of plasma cytokine. Another
study explored the influence of chemotherapy on the DNA
methylome of leukocytes in women with breast cancer compared
to healthy controls and whether these changes were associated
with decreases in perceived CF (Yao et al., 2019). The results
of this study showed that the DNA methylome of breast
cancer patients was altered after chemotherapy treatment when
compared to the stable methylome of non-treated controls. It
also showed that there were correlations between methylation
changes and CF suggesting that blood methylation could be
used as a non-invasive biomarker for prediction of symptom
development and treatment response (Yao et al., 2019).

The role of DNA methylation of the genomic region of
apolipoprotein E (APOE) and its association to CF in individuals
without dementia was studied in older African Americans
from the Genetic Epidemiology Network of Arteriopathy. The
results of this study suggest that epigenetic mechanisms play
an important role in influencing CF. Researchers found eight
CpG islands in three different genes, APOE and two proximal
genes (PVRL2 and TOMM40), that show an inverse relationship
between methylation level and memory, and in particular
with delayed recall (Liu et al., 2018). The results from this
study suggest that changes in methylation may serve as an
early biomarker for diseases that affect CF, such as dementia
or maybe an intervention target for symptom amelioration
(Liu et al., 2018).

In sum, early evidence in this field suggests that changes in
markers of DNA methylation may explain age-related cognitive
losses as well as cognitive decline associated with Alzheimer’s
disease or breast cancer. The field is in desperate need of more
research testing this hypothesis.

EFFECTS OF EXERCISE ON COGNITIVE
FUNCTION

There is clear evidence that exercise positively influences several
aspects of BH including CF. However, the strength and quantity
of evidence in the field varies as a function of the age group
and population with greater evidence supporting the benefits
of exercise on CF in older adults compared to other age
groups or populations. Nevertheless, there is promising evidence
for the positive effect of exercise on CF in several patient
groups including schizophrenia, multiple sclerosis, attention-
deficit hyperactivity disorder, and mild cognitive impairment.
Complicating the issue is that exercise does not influence all
cognitive domains equally and some domains (i.e., executive
function) might be influenced more by exercise than other
domains. The reasons for this remain poorly understood, but it
might suggest that populations that show greater deficits in some
cognitive domains (e.g., executive function) might especially
benefit from engaging in exercise.

Unfortunately, the effects of exercise on cognitive
performance in cancer patients remains relatively poorly
understood (Derry et al., 2015). A recent Cochrane review of
randomized controlled trials exploring non-pharmacological
interventions, such as exercise, for influencing CF related
to cancer treatment found a need for more evidence on the
effectiveness of these strategies (Treanor et al., 2016). Of the five
studies included in the review, only one considered the effect
of exercise (Campbell et al., 2018). The intervention included
24-weeks of 150 min per week of aerobic exercise and found no
effect of the intervention after adjusting for baseline cognitive
performance (Treanor et al., 2016).

A separate Cochrane review investigated the effects of exercise
on women who receive either chemotherapy or radiation for
breast cancer (Furmaniak et al., 2016). This review examined the
effect of exercise on a variety of breast cancer treatment-related
side effects, including cognitive dysfunction. The review found
that most research in this area focused on rehabilitation and
health promotion in women who have already finished cancer
treatment. Of the 32 studies included in the review, only two
focused on the effect of exercise on CF (Steindorf et al., 2014;
Schmidt et al., 2015). Overall, the review suggested that exercise
may slightly improve CF, but further research is necessary
to determine the optimal parameters (i.e., type, intensity, and
frequency) of an exercise intervention (Furmaniak et al., 2016).
For example, in a study that compared HIIT to moderate-
intensity continuous training, both interventions had positive
effects on CF, but HIIT had larger positive effects on episodic
memory, working memory, and executive function (Northey
et al., 2019). This study highlights the need to carefully construct
research designs that optimize the intensity, frequency, and other
characteristics of the exercise as it might lead to different patterns
on cognitive outcomes.

Relatedly, there remain many unanswered questions on the
most appropriate model or type of activity that is most beneficial
for influencing CF in women with breast cancer. For instance, a
recent study found that yoga did not have an immediate positive
effect on CF in cancer survivors, but at the 3-month follow-up,
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FIGURE 3 | Gap in knowledge.

yoga participants had significantly lower self-reported cognitive
impairments, and those survivors who practiced yoga more
frequently had a reduction in cognitive complaints (Derry et al.,
2015). Results of other studies suggest that gentle movement
exercises, such as Qigong, may also improve CF and enhance the
positive impact of exercise (Larkey et al., 2016;Myers et al., 2019).

As described above, there is evidence that breast cancer
affects some cognitive domains more than others and that
many of these same cognitive domains are positively affected by
exercise. For example, several studies have found positive effects
of exercise on measures of information processing (Marinac
et al., 2015; Hartman et al., 2018; Salerno et al., 2019). In one
study, improvements in information processing were found in
a 12-week intervention that prescribed 150 min per week of
moderate-to-vigorous physical activity in survivors who had
been diagnosed with breast cancer within the prior 2 years
(Hartman et al., 2018). However, there were no significant
changes in the other domains of cognition (e.g., verbal learning),
suggesting that greater than 12 weeks of exercise is needed for
improvements in CF.

Importantly, it should be noted that the majority of the
above studies were conducted in cancer survivors who had
already completed cancer treatment. There remains a dearth of
knowledge regarding exercise and CF in cancer patients that
are currently undergoing treatment, or the effect of an exercise
intervention begun before cancer treatment.

EPIGENOMICS OF EXERCISE

A recent review of epigenetics and exercise cites histone
hyperacetylation and DNA methylation as essential actions
for a transcriptional increase of crucial metabolic, myogenic,
and regulatory genes as an early response to exercise and
the mediation of ensuing changes in skeletal muscle (McGee
and Hargreaves, 2019). Evidence has linked the AMP-activated
protein kinase (AMPK), mitogen-activated protein kinase

(MAPK), protein kinase A (PKA), protein kinase C (PKC),
and calcium/calmodulin protein kinase II (CAMKII) biological
signaling pathways with specific post-transcriptional histone
modifications to exercise-induced transcriptional responses
(McGee andHargreaves, 2019). Exercise also results in a decrease
in overall global DNA methylation. Specific regulatory and
metabolic genes [peroxisome proliferator-activated receptor-
gamma coactivator-1α (PGC-1α), peroxisome proliferator-
activated receptor δ (PPAR-δ), mitochondrial transcription
factor A (TFAM), and myocyte enhancer factor 2 (MEF2)]
experience DNA hypomethylation attributed to exercise, with
concomitant increased levels of gene expression associated with
exercise (Barrès et al., 2012; McGee and Hargreaves, 2019).
This review article also provides evidence that maternal and
paternal exercise-induced epigenetic changes can be passed to
offspring, but the mechanism for this has yet to be elucidated
(McGee and Hargreaves, 2019).

Exercise impacts DNA methylation as well as genes and
pathways involved in the engagement of epigenomic regulation
and machinery in the central nervous system (Feng et al., 2007;
Chao and Zoghbi, 2009; Sweatt, 2009; Ntanasis-Stathopoulos
et al., 2013; Horsburgh et al., 2015a; Voisin et al., 2015;
Kashimoto et al., 2016; Fernandes et al., 2017). Considerable
evidence suggests that DNA methylation of candidate genes
are impacted by exercise, including BDNF (West et al., 2001;
Martinowich et al., 2003; Bekinschtein et al., 2008a,b, 2014; Lu
et al., 2008; Gomez-Pinilla et al., 2011; Ryan et al., 2019) and
inflammation-related genes (Horsburgh et al., 2015b). Exercise
may reverse DNAmethylation changes that are induced by aging
(Penner et al., 2010, 2011, 2016; Oliveira et al., 2012; Su and Tsai,
2012; Elsner et al., 2013; Barter and Foster, 2018; Harman and
Martín, 2020). For example, in a recent study evaluating blood-
based DNA methylation as part of a randomized controlled
trial of an exercise intervention in women (n = 12) with breast
cancer, 43 genes were differentially methylated between those
randomized to exercise and those to usual care (Zeng et al., 2012).

There is a dearth of research investigating the effects of
exercise on DNA methylation in older women diagnosed with
breast cancer. A recent review of the literature found two studies
that examined the effect of exercise on DNA methylation in
older women (Table 2, McCullough et al., 2017; McEwen et al.,
2018). In a study aimed at the underlying mechanism by which
physical activity provides health benefits, researchers studied
DNA methylation in a small sample of 20 healthy but previously
inactive postmenopausal women before and after a lifestyle
intervention and found no significant association between DNA
methylation and physical activity but did find epigenetic changes
associated with percent body weight in peripheral blood samples
(McEwen et al., 2018). The lack of an epigenetic finding
could be the result of the small sample size or the fact that
physical activity was measured via daily step count and did
not discuss an increase in exercise intensity. Another study
examined the association between recreational physical activity
before breast cancer diagnosis and breast cancer survival via
promotor regulation in cancer-related genes (McCullough et al.,
2017). This study discovered that promotor methylation of breast
cancer-related genes (HIN1, TWIST1, APC, and CCND2) could
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modify the inverse association between prediagnostic physical
activity and mortality post breast cancer diagnosis but power in
this study was limited and further research is necessary to verify
these findings (McCullough et al., 2017).

There is limited research using DNA methylation to examine
the effects of exercise on cognition. Using a cohort of participants
with a mean age of 70 years in a study designed to examine
cognitive aging, researchers investigated the relationship between
epigenetic age (using DNA methylation; Hannum et al., 2013;
Horvath, 2013; Horvath and Raj, 2018) and level of physical
activity in older adults. Results did not show convincing
evidence that epigenetic age was associated with physical activity
(Gale et al., 2018). A major limitation of this study was that
everyday activity was considered physical activity rather than
moderate-to-vigorous intensity exercise. Another study using
the same cohort of participants investigated the association
between age acceleration (the residuals from the regression
of epigenetic age on chronological age), lung function, grip
strength, walking speed and CF found significant correlations
between age acceleration and cognition where greater age
acceleration correlated with poorer cognitive performance
(Marioni et al., 2015).

POTENTIAL AREAS OF OPPORTUNITY
FOR INVESTIGATION

In examining the areas related to the effect of breast cancer
and treatment on brain aging, CF, effects of exercise on CF, as
well as the epigenetics of CF and exercise we found a dearth

of research in the area of changes in CF in postmenopausal
women diagnosed with breast cancer. Conceptually, this gap in
knowledge is represented in Figure 3.

As shown in the figure and discussed in this review article,
potential areas for future investigation include those studies
designed to optimize the relationship between CF and BH,
exercise and DNA methylation in cancer and cancer treatment,
particularly within the context of breast cancer and breast cancer
treatment. Research in these areas has the potential to increase
our understanding of the molecular underpinnings of cancer-
related phenotypes such as decreased cognition and can lead to
more targeted treatment and prevention strategies to ameliorate
or avoid cognitive decline associated with breast cancer and
its treatment.
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