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A BLESSING AND A CURSE

The twentieth century has brought numerous advances in technology, medicine, and food
security. The reduced mortality of infants, toddlers, adults, and the elderly due to technological
breakthroughs in medicine has brought a stable increase in the global expected lifespan at
birth (Figure 1). Specifically, worldwide, the life expectancy of males rose from 59.6 years in
the 1980’s to 69.0 years in 2015, whereas the life expectancy of females increased from 63.7
to 74.8 years, respectively (Mortality and Causes of Death, 2016). This increase in lifespan is
correlated with multiple age-dependent pathologies which have also increased in prevalence, such
as neurodegenerative disorders (Hebert et al., 2013).

While food fermentation as a means to attain food security occurred as early as 5,000 years
ago, fermentation processes are believed to have been developed in order to preserve fruits and
vegetables for times of scarcity in which food availability was intermittent (Medina-Pradas et al.,
2017). This is not the situation nowadays, as food fermentation is not required for securing food
anymore, but rather supplementing already available food stocks. The global increase in food
security due to modern long-term food storage coupled with the increase in worldwide global food
transportation, and international marketing has reduced the cost of food, increasing its availability
in the developed world (Barnard, 2010) (Figure 1). However, food commercialization and the shift
toward production of processed and ultra-processed foods have revealed clear adverse effects, such
as the identification of processed food as a major cause for over-eating and the increase in the risk
of metabolic syndrome, obesity, and diabetes (Hall et al., 2019). As the brain is one of the primary
energy-demanding organs in the human body, it comes with no surprise that the brain is highly
affected by such metabolic disorders as evident by recent epidemiological studies (Beydoun et al.,
2008; Mule and Singh, 2018). For example, type-2 diabetes is strongly associated with cognitive
impairment due to insulin resistance and altered glucose availability to neurons, which impair
energy production capacity and proper neuronal function (Kandimalla et al., 2017).

Therefore, it’s plausible to argue that the combined effect of the continued increase in lifespan
and life-long continuous food consumption leads to a dramatic increase in the prevalence
of neurodegenerative disorders in the elderly population. Herein, we will discuss factors that
have shifted our nutritional habits over the last century. Next, we will delineate the effects of
nutritional imbalance on neurodegenerative diseases at the cellular level, by shedding a light on the
autophagy regulation. Moreover, we will discuss how Alzheimer’s disease (AD), the most prevalent
neurodegenerative disorder, estimated to affect 55 million Americans aged 65 and above, can be
affected by such changes (Hebert et al., 2013; Brookmeyer et al., 2018).
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FIGURE 1 | It takes age and food to degenerate. The increased life

expectancy at birth witnessed throughout the last two centuries has led to an

increase in the proportion of elderly in the population, which is characterized

by unfolded proteins and non-functional organelle accumulation within

neurons (left column). Concomitantly, the increase in food availability during the

second half of the twentieth century led to an increase in food varieties,

consumption, and intake. This has led in turn to a decrease in life-long

autophagy flux in cells, including neurons (right column). Both of these routes

have synergized to result in a large increase in the prevalence of

neurodegenerative disorders that we currently witness.

A CENTURY OF MEDICAL REVOLUTIONS

Early in the twentieth century, life expectancy at birth in most
developed countries ranged between 45 and 50 years, with
significant numbers of young children not reaching the age of
10, mostly due to infectious diseases. Throughout the course
of the last 60 years, however, the average lifespan at birth has
risen linearly (Bell and Miller, 2005; Dong et al., 2016). Many
factors can account for this, including early developments such as
sanitation and clean water, which dramatically decreased infant
mortality. Additional reasons include vaccine development
against infectious agents, which significantly decreased children
mortality from infections, the development of therapies for
cardiovascular complications and cancer in older adults, and
finally, the development of life-supporting devices for frail elderly
people. As a result, over 95% of infants born in developed
countries today will live to age 50 years or older, and over 84% of
them will survive to age 65 years or older (Bell and Miller, 2005;
Olshansky, 2018).

Although the maximal lifespan of humans has been shown
by some mathematical models to be fixed (Dong et al., 2016),
maximal lifespan at birth is still rising linearly, as for 160 years,
the maximal life expectancy has witnessed consecutive increases
by a quarter of a year per year (Oeppen and Vaupel, 2002).

GLOBALIZATION AND FOOD SECURITY

One of the outcomes of the industrial, technological and social
changes in the twentieth century is the steep increase in the
availability of food products, many of which are ready-made,
and the consumption of foods of low-nutritional values and
processed foods (Figure 1). Furthermore, it has been recently
shown, in a well-controlled study in humans, that consumption
of ultra-processed food [according to the NOVA system of food
classification (Monteiro et al., 2018)] leads to increased caloric
intake (Hall et al., 2019), which is thought to be at the basis of the
obesity epidemic in the western world.

Children’s food and beverage preferences and consumption
are largely affected by media advertisements. Indeed, acute
exposure to food advertising increases food intake specifically
in children rather than in adults (Boyland et al., 2016), thus
increasing the proportion of obese children who are at greater
risk to develop type-2 diabetes at adulthood (Kelsey et al.,
2014), which in itself is proposed to correlate with dementia
(Biessels and Despa, 2018).

EATING OURSELVES AWAY

Aging is accompanied by a deterioration in multiple
physiological aspects and can be characterized by cellular
and molecular hallmarks, such as genomic instability, loss of
proteostasis, cellular senescence, and more (López-Otín et al.,
2013). This age-dependent decline in functioning also occurs in
the brain, which becomes more vulnerable to oxidative stress,
inflammatory insults, and metabolic stress. Moreover, multiple
processes such as protein folding, degradation, and nutrient-
sensing may be damaged (Kemnitz et al., 1994; López-Otín et al.,
2013; Cenini et al., 2019). This age-dependent decline in
functioning is a major risk factor for several neurodegenerative
diseases such as AD, the most prevalent neurodegenerative
disorder (Oddo, 2012; Cenini et al., 2019) (Figure 1). Another
possible risk factor of neurodegenerative diseases is high caloric
intake and obesity (Luchsinger et al., 2002; Beydoun et al.,
2008). Accumulating evidence indicates that excessive food
consumption may be harmful to the brain as continuous
high glucose levels may increase oxidative stress, harming the
vulnerable aging brain (Mule and Singh, 2018).

Studies in laboratory animals show that caloric restriction
(decreased food intake or intermittent fasting) can extend
lifespan in rodents and primates (Anderson et al., 2009;
Colman et al., 2014) and delay the onset of age-related
diseases such as hypertension and diabetes (Anderson et al.,
2009; Colman et al., 2009; Fontana et al., 2010). Moreover,
caloric restriction may protect neurons from degeneration and
enhance adult neurogenesis and neuronal plasticity, which may
protect the brain from a cognitive decline during aging and
neurodegenerative diseases (Duan et al., 2001; Mattson et al.,
2003) (Figure 1). It is still uncertain, however, how forms
of caloric restriction or intermittent fasting affect Amyloid-
beta (Aβ) oligomerization and deposition and behavioral
deficits in various AD rodent models. For example, both
short- and long-term caloric restriction in APP/PS1 mice
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significantly decreased the accumulation of Aβ (Patel et al., 2005;
Mouton et al., 2009), while opposite data were shown when
similar interventions were tested in the 5XFAD mouse model
of AD (Lazic et al., 2020). Similar beneficial effects of caloric
restriction were shown in animal models of Parkinson’s Disease
(PD) (Duan andMattson, 1999; Maswood et al., 2004), providing
evidence for a generalized role of reduced caloric intake in
ameliorating neurodegeneration.

One of the crucial processes that are adversely affected
during aging is cellular autophagy (Anderson et al.,
2009; Rubinsztein et al., 2011), which is tasked with
eliminating aggregated proteins, unhealthy organelles,
and multiple intracellular components through their
isolation in autophagosomes and fusion with lysosomes
for breaking down these components (He and Klionsky,
2009; Rubinsztein et al., 2011). This process allows the
recycling of cellular macromolecules, which can be used to
maintain energy and proper cell functioning (Kim and Guan,
2015). Accumulation of autophagic vesicles, which may
contain undigested misfolded proteins, characterizes many
neurodegenerative diseases, such as PD and AD (Lee et al., 2011).

Multiple mechanisms can explain the roles of fasting
and caloric restriction in ameliorating neurodegeneration.
One of the most studied mechanisms is the upregulation of
autophagy via inhibiting mTOR activity, which promotes
anabolic metabolism, necessary for protein synthesis and
proliferation and cell growth, and inhibits catabolic activity
(Kim and Guan, 2015). The mTOR pathway is activated by
nutrient cues, such as amino acids, glucose (Gonzalez and Hall,
2017), and fat (Menon et al., 2017), which are abundant
following food intake. Signaling events downstream to mTOR
are involved in inhibition of cellular autophagy, a process
that eliminates unfolded proteins and organelles within
cells (Kim and Guan, 2015). This effect on mTOR activity
could be mediated through two important energy sensors,
namely, AMP-activated protein kinase (AMPK) and Sirtuin-
1, and/or through decreasing downstream signaling by the
insulin growth factor (IGF)-receptor (Rubinsztein et al., 2011).
Thus, constant uptake of nutrients results in continuous
activation of the mTOR pathway while concomitantly
transcriptionally inhibiting the autophagy pathway, leading
to life-long accumulation of unfolded proteins, a process that
could promote neurodegeneration. These insights suggest
that life-long enhancement of autophagy, whether by dietary
or pharmacological means, can potentially prove vital to
delaying the onset of neurodegenerative disorders in the
elderly population.

While intermittent fasting and caloric restriction emphasize
the effect of the timing of food consumption and food quantity
on health and disease, other interventions, such as the ketogenic
diet, focus instead on food quality. The concept of food
quality vs. quantity in ketogenic diet cannot be dissociated,
as ketogenic diet was shown to stimulate autophagy in the
CNS (Mcdaniel et al., 2011) due to reduced circulating glucose
and insulin levels (Paoli et al., 2014) while reducing mTOR
activity (Mcdaniel et al., 2011). In the case of ketogenic diet,
the elevated ketone bodies in the circulation are used as an

alternative energetic metabolite to the brain, which is thought
to be responsible for the beneficial effects of ketogenic diet in
neurodegenerative disease such as AD (Kashiwaya et al., 2013;
Wlodarek, 2019).

In the past decades, significant knowledge has accumulated
regarding the importance of quantitative nutritional limitation
of food consumption on maintaining proper homeostatic
metabolism pathways, namely mTOR and autophagy, in
various cell types and tissues. There is still a lack of deep
understanding of the mechanisms regulated in the metabolically
unique cellular environment of the brain, chiefly neurons,
and astrocytes. Furthermore, although numerous studies have
associated the consumption of certain types of nutrients with
shortening or expanding lifespans in animals including primates
(Mattison et al., 2017; Di Francesco et al., 2018;Wahl et al., 2018),
the neurobiology community should move forward into studying
how this applies to brain maintenance and function in young
vs. aged animals. Moreover, causal, and not only associative
links, between different food types and metabolic pathways in
the brain should be studied. Lastly, we hope that new avenues
of research into the impact of nutritional quantities and types
on the aging human brain will be studied more rigorously in
the near future, in order to provide the community with better
tools for managing or even delaying the increasing rates of
neurodegenerative diseases.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

The sobering statistics of one in three elderly people suffering
from a type of age-related dementia call to devise a multi-
pronged approach to targeting age-related neurodegenerative
diseases. Synthesis of the current data indicates that not
only age but also dietary lifestyles that changed dramatically
during the twentieth century are at play. An expanding body
of literature correlates dietary interventions with longevity.
Indeed, many factors that are at play during aging have
a role in promoting neurodegeneration, such as oxidative
stress, accumulation of DNA damage, cell senescence, neuro-
inflammation, and decreased autophagic flux. Furthermore,
most of these factors have both intrinsic and extrinsic drivers
behind them. For example, aging, characterized by impaired
sleep patterns (Mander et al., 2017), has been shown to
mediate impaired DNA repair (Zada et al., 2019). Aging is
also characterized by elevated levels of neuroinflammation
that are transcriptionally regulated (Baruch et al., 2013).
Autophagy, however, is a cellular pathway that throughout life is
predominantly regulated extrinsically in a nutrient-consumption
mediated manner. This places food consumption as a major
factor, along with aging itself, in promoting neurodegenerative
disorders. As one of the main aims of dietary regimes, such as
intermittent fasting, is to inhibit mTOR and promote autophagy,
it is yet unknown what the optimal timing is for this intervention
in relation to the circadian rhythm. Furthermore, it is plausible
that future research intomTOR inhibition by Rapamycin analogs,
for example, can efficiently replace dietary interventions.
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