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Background: Spinal cord stimulation (SCS) exerts neuroprotective effects in animal
models of Parkinson’s disease (PD). Conventional stimulation techniques entail limited
stimulation time and restricted movement of animals, warranting the need for optimizing
the SCS regimen to address the progressive nature of the disease and to improve its
clinical translation to PD patients.

Objective: Recognizing the limitations of conventional stimulation, we now investigated
the effects of continuous SCS in freely moving parkinsonian rats.

Methods: We developed a small device that could deliver continuous SCS. At the
start of the experiment, thirty female Sprague-Dawley rats received the dopamine (DA)-
depleting neurotoxin, 6-hydroxydopamine, into the right striatum. The SCS device was
fixed below the shoulder area of the back of the animal, and a line from this device was
passed under the skin to an electrode that was then implanted epidurally over the dorsal
column. The rats were divided into three groups: control, 8-h stimulation, and 24-h
stimulation, and behaviorally tested then euthanized for immunohistochemical analysis.

Results: The 8- and 24-h stimulation groups displayed significant behavioral
improvement compared to the control group. Both SCS-stimulated groups exhibited
significantly preserved tyrosine hydroxylase (TH)-positive fibers and neurons in the
striatum and substantia nigra pars compacta (SNc), respectively, compared to the
control group. Notably, the 24-h stimulation group showed significantly pronounced
preservation of the striatal TH-positive fibers compared to the 8-h stimulation group.
Moreover, the 24-h group demonstrated significantly reduced number of microglia in the
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striatum and SNc and increased laminin-positive area of the cerebral cortex compared
to the control group.

Conclusions: This study demonstrated the behavioral and histological benefits of
continuous SCS in a time-dependent manner in freely moving PD animals, possibly
mediated by anti-inflammatory and angiogenic mechanisms.

Keywords: electrical stimulation, neuroinflammation, neuromodulation, neuroprotection, 6-hydroxydopamine

INTRODUCTION

Parkinson’s disease manifests as a progressive neurodegenerative
disease resulting from the loss of dopaminergic neurons in
the nigrostriatal system. Cardinal symptoms of PD include
bradykinesia, rigidity, resting tremor, and postural instability.
Levodopa treatment stands as the first-line therapy for PD.
However, long-term medication often results in adverse events,
including motor fluctuation and dyskinesia.

Deep brain stimulation (DBS) improves motor symptoms in
advanced PD patients. In animal models of PD, DBS may increase
BDNF (Spieles-Engemann et al., 2010) and may prevent DA
neuron loss in the SNc (Maesawa et al., 2004; Spieles-Engemann
et al., 2011). However, DBS entails an invasive surgical procedure
that damages brain tissue and involves a permanent system
implant. The estimated risk of intracranial hemorrhage in DBS
ranges from 0.8 to 2.8% (Obeso et al., 2001; Herzog et al., 2003;
Sansur et al., 2007; Weaver et al., 2009; Fenoy and SimpsonJr.,
2014). Moreover, the efficacy of DBS appears effective only in
cases with motor fluctuation responsive to levodopa therapy,
thus, limited PD patients are eligible for DBS.

Spinal cord stimulation in the management of intractable
neuropathic pain demonstrates a solid track record of
effectiveness and safety. Although neurological injuries account
for the most serious complication in SCS procedure, they are rare
with an incidence rate of only 0.6% (Levy et al., 2011). In animal
models of PD, SCS alleviates motor deficits (Fuentes et al., 2009;
Santana et al., 2014; Shinko et al., 2014; Yadav et al., 2014) and
protects nigrostriatal dopaminergic neurons (Fuentes et al., 2009;
Shinko et al., 2014). In advanced PD patients with lumbago and
leg pain, SCS improves motor function such as posture, postural
stability, and gait ability (Agari and Date, 2012).

Electrical stimulation shows efficacy in PD animal models.
However, technical problems plague the SCS animal model,
including the short duration of the stimulation (no more than 1 h
per day) and the highly restricted movement of animals (i.e., due
to anesthesia) (Maesawa et al., 2004; Boulet et al., 2006; Spieles-
Engemann et al., 2010, 2011; Shinko et al., 2014; Yadav et al., 2014;
Huotarinen et al., 2018). The advent of small mobile stimulators
enables continuous DBS in freely moving parkinsonian rats
(Badstübner et al., 2012; Badstuebner et al., 2017). Cognizant
of SCS in PD animal models not closely replicating the clinical

Abbreviations: BDNF, brain-derived neurotrophic factor; DA, dopamine; DBS,
deep brain stimulation; Iba1, ionized calcium-binding adaptor molecule 1; PD,
Parkinson’s disease; SCS, spinal cord stimulation; SNc, substantia nigra pars
compacta; TH, tyrosine hydroxylase; VEGF, vascular endothelial growth factor;
6-OHDA, 6-hydroxydopamine.

application, customizing the small mobile stimulators used in
DBS for SCS may overcome these preclinical limitations. To
date, continuous SCS in freely moving PD animals remains
unexplored. In the present study, we developed a small mobile
device for continuous SCS in freely moving parkinsonian rats.

MATERIALS AND METHODS

Animals and Animal Care
All animal procedures in this study followed specifically the
approved guidelines by the Institutional Animal Care and Use
Committee of Okayama University Graduate School of Medicine
(Protocol# OKU-2018807). Adult female Sprague-Dawley rats
(Shimizu Laboratory Supplies Co., Ltd., Japan) weighing 200–
250 g at the beginning of the study served as subjects for all
experiments. Animal housing consisted of individual cages in a
temperature and humidity-controlled room and maintained on a
semidiurnal light-dark cycle.

Small Mobile Device for Continuous
Electrical Stimulation
We developed an electrical stimulation device called SAS-
200 (Unique Medical Co., Ltd., Japan) that offered convenient
adjustment of stimulation conditions via Bluetooth and allowed
free movement of rats owing to its small size. The SAS-200SCS,
which was attached to the back of the rats and connected to
the SCS electrode, delivered the stimulation. This stimulation
required no anesthesia, thereby allowing rats to freely move
around, making continuous stimulation possible. Additionally,
the stimulation conditions could be easily adjusted wirelessly.

The SAS-200 measured 20 mm× 40 mm× 20 mm, with a net
weight of 26 g (including the battery) (Figure 1A). It consisted
of a control panel, a rechargeable lithium-ion battery, and an
aluminum case. An aluminum case covered the unit and fixed
by screws on two sides. The SAS-200 generated biphasic square
pulses with stimulation conditions programmed in the control
panel, and as many as 1,650 patterns of stimulation could be
adjusted accordingly. Based on pilot stimulation optimization
studies, we selected 10 stimulation parameters for stimulation
intensity (0.25, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.2, 1.5, and 2.0 mA),
11 for frequency (1, 2, 5, 10, 20, 30, 50, 100, 150, 200, and
300 Hz), three for pulse width (100, 250, and 500 µs), and
five for stimulation cycle [(A) continuous stimulation, (B) 8 h
on 16 h off, (C) 12 h on 12 h off, (D) 30 s on 5 min off,
and (E) 15 trains every 12 s]. A standard Windows PC with a
specific application controlled these stimulation conditions, such
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FIGURE 1 | Wireless controllable electrical stimulation system (SAS-200). (A) The stimulation device measures 20 mm × 40 mm × 20 mm, with a net weight of 26 g
(including the battery). The control panel is covered by an aluminum case and fixed by screws on two sides. (B) Stimulation conditions can be changed using a
Windows PC and transmitted through Bluetooth.

as beginning, duration, and particular conditions (Figure 1B). An
LED light, which was placed below the transparent screw on the
right side, served as the stimulation and battery indicator; when
Bluetooth initiated the stimulation, the light turned on, and the
light flickered when the battery dropped below 20%. We used a
rechargeable battery with an AC adaptor. In our experiments, we
fixed and encased in a protective jacket the SAS-200 to the back of
the animals through threads at four fixing holes. A battery change
involved simply removing the screws and replacing the depleted
battery with a fully charged battery.

Experimental Design
Rats were randomly divided into three groups: the control, 8-h
stimulation, and 24-h stimulation groups (30 rats total, n = 10
in each group) (see study time course in Figure 2). On day
0, all rats received 6-OHDA, which was injected into the right
striatum. Subsequently, all rats underwent C2 laminectomy and
implanted with an electrode in their epidural space, with the
external mobile stimulator subsequently attached to their back.
After recovery from anesthesia, stimulation commenced in the 8-
and 24-h stimulation groups (see detailed stimulation protocol
below). On days 7 and 14, all rats received behavioral tests, and
thereafter euthanized for immunohistochemical investigations
and morphological analyses.

Surgical Procedure
6-OHDA Lesioning
All rats received anesthesia with 0.3 mg/kg of medetomidine,
4.0 mg/kg of midazolam, and 5.0 mg/kg of butorphanol by
intraperitoneal injection and placed in a stereotaxic instrument
(Narishige, Japan). The animals underwent a midline head skin
incision on and a small hole drilled in their skull. Twenty µg of 6-
OHDA (4 µl of 5 mg/ml dissolved in saline containing 0.2 mg/ml
of ascorbic acid; Sigma, United States) was injected into the right
striatum (1.0 mm anterior and 3 mm lateral to the bregma and
5.0 mm ventral to the surface of the brain with the tooth-bar
set at −1.0 mm) with a 28G Hamilton syringe that delivered
an injection rate of the drug at 1 µl/min. Syringe withdrawal
commenced after a 5-min absorption time following injection.

Implantation of Stimulation Electrode
Following 6-OHDA injection, animals received a midline skin
incision that extended to the back, and carefully dissecting

the spinal muscles to expose and to eventually perform a C2
laminectomy. We implanted a silver bipolar ball electrode, with
a diameter of 2 mm, epidurally on the dorsal surface of the
spinal cord and fixed to the muscle using a 5-0 silk thread
(Figures 3A,B). We then placed a ground electrode in the skull of
the rat, with the lead tunneled subcutaneously to the back of rats.
Finally, the rats received the stimulation device that was fixed on
their back using 1-0 silk threads at four fixing holes and encased
in a protective jacket (Figure 3C).

Electrical Stimulation
After recovery from anesthesia, the stimulation device
commenced by wireless command from Windows PC via
Bluetooth in the 8- and 24-h stimulation groups. In the 8-h
stimulation group, the stimulator automatically delivered
biphasic square pulses for 8 h then switched off for 16 h.
Stimulation continued for 14 consecutive days, and with battery
changed every 3 days. Stimulation consisted of 50 Hz pulses in
100 µs. Intensities corresponded to the 80% of motor threshold
(Supplementary Video S1). The parameter was determined
based on the results of our previous studies demonstrating
neuroprotective effects for PD model rats (Shinko et al., 2014).

Behavioral Tests
Cylinder Test
To assess the degree of forepaw asymmetry, we performed
the cylinder test on days 7 and 14. This test involved placing
individual animals in a transparent cylinder (diameter: 20 cm,
height: 30 cm) for 3 min and recording the number of
forepaw contacts on the cylinder wall (Schallert et al., 2000;
Shinko et al., 2014). The score of the cylinder test reflected
a contralateral bias: ([number of contacts with contralateral
limb] − [number of contacts with ipsilateral limb]/[number
of total contacts] × 100) (Roof et al., 2001; Shinko et al.,
2014; Sasaki et al., 2016). This contralateral bias indicated
successful 6-OHDA-induced unilateral depletion of nigrostriatal
dopaminergic neurons and fibers.

Methamphetamine-Induced Rotation Test
Rats received an intraperitoneal injection of methamphetamine
(3.0 mg/kg; Dainippon Sumitomo Pharma, Japan) on days 7 and
14. We assessed for 90 min with a video camera the full 360◦
turns in the direction ipsilateral to the lesion. Such drug-induced
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FIGURE 2 | Time course of this study.

FIGURE 3 | An electrode and images of surgery. (A) A silver ball SCS electrode used in this study (diameter: 2 mm). (B) An image showing electrode implantation.
A silver ball electrode was placed on the dorsal surface of the spinal cord and fixed by a silk thread. (C) An image showing a rat with a stimulation device. After
fixation of the stimulation device on the back, a handmade jacket was put on the rat.

ipsilateral rotations also indicated successful 6-OHDA-induced
unilateral nigrostriatal dopaminergic depletion.

Immunohistochemical Investigations
Processing for immunohistochemistry started after completion of
behavioral tests on day 14. Animals underwent euthanasia with
an overdose of pentobarbital (100 mg/kg). The rats then received
transcardial perfusion with 150 ml of cold phosphate-buffered
saline (PBS) and 150 ml of 4% paraformaldehyde (PFA) in PBS.
We then harvested the brains carefully, post fixed in 4% PFA in

PBS overnight at 4◦C, and subsequently stored in 30% sucrose
in PBS until completely submerged. Thereafter, we sectioned the
brains coronally at a thickness of 40 µm.

For assessing nigrostriatal dopaminergic pathways, we used
TH staining. We initially exposed free-floating sections to a
blocking solution using 3% hydrogen peroxide in 70% methanol
for 7 min. After three washes in PBS, we incubated the
sections overnight at 4◦C, with rabbit anti-TH antibody (1:500;
Chemicon, Temecula, CA, United States) with 10% normal horse
serum. We then washed the sections three times for 5 min in PBS

Frontiers in Aging Neuroscience | www.frontiersin.org 4 June 2020 | Volume 12 | Article 164

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-12-00164 June 14, 2020 Time: 20:34 # 5

Kuwahara et al. Spinal Stimulation in Parkinsonian Rats

and incubated them for 1 h in biotinylated donkey anti-rabbit
IgG (1:500; Jackson ImmunoResearch Lab, West Grove, PA,
United States), followed by 30 min in avidin-biotin-peroxidase
complex (Vector Laboratories, Burlingame, CA, United States).
We next treated the sections with 3, 4-diaminobenzidine (DAB;
Vector) and hydrogen peroxide, then mounted on albumin-
coated slides, and embedded them with cover glass.

Next, we performed Iba-1 and laminin staining to evaluate
activated microglial cells and blood vessels, respectively. We
initially washed 40-µm-thick sections three times in PBS
and incubating them in 10% normal horse serum and
primary antibodies: rabbit anti-Iba1 antibody (1:250; Wako
Pure Chemical Industries, Osaka, Japan) and rabbit anti-
laminin antibody (1:500; AB11575, Abcam plc, Cambridge,
United Kingdom) overnight at 4◦C. Thereafter, we washed the
sections three times in PBS, incubated them for 1 h in FITC-
conjugated affinity-purified donkey anti-rabbit IgG (H + L) in
a dark chamber, then washed them three more times in PBS and
finally mounted and embedded them with cover glass as above.

Morphological Analyses
We assessed the density of TH-positive fibers in the striatum with
a computerized analysis system as described previously (Shinko
et al., 2014). Investigators blinded to the treatment conditions
randomly selected three sections at 0.5, 1.0, and 1.5 mm anterior
to the bregma for quantitative analysis. The two areas adjacent to
the needle tract of the lesion side and the symmetrical areas in
the contralateral side served as the brain region of interest. We
then converted the brain photographs into binary images using
an appropriate threshold (Image J; National Institutes of Health,
Bethesda, MD, United States), and calculated the percentages of
the lesion to the intact side in each section, with the averages
subsequently used for statistical analyses. We counted all the
number of TH-positive dopaminergic neurons in three sections
at 4.8, 5.3, and 5.8 mm posterior to the bregma in the SNc,
but not in the ventral tegmental area. We then calculated the

percentage of the lesioned side to the intact side, then using
the averages for the statistical analyses. We also counted the
number of Iba-1 positive cells with nuclei in the lesion side
of the striatum and SNc using randomly selected fixed areas
(500 µm × 500 µm square) from two different sections (0.5 and
1.0 mm anterior to the bregma), then used the averages used
for statistical analyses. Additionally, we measured the area of
laminin-positive structures as percentages relative to the area of
the randomly captured images (500 µm × 500 µm square) from
two different sections of the cortex (4 mm lateral to the midline
and 0.5 and 1.0 mm anterior to the bregma) then also used the
averages for statistical analyses.

Statistical Analyses
We used the software package SPSS 20.0 (SPSS, Chicago, IL,
United States) to perform one-way analysis of variance (ANOVA)
with subsequent Tukey’s tests, with significance set at p < 0.05.
Data showed here represented means± standard deviation (SD).

RESULTS

Body Weight
Body weight decreased at day 7 and nearly recovered at day
14 in all groups (Figure 4). Body weights did not significantly
differ on days 0, 7, and 14 between the control, 8-, and 24-h
stimulation groups (body weight on days 0, 7, and 14: control
group: 229.2 ± 13.7, 216.0 ± 13.8, and 229.5 ± 14.0 g; 8-h
stimulation group: 228.8± 11.3, 214.5± 7.76, and 230.6± 8.01 g;
and 24-h stimulation group: 230.9 ± 13.8, 214.4 ± 10.8, and
228.9± 14.9 g, respectively).

Behavioral Tests
Cylinder Test
The 24-h stimulation group performed significantly better in
the cylinder test than the control group on days 7 and 14.

FIGURE 4 | Changes in body weight.
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In the 8-h stimulation group, the treated animals displayed
significant improvement in the contralateral bias on day 14
compared to the control group (contralateral bias: control group:
25.0± 10.1 and 47.6± 28.4%; 8-h stimulation group: 22.7± 14.7
and 23.3 ± 12.3%; 24-h stimulation group: 11.6 ± 9.56 and
9.80 ± 6.39% at 1 and 2 weeks, respectively; Figure 5A). For
comparison, the contralateral bias before 6-OHDA lesion was
1.3± 0.8%.

Methamphetamine-Induced Rotation Test
The number of methamphetamine-induced rotations on days
7 and 14 in the 8- and 24-h stimulation groups statistically
decreased compared to that of the control group (control group:
1292± 239 and 1518± 172 turns/90 min; 8-h stimulation group:
893 ± 217 and 1,020 ± 146 turns/90 min; 24-h stimulation
group: 670 ± 244 and 820 ± 289 turns/90 min at 1 and 2 weeks,
respectively; Figure 5B). The 8- and 24-h stimulation groups
did not significantly differ in their rotational behaviors. For
comparison, the rotational number before 6-OHDA lesion was
18± 10 turns/90 min.

Immunohistochemical Investigations
TH (Tyrosine Hydroxylase) Staining
The stimulation groups exhibited significant preservation of TH-
positive fibers in the striatum and TH-positive neurons in the

FIGURE 5 | Spinal cord stimulation and behavioral outcomes.
(A) Contralateral bias in the cylinder test. In the 24-h stimulation group,
improvement of contralateral bias was observed from days 7 to 14. In the 8-h
stimulation group, improvement was observed on day 14 (#p < 0.01,
∗p < 0.05). (B) Methamphetamine-induced rotations per 90 min. The number
of methamphetamine-induced rotations significantly decreased in the 8- and
24-h stimulation groups compared to the control group (#p < 0.01).

SNc compared to the control group (control group: 21.9± 7.16%;
8-h stimulation group: 45.3 ± 12.6%; 24-h stimulation group:
57.2± 9.11% relative to the intact side of TH-positive fibers in the
striatum, Figure 6; control group: 25.9 ± 4.99%; 8-h stimulation
group: 49.2 ± 9.24%; 24-h stimulation group: 57.9 ± 10.6%
relative to the intact side of TH-positive neurons in the SNc,
Figure 7). The 24-h stimulation group displayed significant
preservation of TH-positive fibers in the striatum. Additionally,
the 24-h stimulation group demonstrated more preserved TH-
positive neurons in the SNc than the 8-h stimulation group.

Iba1 Staining
The number of Iba1-positive cells in the striatum and the SNc
of rats in the 24-h stimulation group decreased significantly
compared to the control group. In the 8-h stimulation group,
the number of Iba1-positive cells tended to decrease in the
striatum, and was significantly decreased in the SNc (control
group: 37.9 ± 7.55; 8-h stimulation group: 31 ± 8.73; 24-h
stimulation group: 23.5 ± 6.13 cells/field of view in the striatum;
control group: 40.6 ± 6.26; 8-h stimulation group 32.4 ± 6.30;
24-h stimulation group 25.1 ± 5.62 cells/field of view in the SNc;
Figure 8).

Laminin Staining
The laminin-positive area in the lesioned cortex significantly
increased in the 8- and 24-h stimulation groups compared
to the control group of the intact and lesion side (control
group intact side: 4.59 ± 1.89%; control group lesion side:
6.23 ± 2.63%; 8-h stimulation group intact side: 7.90 ± 2.82%;
8-h stimulation group lesion side: 8.04± 3.19%; 24-h stimulation
group intact side: 9.12 ± 2.58%; 24-h stimulation group lesion
side: 10.8 ± 3.90%; Figure 9). Laminin-positive area in the
striatum and the SNc were also explored, but there were no
differences among all the groups (data not shown).

DISCUSSION

The present study demonstrated that a small mobile device
efficiently delivered continuous SCS and exerted neuroprotective
effects behaviorally and immunohistochemically on PD rats
in a time-dependent manner. While both SCS-treated groups
generally improved their performance in both contralateral
bias and methamphetamine rotations, and displayed an
increase in laminin-labeled cerebral blood vessels, The 24-h
stimulation group conferred better therapeutic effects than
the 8-h stimulation group, in that the longer continuous SCS
regimen significantly reduced microglial cells both in the
lesioned striatum and SNc compared to rats in the control group
(Supplementary Figure S1).

Small Mobile Device for Continuous SCS
Until now, conventional SCS machines allow limited control
of stimulation parameter and highly restrict the movements
of animals. Current SCS machines consist of a large electrical
stimulator and an electrode implanted in the animals with wire
connections (Maesawa et al., 2004; Spieles-Engemann et al., 2010,
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FIGURE 6 | Spinal cord stimulation and TH staining in the striatum. (A) TH-positive fibers were preserved in the striatum of the 8- and 24-h stimulation groups (10×).
In the right column, the low magnified images are shown (2×). (B) The ratio of TH-positive fibers in the lesioned striatum to the intact side was significantly preserved
in the stimulation groups compared to that in the control group (#p < 0.01). TH-positive fibers in the striatum of rats in the 24-h stimulation group were significantly
preserved compared to those in the 8-h stimulation group (∗p < 0.05).

2011; Santana et al., 2014; Sato et al., 2014; Shinko et al., 2014;
Brys et al., 2017). Long-term adhesion of the wire to the skin
results in erosion or infection of the animals. Moreover, the
routine use of general anesthesia when delivering fSCS (Shinko
et al., 2014) restricts free movement of the animals. Additionally,
the invasive nature of current SCS procedure likely alters
experimental outcomes. Because of the large size of stimulator,
hard-wired connections between stimulator and electrodes, use
of anesthesia, and invasive procedure, the duration and timing of
electrical stimulation remain limited with conventional SCS.

A small mobile electrical stimulator may circumvent the
technical limitations of current SCS machines. Indeed, such
mobile device shows efficacy as a DBS apparatus for PD animals
(Badstübner et al., 2012; Badstuebner et al., 2017). In this
study, we developed a small mobile device for continuous SCS.
This system achieved minimal invasiveness, free movement with
a wireless system, easily accessible adjustment of stimulation
conditions, and robust and stable stimulation for at least 2 weeks
in PD animals. Notably, Bluetooth signaling efficiently controlled

stimulation parameters. The present study thus extended the
utility of small mobile device originally employed in DBS to
SCS, the latter being less invasive with the electrode epidurally
implanted as opposed to the former that targets the deep regions
of the brain (e.g., thalamus, subthalamic nucleus, and globus
pallidus). We envision that a closed-loop stimulation device
harboring a stimulation/receiving function will allow SCS to
respond in real time and in a graded manner based on the
individual’s disease state. Such mobile SCS device will likely
become available in the near future in view of technological
developments in downsizing and wireless communication.

Prolonged SCS Improves Therapeutic
Outcomes in PD Animals
Although neuroprotective effects of SCS have been documented
in PD animals, the optimal electrical stimulation conditions
remain unclear. Effective electrical stimulation parameters in
PD rats vary in pulse width (400–1,000 µs), frequency (300–
333 Hz), stimulation duration (30 min at 2 times/week for
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FIGURE 7 | Spinal cord stimulation and TH staining in the SNc. (A) TH-positive neurons in the SNc were preserved in the stimulation groups (10×). (B) TH-positive
neurons in the SNc in the 8- and 24-h stimulation groups were significantly preserved compared to those in the control group (#p < 0.01).

FIGURE 8 | Spinal cord stimulation and Iba1 staining in the striatum and SNc. (A,B) Iba1 staining in the striatum (A) and the SNc (B) of the lesion side (40×). (C,D)
The number of Iba1-positive cells in the lesioned striatum (C) significantly decreased in the 24-h stimulation group compared to the control group (∗p < 0.05).
Similarly, the number of Iba1-positive cells in the lesioned SNc (D) significantly decreased in the 24-h stimulation group compared to the control group (#p < 0.01,
∗p < 0.05).
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FIGURE 9 | Spinal cord stimulation and laminin staining in the cerebral cortex. (A) Laminin-positive areas in the cerebral cortex of rats in the stimulation groups were
augmented compared to those in the control group (40×). (B) Laminin-positive cells in the cerebral cortex in the 24-h stimulation group were augmented compared
to those in the control group (#p < 0.01, ∗p < 0.05).

4.5 weeks – 30 min at once a week for 5 weeks) (Yadav et al.,
2014; Brys et al., 2017). Previously we showed that the optimal
conditions of “short burst” of SCS were as follows: pulse width,
100 µs; frequency, 2, 50, and 100 Hz; stimulation duration, 1 h
for 16 consecutive days (Shinko et al., 2014). In the present
study, we now tested the “continuous” SCS approach. Here, we
confirmed that 50 Hz was the optimal frequency. To simulate
the clinical settings and to reveal the time-dependency of SCS,
we set stimulation duration at 8 and 24 h. Whereas behavioral
amelioration, preservation of nigral TH-positive neurons, and
level of angiogenesis did not differ between the 8- and 24-
h stimulation groups, the longer SCS preserved more striatal
TH-positive fibers and exerted better anti-inflammatory effects
than the shorter SCS treatment. The dampened microglial cell
activation produced by longer SCS treatment suggests that a
progressive detrimental neuroinflammation may accompany PD
requiring prolonged anti-inflammatory treatment to effectively
sequester such cell death pathway.

Anti-inflammatory Effects of SCS
Parkinson’s disease neurodegeneration manifests in part
as a chronic neuroinflammation characterized by activated
microglial cells in the striatum and SNc (Hirsch et al., 2012).
Electrical stimulation may modulate neuroinflammation in
that-DBS treatment in normal SD rats reduces the number
of activated microglia around the electrode (Vedam-Mai
et al., 2016). In tandem, SCS treatment also confers such
anti-inflammation in an animal model of spinal cord
ischemic reperfusion injury by reducing microglial activation
through downregulation of the ERK1/2 pathway (Dong
et al., 2018), a signaling pathway supported by pain studies

(Morioka et al., 2013; Jiang et al., 2016; Liu et al., 2016;
Huang et al., 2019; Zhong et al., 2019). In our study, SCS
after intrastriatal 6-OHDA administration in the 24-h
stimulation group decreased the number of microglia cells
likely by exerting anti-inflammatory effects through the
signaling pathways originating from the dorsal column-
medial lemniscus then propagating to the SNc and striatum.
Probing this anti-inflammatory signaling mechanism warrant
electrophysiological experiments.

Enhanced Angiogenesis by SCS
Low-frequency cervical SCS increases cerebral blood flow (Isono
et al., 1995; Zhong et al., 2004; Yang et al., 2008), which persists
up to at least 15 min after discontinuation of SCS (Isono et al.,
1995). However, there has been no report about the relationship
between the vasculostructural changes of cerebral blood vessels
and SCS. In the present study, SCS increased the laminin-
positive areas in the cerebral cortex of the lesion side compared
to the control group. These results resemble the observation
that intrastriatal transplantation of encapsulated VEGF-secreting
cells in PD rats enhances angiogenesis (Yasuhara et al., 2004).
Moreover, these findings parallel the upregulation of VEGF in
the lesioned striatum of PD rats that received intermittent SCS
(1 h/day for 7 consecutive days) (Shinko et al., 2014). That
SCS modulates specific vasculature-associated growth factors
suggests a crosstalk between electrical stimulation and growth
factor secretion (Bagetta et al., 2011; Escamilla-Sevilla et al., 2011;
Seifried et al., 2013; Maioli et al., 2015; Muñoz et al., 2016), which
may mediate the observed increase in laminin-positive vascular
area in the cerebral cortex of SCS-treated PD rats.
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Clinical Application of SCS for PD in the
Future
Neuroinflammation in PD pathogenesis may involve multi-
pronged neurodegenerative processes, such as inflammation
and downregulation of neurotrophic factors (Yasuhara et al.,
2004; Shinko et al., 2014; Chen et al., 2018; Kim et al., 2018;
Troncoso-Escudero et al., 2018). This neurodegeneration plagued
with aberrant inflammation and dampened neurotrophic factor
levels manifests as a key secondary cell death pathway in other
neurological disorders, such as stroke, traumatic brain injury,
Huntington’s disease, and peripheral nerve injury (Borlongan
et al., 2000; Xia et al., 2004; Emerich et al., 2006; Shojo et al.,
2010; Rodrigues et al., 2012), which equally poses as a potent
therapeutic target. Probing the potential of SCS to abrogate
these cell death pathways may provide novel insights into the
mechanism of electrical stimulation and further optimize its
therapeutic outcomes.

Deep brain stimulation stands as an effective treatment for
motor symptoms in advanced PD patients. SCS offers a less
invasive approach compared to DBS in that the procedure spares
the brain from surgical manipulations. Such minimally invasive
SCS may be equally effective as DBS in reducing the hallmark
PD motor deficits. Indeed, SCS alleviates motor deficits in PD
marmosets (Santana et al., 2014). However, a case report shows
that SCS fails to relieve akinesia or restore locomotion in two
PD patients (Thevathasan et al., 2010). Optimization of SCS,
including the use of continuous stimulation produced by a small
mobile stimulator, may improve the clinical benefits of this
minimally invasive electrical stimulation.

Study Limitations
In this study, we used PD model of rats induced by 6-OHDA.
The main advantages of this model include the ease of creating
the lesion that produces loss of dopaminergic fibers in the
striatum and of dopaminergic neurons in the substantia nigra.
One of the disadvantages of this model is that it does not
resemble the natural pathology of PD, which is slow progression
of the degeneration of nigrostriatal dopaminergic neurons with
degradation of α-synuclein. Therapeutic potentials of the SCS
should be explored with other PD models of neurodegeneration
and α-synucleinopathy reminiscent of the clinical scenario.

The aim of this study was to explore the neuroprotective
effects of the SCS with duration of treatment as a factor.
Here, treatment was started immediately after 6-OHDA lesion
induction, which may not be applicable in the clinical setting
since PD symptoms do no manifest when at least 80% of
the dopaminergic neurons have already been depleted. Testing
SCS in a late-stage PD model is warranted. Another limitation
is that elucidating the therapeutic mechanism of SCS will
require additional studies. In our study, the neuroprotective
effects with angiogenic potentials were shown, but whether
the neuroprotective effects of SCS during the pre-symptomatic
phase is sustained during the symptomatic stage warrants further
examination. In the future, behavioral changes over time after
discontinuation of the SCS may reveal long-lasting effects of SCS,
as well as its mechanism of actions, on PD symptoms.

CONCLUSION

We demonstrated that a small mobile stimulator afforded
continuous SCS and exerted neuroprotective effects in PD
rats in a time-dependent manner. SCS attenuated behavioral
and histological deficits associated with 6-OHDA-induced PD
symptoms, possibly by mitigating microglial activation while
enhancing angiogenesis. The newly developed device for
continuous SCS serves as a useful tool for basic research in
our understanding of interplay across electrical stimulation,
neurodegeneration, and neural repair, but also advances its utility
as a therapeutic modality for PD.
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