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Iuliu Haţieganu University of Medicine
and Pharmacy, Romania

*Correspondence:
Liqun Kuang

kuang@nuc.edu.cn
Yalin Wang

ylwang@asu.edu

Received: 26 March 2020
Accepted: 02 June 2020
Published: 30 June 2020

Citation:
Kuang L, Jia J, Zhao D, Xiong F,

Han X and Wang Y for the Alzheimer’s
Disease Neuroimaging Initiative (2020)

Default Mode Network Analysis
of APOE Genotype in Cognitively

Unimpaired Subjects Based on
Persistent Homology.

Front. Aging Neurosci. 12:188.
doi: 10.3389/fnagi.2020.00188

Default Mode Network Analysis of
APOE Genotype in Cognitively
Unimpaired Subjects Based on
Persistent Homology
Liqun Kuang1* , Jiaying Jia1, Deyu Zhao1, Fengguang Xiong1, Xie Han1, Yalin Wang2* and
for the Alzheimer’s Disease Neuroimaging Initiative

1 School of Data Science and Technology, North University of China, Taiyuan, China, 2 School of Computing, Informatics,
and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States

Current researches on default mode network (DMN) in normal elderly have mainly
focused on finding some dysfunctional areas with decreased or increased connectivity.
The global network dynamics of apolipoprotein E (APOE) e4 allele group is rarely
studied. In our previous brain network study, we have demonstrated the advantage
of persistent homology. It can distinguish robust and noisy topological features over
multiscale nested networks, and the derived properties are more stable. In this study,
for the first time we applied persistent homology to analyze APOE-related effects on
whole-brain functional network. In our experiments, the risk allele group exhibited lower
network radius and modularity in whole brain DMN based on graph theory, suggesting
the abnormal organization structure. Moreover, two suggested measures from persistent
homology detected significant differences between groups within the left hemisphere
and in the whole brain in two datasets. They were more statistically sensitive to APOE
genotypic differences than standard graph-based measures. In summary, we provide
evidence that the e4 genotype leads to distinct DMN functional alterations in the early
phases of Alzheimer’s disease using persistent homology approach. Our study offers
a novel insight to explore potential biomarkers in healthy elderly populations carrying
APOE e4 allele.

Keywords: APOE, Alzheimer’s disease, persistent homology, resting state functional magnetic resonance
imaging, graph theory, network measure

INTRODUCTION

Alzheimer,s disease (AD) (Lane et al., 2018) is the most common form of dementia among the
elderly and the sixth leading cause of death in the United States. There are more than 50 million
patients worldwide in 2018, and it is expected to reach a staggering 152 million by 2050 (Patterson,
2018). It is crucial to develop the AD-related biomarkers early in the aging process before the
onset of overt cognitive impairment and irreversible brain damage (Korthauer et al., 2018). One
hypothesis (Reiman et al., 2009; Lambert et al., 2013; Yu et al., 2019) for the pathogenesis (Karch
and Goate, 2015) of AD indicate the apolipoprotein E (APOE) e4 allele (Lane-Donovan and
Herz, 2017) involves the accumulation of Amyloid-β (Caselli et al., 2010), leading to increasing
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neuronal atrophy and synapse loss. To date, APOE is a major
genetic risk factor for developing AD (Thompson et al., 2013;
Zhu et al., 2019). Functional neuroimaging genetics provides an
effective strategy for characterizing the intermediate phenotype of
AD and identifying genes that contribute to functional alterations
in brain networks (Chiesa et al., 2017, Chiesa et al., 2019). In
particular, recent research has demonstrated that default mode
network (DMN) (Raichle, 2015) is associated with progressive
brain dysfunction and is susceptible to APOE genotype (Song
et al., 2015; Ma et al., 2016; Yuan et al., 2016; Palmqvist et al.,
2017; Staffaroni et al., 2018; Chiesa et al., 2019).

Graph theory has increasingly been used as a theoretical
framework for studying brain network characteristics. At the
level of regional connection, functional connectivity between
brain nodes as an important biomarker can identify early brain
function alteration related to AD pathophysiology (Bokde et al.,
2009). It is dedicated to investigating the distinct connectivity
within the DMN that could represent the progressive biomarker.
However, the results of resting state functional MRI (rs-fMRI)
(Teipel et al., 2015) and APOE studies have reported mixed
results (Cai et al., 2017; Luo et al., 2017; Caldwell et al., 2019; Zhu
et al., 2019). Some reported decreased functional connectivity
(Yan et al., 2015) in APOE e4 allele carriers (APOE4+) compared
with non-carries (APOE4-), the others found some increased
functional connectivity (Song et al., 2015; Zhu et al., 2018), while
others didn’t found any differences (Chiesa et al., 2019). At
the global whole-brain level, some neurobiologically meaningful
graph-theoretic properties have become important indicators for
measuring brain functional networks, through which we can
understand the altered network architecture in those carrying risk
genotype, including a loss of small-world network (Korthauer
et al., 2018), a redistribution of hubs (Wink et al., 2018), and a
disrupted modular organization (Li et al., 2019). However, there
are currently few network measures based on graph theory have
been studied in cognitively unimpaired elderly (Seo et al., 2013;
Luo et al., 2017; Pietzuch et al., 2019) and some of their results
were reported as inconsistent (Seo et al., 2013; Qiu et al., 2016;
Luo et al., 2017). For instance, Wink et al. (2018) found decreased
centrality of DMN in APOE4+ comparing to non-carriers, while
Wang et al. (2017) didn’t find such genotype difference of
centrality in normal elderly. Overall, graph-theoretic methods
cannot consistently demonstrate functional DMN difference
between APOE4+ and APOE4- in normal elderly, and the reason
has been debated in the literature (Chiesa et al., 2017).

Recently, persistent homology (Edelsbrunner and Harer,
2010) from algebraic topology has been adopted for the analysis
of brain network. It uses graph filtration to construct a multiscale
brain network with all possible thresholds wherever the persistent
topological features over the network dynamics are identified
(Giusti et al., 2016). This method can distinguish robust and
noisy topological features over a wide range of filtration values
in measuring global brain network organization. The typical
approach of persistent homology is Betti number plot (BNP)
(Edelsbrunner and Harer, 2010; Lee et al., 2012), which has
successfully applied to the brain network research on epilepsy
(Choi et al., 2014), autism spectrum disorder and attention-deficit
hyperactivity disorder (Lee et al., 2012, 2017), etc. In our previous

works (Kuang et al., 2019a,b), we have developed some network
properties based on persistent homology and have successfully
applied them to measure the metabolic and functional networks
of AD and MCI patients. Although the persistent homology
works well in cognitively impaired elderly, it has never been
applied to study the genetic influence on brain network yet,
especially in unimpaired individuals.

In this paper, we study the effect of APOE genotype
on functional DMN in cognitively unimpaired subjects.
We hypothesized the topological properties of persistent
homology may reveal the APOE-related alteration in DMN even
before clinical symptoms appear better than graph-theoretic
approaches. Using the cross-sectional rs-fMRI imaging data of 27
APOE4+ and 31 APOE4- normal elderly, we test this hypothesis
by computing two persistent homology-based properties and
measuring the differences between APOE4+ and APOE4-
groups. We further run the statistical inference to validate their
powers and compare them with some graph-theoretic methods.

MATERIALS AND METHODS

We summarize the pipeline of our framework in Figure 1. The
rs-fMRI (Teipel et al., 2015) data of each subject are preprocessed
and the blood oxygen level dependent (BOLD) signals within
each region-of-interest (ROI) are obtained. Then we construct
one weighted DMN per subject and quantify its global topological
structure using graph theory and persistent homology. The
details are described in following subsections.

Participants
Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database1

(Jack et al., 2008; Jagust et al., 2010). The ADNI was launched in
2003 as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD).

There were only 38 Normal Controls (NC) between the ages of
60 and 90 from the ADNI-2 who had available rs-fMRI and APOE
data. Due to the small sample size of NC, we also introduced
Subjective Memory Complaints (SMC), producing a dataset of
cognitively unimpaired subjects in this study. The only difference
from NC is that SMC reported memory problems by themselves.
Individuals with two copies of the apolipoprotein e2 allele (APOE
e2/2) were excluded due to its possible protective effects (Suri
et al., 2013). Finally, individuals carrying at least one APOE ε4
allele (genotype e3/e4 and e4/e4) were classified as APOE4+,
while individuals with genotype e3/e3 were classified as APOE4-.

Data Acquisition and Preprocessing
The experimental dataset were acquired at multiple ADNI sites
using 3.0 T Philips MRI scanners. All rs-fMRI data were obtained

1adni.loni.usc.edu
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FIGURE 1 | The flow of measuring DMN topological structure based on graph theory and persistent homology in cognitively unimpaired subjects using rs-fMRI data
from ADNI.

using an echo-planar imaging (EPI) sequence and the parameters
included repetition time (TR) = 3000 ms, echo time (TE) = 30 ms,
flip angle = 80◦, number of slices = 48, slice thickness = 3.3 mm,
voxel size = 3 mm× 3 mm× 3 mm, voxel matrix = 64× 64, and
time points = 140.

All functional images were pre-processed using SPM8
toolbox2, DPARSF3 (Yan and Zang, 2010), and REST3

(Song et al., 2011) according to well-accepted pipelines,

2http://www.fil.ion.ucl.ac.uk/spm/
3http://www.restfmri.net

the same as our prior work (Kuang et al., 2019a).
Briefly, the first ten time points were removed before
temporal correction and spatial normalization. Then image
smoothing, linear trend adjustment and band-pass filter were
performed sequentially.

Construction of DMN
First, the whole brain is divided into 90 functional ROI using
standard automated anatomical labeling atlas (AAL90) (Tzourio-
Mazoyer et al., 2002). Then 26 areas (Vriend et al., 2018) in
AAL90 are identified as the ROI of DMN, as shown in Table 1.
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TABLE 1 | The division of twenty six ROI nodes in DMN based on AAL90 atlas.

ROI node name Left hemisphere Right hemisphere

Index in AAL90 Abbreviation Index in AAL90 Abbreviation

Inferior frontal gyrus pars triangularis 13 IFGtriang.L 14 IFGtriang.R

Medial frontal gyrus 23 SFGmed.L 24 SFGmed.R

Superior medial orbital frontal cortex 25 ORBsupmed.L 26 ORBsupmed.R

Anterior cingulate and paracingulate gyrus 31 ACG.L 32 ACG.R

Posterior cingulate gyrus 35 PCG.L 36 PCG.R

Parahippocampal gyrus 39 PHG.L 40 PHG.R

Cuneus 45 CUN.L 46 CUN.R

Supramarginal gyrus 63 SMG.L 64 SMG.R

Angular gyrus 65 ANG.L 66 ANG.R

Precuneus 67 PCUN.L 68 PCUN.R

Superior temporal gyrus 81 STG.L 82 STG.R

Temporal pole: superior temporal gyrus 83 TPOsup.L 84 TPOsup.R

Middle temporal gyrus 85 MTG.L 86 MTG.R

There are 13 ROI per hemisphere and each ROI is considered as
a network node of DMN.

The average timing BOLD signal serial Ti = (Ti1, Ti2,. . .Tik)
within the i-th ROI node is used as its measurement (Step 2
in Figure 1). We define the functional connectivity (i.e., edge
weight) between any pair of ROI as 1-Pearson coefficient of their
BOLD signal serials, i.e.

Wij = 1−
cov(Ti,Tj)

σTiσTj

= 1−

∑k
p=1(Tip − T̄i)(Tjp − T̄j)√∑k

p=1(Tip − T̄i)2
√∑k

p=1(Tjp − T̄j)2
(1)

where Tip represents the average BOLD signal within the i-th
ROI at p-th time point and K = 130 is total number of time
points of the rs-fMRI data. Thus, the functional connection
matrix (N × N) per subject is obtained (Step 3 in Figure 1)
and each subject’s DMN is constructed. Here N = 26 if the
DMN of entire brain is studied, otherwise N = 13 if only one
hemispheric DMN is studied.

Measuring DMN Using Graph Theory
In the past decade, the neurobiologically meaningful network
properties based on graph theory have become important
indicators in measuring brain functional networks. We validate
some widely used graph measures in this study (Right part
of step 5 in Figure 1), including characteristic path length
(CPL) (Li et al., 2019), global efficiency (GC) (Shu et al., 2015),
network radius (NR) (Fujita et al., 2017), modularity (Mod)
(Li et al., 2019), and eigenvector centrality (EC) (Luo et al.,
2017). Briefly, the average shortest path length between all pairs
of nodes in the network is CPL, while the average inverse
shortest path length is called GC. Then NR is the minimum
eccentricity of all nodes in the network and nodal eccentricity
is the greatest distance between this node and any other nodes.
Further, Mod measures the extent to which the network can be

subdivided into clearly delineated and non-overlapping groups,
and EC computes the sum of centralities of the node’s direct
neighbors. All these network measures were calculated by Brain
Connectivity Toolbox (BCT)4 in Matlab R2017a.

Measuring DMN Using Persistent
Homology
Persistent homology (Edelsbrunner and Harer, 2010) is a
mathematical concept derived from algebraic topology and
is used to characterize topological features in complex data.
There is an important tool, graph filtration (Giusti et al.,
2016), in persistent homology that constructs a family of nested
networks along an axis at their threshold values by thresholding
original weighted network at every possible entry (Step 4 in
Figure 1). Thus, it can distinguish robust and noisy topological
characteristics in a wide range and enables reasonable inferences
regarding the underlying organization. The classic network
property based on persistent homology is BNP which detects
the dynamic of the zeroth Betti number (i.e., the number of
connected components) over all filtration values (Lee et al.,
2012). It has been successfully applied to the some studies
(Lee et al., 2012, 2017; Choi et al., 2014) of brain network in
neurodegenerative diseases.

In our previous work (Kuang et al., 2019a), we proposed
an integrated persistent feature (IPF) based on BNP, which
introduced a connected component aggregation cost into the
zeroth Betti number and thus achieves a holistic description of
network dynamics. The IPF at filtration λi is defined as (Kuang
et al., 2019a).

IPFλi =


m−i

m(m−1)

∑m−1
k=i+1 λk 0 ≤ i ≤ m− 2

0 i = m− 1
(2)

Here, m is total number of network nodes and
λ0 = 0 < λ0 < λ1 < λ2 < . . . < λm−1 is the filtration

4https://sites.google.com/site/bctnet
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TABLE 2 | Demographic characteristics of the high-risk (APOE4+) and low-risk
(APOE4-) groups.

APOE4+ (n = 27) APOE4- (n = 31) p-value

NC/SMC 16/11 22/9 –

Age 73.26 ± 6.83 74.58 ± 5.18 0.407

Education 16.81 ± 2.17 17.22 ± 2.93 0.569

Male/Female 12/15 15/16 0.769

MMSE Score 28.17 ± 1.53 28.53 ± 1.55 0.734

Data is presented as means ± standard deviations. APOE4+, APOE e3/e4
and e4/e4 alleles; APOE4-: APOE e3/e3 allele; NC, Normal Control; SMC,
Subjective Memory Complaint; MMSE, Mini-Mental State Examination; CDR,
Clinical Dementia Rating.

value which is actually the set of weights of minimum spanning
tree of the original weighted network. Previous work has proven
that the IPF is a monotonically decreasing convergence function
over all possible filtration. In summary, when λ increases
from zero, the IPF value of the network will decrease to zero
accordingly until all nodes are connected into a single connected
component. Therefore, the slope of the IPF plot (SIP) can be
used as an important network property to quantify the brain
network dynamics. Both network measures BNP and SIP can
be considered as information diffusion rate or convergence
rate of the network. We provided their implementations at
http://gsl.lab.asu.edu/software/IPF and applied them in this
study (Left part of step 5 in Figure 1).

RESULTS

Demographic Information
In this experiment, 58 subjects without cognitive impairment
were selected from ADNI-2, and were divided into two groups,
APOE e4 carriers and non-carriers, according to their APOE
genotype. Among them, 20 subjects were identified as SMC
and remaining 38 subjects were NC. The only difference from
NC is that SMC reported memory problems by themselves. We
considered both as cognitively impairment subjects in this study.
As shown in Table 2, there were no significant differences in
age, education, Mini Mental State Examination (MMSE) score,
and Clinical Dementia Rating (CDR) global scores between
groups. All subjects had MMSE of 24–30, CDR = 0, and were
cognitively unimpaired. Furthermore, all studied images did not
have excessive head motion (six-parameter rigid body) defined
by a displacement of less than 1 mm or an angular rotation of less
than in any direction 1◦.

Multiscale Brain DMN Dynamics
We constructed one original weighted DMN per subject. The 26
network nodes in whole brain DMN were determined according
to Table 2 and are visualized in Figure 2 using Brain Net Viewer
software (Xia et al., 2013). Then, the edge weights between them
were calculated using Eq. (1). We further constructed multiscale
networks based on the original DMN using graph filtration tool
(Step 4 in Figure 1). As we only observe the zeroth homology in
this study, the filtration value λ is actually the set of weights of

minimum spanning tree of DMN. Figure 3 shows the multiscale
network dynamics for two mean DMN of two groups over
some filtration values. Figure 4 shows the change of zeroth Betti
number using single linkage dendrogram (Lee et al., 2012). All the
nodes on the left are connected to form the larger component on
the right, until finally a fully connected network is constructed.
The zeroth Betti number starts at 26, and gradually decreases to 1
while more and more nodes are connected.

From Figures 3, 4, we intuitively saw that the connected
components in APOE+ aggregated slightly faster than APOE-,
especially after λ is larger than 0.35. However, it needs to be
further quantitatively measured by network properties based on
persistent homology.

Brain DMN Properties
We calculated the corresponding Betti number β0 and IPF of the
multiscale DMN at all different filtration values for two group
means, and plotted them, as shown in Figure 5. We found that
the APOE+ curve in both Betti number plot and IPF plot were
steeper than the APOE- curve, suggesting the faster aggregation
of APOE+, which is consistent with the above observation
of multiscale brain dynamics (see Figures 3, 4). All subjects’
values of BNP and SIP properties based on persistent homology
were summarized using box plot as shown in Figures 6A,B,
separately, where 1 represents APOE4+ and 2 is APOE4-. The
distributions of both BNP and SIP property values between
groups are obviously different, indicating both persistent features
may be able to discriminate APOE4+ from APOE4-.

Traditionally, brain network properties have been measured
using graph theory methods. In order to compare with our
suggested methods based on persistent homology, we also
calculated some classical graph theory properties, including CPL,
NR, EC, Mod, and GC. The distributions of all attribute values
are shown in Figures 6C–G where 1 and 2 represents APOE4+
and APOE4-, respectively. We observed that the between-group
differences of SIP, BNP, NR, and Mod are more apparent than
those of CPL, EC, and GC.

Statistical Group Difference
In the statistical analysis of differences between groups of
APOE4+ and APOE4-, we performed the permutation test of
10,000 permutations on all network properties using Matlab
R2017a and calculated their resulting p-values as shown in
Table 3. First, the differences between groups in whole brain
DMN with 26 ROI nodes were measured. Two persistent features
SIP and BNP obtained significant differences at significance level
of 0.05, which were p = 0.021 and p = 0.009, respectively. In
the statistic inferences for five compared graph theory-based
properties, only NR and Mod obtained significant differences
with p = 0.024 and p = 0.037, respectively, while there were
no significant differences in other three properties, CPL, EC,
and GC. Then, we analyzed the group differences within
the single hemisphere and only two measures SIP and BNP
achieved significant differences (p = 0.027, both) within the
left hemisphere. We did not find any differences within the
right hemisphere.
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FIGURE 2 | The ROI in DMN from (A) sagittal view, (B) axial view, and (C) coronal view. The color bar shows the ROI node index predefined in AAL90 atlas.

FIGURE 3 | Multiscale DMN dynamics for two mean networks of (A) APOE4+ and (B) APOE4- groups at six different filtration values 0.20, 0.25, 0.30, . . ., 0.45. The
color bar shows the ROI node index predefined in AAL90 atlas.

In short, our experimental results show that both persistent
properties achieved more significant group differences between
APOE4+ and APOE4- than traditional graph-theoretic
measures, and BNP obtained the most significant difference
(p = 0.009) in the study of whole brain DMN.

DISCUSSION

Present Findings
There are three main findings in this study.

First, we found that the e4 allele carriers exhibited lower
NR and Mod (p = 0.024, 0.037, respectively) in the study of
whole brain DMN using traditional graph-theoretic methods,
suggesting the abnormal organization structure in the risk allele
group. To our knowledge, there have been few studies (Luo
et al., 2017; Pietzuch et al., 2019) on graph theory that have

reported APOE genotypic differences in functional network
properties of whole brain DMN in normal elderly, although
a lot of studies have found differences in functional network
properties between AD/MCI and NC. Some studies (Staffaroni
et al., 2018; Chiesa et al., 2019) even found no difference between
elderly APOE4+ and APOE4- groups in functional DMN. The
reason why findings of DMN on unimpaired individuals do
not consistently demonstrate differences between APOE4+ and
APOE4- is still debated in the literature (Chiesa et al., 2017). In
our study, we found two measures could detect their differences
significantly, which would further enhance the APOE research
based on graph theory.

Second, we introduced two measures from our previous
studies based on persistent homology and found they were
more statistically powerful than graph-theoretic measures in
discriminating APOE4+ from APOE4- in our experiment, and
the BNP obtained the most significant difference (p = 0.009)
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FIGURE 4 | The single linkage dendrograms of (A) APOE4 carriers and (B) non-carriers groups show the change of the zeroth Betti number. The color represents
the target distance (total edge weight) from current connected component to the full connected component (the rightmost line).

FIGURE 5 | The persistent feature dynamics over filtrations for APOE4+ and APOE4- by (A) Betti number plot and (B) IPF plot.

between groups. The persistent homology approach can
distinguish robust and noisy topological features over multiscale
nested networks, and the obtained properties are more persistent
and stable. So far, many studies of brain network based on
persistent homology have demonstrated the superiority of the
performance. To our knowledge, it is the first time we introduced
persistent homology to study the APOE genotype effect on DMN.

Finally, the functional disruption within the left hemisphere
may be more pronounced than the right one. All persistent
homology-based features SIP and BNP detected the significant
differences of DMN in whole brain and left hemisphere.
However, no significant differences were found within the right
hemispheric DMN using any network measures. This finding is
consistent with existing APOE studies documenting the effect of

the e4 allele on left hippocampus rather than right hippocampus
of non-demented individuals (Shi et al., 2014; Li et al., 2016;
Dong et al., 2019).

Verification on Normal Control Subjects
As there were only 16 NC individuals who had e4 allele and
available rs-fMRI data in ADNI-2, we expanded our experimental
sample size by including SMC subjects. However, some studies
(Caldwell et al., 2019) on APOE have only investigated NC
individuals from ADNI. Thus, we excluded all SMC subjects (see
Table 2) and further repeated our experiment on NC subjects.
As shown in Table 4, there were no significant differences in
age, education, sex, and MMSE between APOE+ and APOE-
in NC dataset. We calculated the differences of DMN between
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FIGURE 6 | The box plots of property values for APOE4 carriers (1) and non-carriers (2) groups using two persistent homology properties, (A) SIP and (B) BNP, and
five graph-theoretic properties, (C) CPL, (D) NR, (E) EC, (F) Mod, and (G) GC.

groups using different measures, as shown in Table 5. Again,
two measures based on persistent homology obtained stronger
statistical power than graph theory methods, and the differences
within the left hemispheric DMN is more significant than the
right one. Moreover, compared to experiments performed on
cognitively unimpaired dataset (Table 3), the SIP obtained very
significant difference (p = 0.006) on NC dataset.

Limitation and Future Works
Despite the promising results were obtained by applying two
suggested network properties SIP and BNP based on persistent

TABLE 3 | Statistical p-values of different network properties between APOE4+
and APOE4- groups.

Hemisphere Persistent
homology-based

properties

Graph theory-based
properties

SIP BNP CPL NR EC Mod GC

Both 0.021 0.009 0.237 0.024 0.273 0.037 0.458

Left 0.027 0.027 0.316 0.154 0.422 0.361 0.418

Right 0.144 0.097 0.134 0.052 0.281 0.090 0.393

The permutation test of 10,000 permutations was performed for statistical
inference. APOE4+, APOE e3/e4 and e4/e4 alleles; APOE4-: APOE e3/e3 allele;
SIP, Slope of Integrated persistent feature Plot; BNP, Betti Number Plot; CPL,
Characteristic Path Length; NR, Network Radius; EC, Eigenvector Centrality; Mod,
modularity; GC, Global Efficiency.

TABLE 4 | Demographic characteristics of NC dataset.

APOE4+ (n = 16) APOE4- (n = 22) p-value

Age 73.88 ± 7.35 75.75 ± 5.34 0.368

Education 16.53 ± 1.97 16.84 ± 2.84 0.462

Male/Female 7/9 10/12 0.920

MMSE Score 28.59 ± 1.65 28.77 ± 1.66 0.833

Data is presented as means ± standard deviations. APOE4+, APOE e3/e4 and
e4/e4 alleles; APOE4-, APOE e3/e3 allele; NC, Normal Control; MMSE, Mini-Mental
State Examination; CDR, Clinical Dementia Rating.

homology to discriminate APOE e4 allele carriers from non-
carriers in cognitively unimpaired subjects, there are three
important caveats.

First, both persistent homology-based properties BNP and
SIP adopted in this study only investigated the dynamics of
the zeroth persistent homology. Higher-dimensional persistent
homology characterizes higher-dimensional topological features,
and more complexed topological structures such as circular
holes can be detected. Therefore, the performance of network
measurement may be further boosted if higher-dimensional
homology is applied, especially in the sparse network that tends
to have more holes.

Then, although the DMN have been heavily studied and
are reported as a promising kind of network to study, current
researches have mainly focused on finding some dysfunctional
areas with decreased or increased connectivity (Song et al., 2015;
Yan et al., 2015; Zhu et al., 2018; Chiesa et al., 2019). There
are relatively few studies on global network dynamics of e4
allele group in normal elderly. In this study, we measured the
global brain network in two datasets (cognitively unimpaired
dataset and its subset NC) and found some statistically powerful
measures. In future, we will validate these measures in other
independent datasets.

TABLE 5 | Statistical p-values of different network properties on NC between
APOE4+ and APOE4- groups.

Hemisphere Persistent
homology-based

properties

Graph theory-based
properties

SIP BNP CPL NR EC Mod GC

Both 0.006 0.004 0.365 0.062 0.183 0.037 0.201

Left 0.047 0.049 0.364 0.177 0.276 0.089 0.368

Right 0.078 0.098 0.190 0.095 0.162 0.195 0.352

APOE4+, APOE e3/e4 and e4/e4 alleles; APOE4-: APOE e3/e3 allele; SIP, Slope
of Integrated persistent feature Plot; BNP, Betty Number Plot; CPL, Characteristic
Path Length; NR, Network Radius; EC, Eigenvector Centrality; Mod, modularity;
GC, Global Efficiency.
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Finally, current findings are achieved based on cross-sectional
study. With longitudinal analysis, we may further study the
longitudinal trajectories (Chiesa et al., 2019) of functional brain
dynamics and the impact of e4 allele on individuals at risk
for Alzheimer’s disease by quantifying the difference of their
persistent features. In addition, the more aggregated structure
in APOE e4 allele carriers may be due to worse development
in childhood. Examining longitudinal MRI since childhood, the
possibility of this phenomenon could be further assessed.

CONCLUSION

This work measured the DMN structure of rs-fMRI on
cognitively unimpaired e4 allele carriers based on our prior work
of persistent homology, which encodes a great deal of dynamic
information over all possible scales. The significant differences
between APOE4+ and APOE4- are identified within the left
hemispheric DMN and in the whole brain DMN in two datasets,
providing evidence that the APOE e4 genotype leads to distinct
alterations of functional DMN several years before the occurrence
of dementia symptoms. Moreover, our suggested approaches
of persistent homology are more sensitive to APOE genotypic
differences than standard graph-based network measures. To
the best of our knowledge, this is the first study applying
persistent homology to analyze APOE-related effect on whole-
brain functional network. This study offers a novel insight
to explore potential biomarkers in healthy elderly populations
carrying APOE e4 allele.
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