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Motor neuron diseases (MNDs) are fatal diseases characterized by loss of motor
neurons in the brain cortex, in the bulbar region, and/or in the anterior horns of
the spinal cord. While generally sporadic, inherited forms linked to mutant genes
encoding altered RNA/protein products have also been described. Several different
mechanisms have been found altered or dysfunctional in MNDs, like the protein quality
control (PQC) system. In this review, we will discuss how the PQC system is affected
in two MNDs—spinal and bulbar muscular atrophy (SBMA) and amyotrophic lateral
sclerosis (ALS)—and how this affects the clearance of aberrantly folded proteins, which
accumulate in motor neurons, inducing dysfunctions and their death. In addition, we will
discuss how the PQC system can be targeted to restore proper cell function, enhancing
the survival of affected cells in MNDs.
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INTRODUCTION

Motor neuron diseases (MNDs) are neurodegenerative diseases (NDs) characterized by the loss
of motor neurons in the brain cortex, in the bulbar region, and/or in the anterior horns of
the spinal cord; the consequence of motor neuron death is the lack of control on the skeletal
muscle fibers. While motor neurons are considered the primary target in MNDs, muscle and
glial cells may also be directly involved, and this affects motor neuron survival. MNDs are
generally fatal diseases, clinically characterized by severe loss of voluntary movements, muscle
weakness, spasticity, and atrophy. MNDs appear as sporadic or inherited forms, which have been
extensively studied in the last 30 years. The inherited forms are associated with gene mutations
that result in the production of altered RNA or proteins with reduced [loss-of-function (LOF)] or
aberrant neurotoxic [gain-of-function (GOF)] functions. Mixed LOF and GOF are also possible.
In LOF, the RNA or the protein affected are generally essential for motor neuron viability;
thus, their reduced activity often causes motor neuron death [e.g., in spinal muscular atrophy
(SMA); Lefebvre et al., 1995]. In these cases, the therapeutic intervention is aimed to restore
the proper activity of the missed/altered RNA or protein (Poletti and Fischbeck, 2020), and
successful therapies have been recently approved worldwide from regulatory agencies (Finkel
et al., 2017; Mendell et al., 2017; Mercuri et al., 2018). In GOF, different neurotoxic mechanisms
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have been reported to take place in a given mutant RNA or
protein. Unfortunately, this makes difficult to identify a common
therapeutic target for MNDs. Therefore, these approaches must
be specifically designed for each MND’s form. However, it is
now clear that many familial MND forms are characterized by
alterations of common intracellular pathways, which are often
also altered in sporadic MNDs. Thus, these pathways might serve
as potential therapeutic targets to reduce motor neuron death. In
this review, we will focus on one of the most common pathways
affected in MNDs, the protein quality control (PQC) system. In
fact, in several MNDs, which include spinal and bulbar muscular
atrophy (SBMA) and amyotrophic lateral sclerosis (ALS), the
PQC system becomes unable to correctly handle misfolded
proteins (mainly produced by the mutant gene), letting them
become harmful to motor neurons and/or to glial and skeletal
muscle cells.

MISFOLDED PROTEINS ASSOCIATED
WITH MOTOR NEURON DISEASES

Spinal and Bulbar Muscular Atrophy
SBMA is the first MND for which a specific gene mutation has
been linked to the disease as the cause of neuronal cell death (La
Spada et al., 1991). SBMA, initially defined as a pure MND, is
presently also classified as a neuromuscular disease. In fact, in
SBMA, the primarily affected cell populations are lower motor
neurons localized in the bulbar region of the brain (brain stem
containing motor neurons of the lower cranial nerves) or in the
anterior horn of the spinal cord (Sobue et al., 1989; La Spada et al.,
1991; Brooks and Fischbeck, 1995; Li et al., 1995; Brooks et al.,
1997). Dorsal root ganglia (DRG) neurons may also be affected
in SBMA (Chua and Lieberman, 2013) and the combination of
motor and DRG neurons loss is responsible for the clinical signs
which include muscle fasciculations, weakness, and subsequent
atrophy, including dysphagia and dysarthria with atrophy of the
bulbar, facial, and limb muscles, as well as sensory disturbances
at distal extremities (Sobue et al., 1989). So far, there is no
evidence for the involvement of other brain cell types (e.g., glial
cells or microglia). In addition to neuronal cells, skeletal muscle
cells are also directly affected in SBMA (Chua and Lieberman,
2013; Cortes et al., 2014a; Lieberman et al., 2014; Rinaldi et al.,
2014; Rusmini et al., 2015; Cicardi et al., 2019). This specific cell
susceptibility is because the gene responsible for SBMA encodes
for the androgen receptor (AR), and this gene is highly expressed
in all the cell types described above (Poletti, 2004; Marron et al.,
2005). The same cells express high levels of androgen-activating
enzymes (Poletti et al., 1994, 1997, 2001; Pozzi et al., 2003). SBMA
patients show mild endocrine alterations, like hypogonadism,
possibly due to modification of the gonadal-hypothalamic axis
or gynecomastia (Sobue et al., 1989; Kazemi-Esfarjani et al.,
1995; Polo et al., 1996; Belsham et al., 1998; Piccioni et al.,
2001). These alterations are often associated with reduced
AR function.

Since the AR gene locus is on the X-chromosome, SBMA
exists only as X-linked inherited form, but only males are
affected (La Spada et al., 1991). Notably, the mutated AR
protein is inactive in the absence of androgens [testosterone or

its derivative 5α-dihydrotestosterone (DHT)], while it acquires
toxic properties upon agonist binding (Katsuno et al., 2002,
2003), and the presence of androgens is thus mandatory
for symptoms appearance and disease manifestation. This is
possible since the AR mutation found in SBMA is radically
different from those responsible for partial or complete
androgen insensitivity syndrome (PAIS or CAIS) or tumors
like prostate cancer (Brinkmann, 2001). In SBMA, the mutant
AR gene is characterized by an expansion of a CAG (cytosine,
adenine, guanine) tandem repeat (La Spada et al., 1991).
The CAG sequence is expressed in exon 1 of the mRNA
and then translated into a polyglutamine tract in the AR
N-terminus (ARpolyQ). In normal individuals, the polyQ
length of AR is highly polymorphic, ranging from 15 to
35 Qs (Edwards et al., 1992; Kuhlenbäumer et al., 2001); in
SBMA patients the polyQ size becomes longer than 37 Qs
(to a maximum of 72; Fischbeck, 1997; Kuhlenbäumer et al.,
2001; Grunseich et al., 2014; Madeira et al., 2018). CAG
repeat expansions coding for elongated polyQ tracts have
been found in other eight genes, which are unrelated to
AR; the mutant protein products of these genes cause other
similar NDs (Ross, 2002). The ARpolyQ retains approximately
30% of its transcriptional functions, which explains the
endocrine signs present in SBMA, but acquires a novel toxic
function that impacts neuronal and muscle cell viability. As
mentioned above, this toxic function of ARpolyQ appears after
its activation by androgens. These AR ligands (testosterone
or DHT) may induce aberrant protein conformations to
ARpolyQ (protein misfolding), which becomes highly prone
to aggregation (Stenoien et al., 1999; Simeoni et al., 2000;
Piccioni et al., 2002). Details of this pathological mechanism are
provided below.

Amyotrophic Lateral Sclerosis
ALS is a typical MND characterized by the loss of both the
cerebral motor cortex or brainstem (upper) motor neurons and
the cranial nerves and ventral horns of the spinal cord (lower)
motor neurons. Neurons located in the frontotemporal cortex
may be involved in some specific forms of ALS (Robberecht
and Philips, 2013), which may clinically manifest in a pure
MND form or be associated with a different extension to
frontotemporal dementia (ALS-FTD). Differently from SBMA,
the surrounding non-neuronal glial cells [astrocytes (Trotti et al.,
1999; Boillee et al., 2006; Nagai et al., 2007), oligodendrocytes
(Philips et al., 2013), and Schwann cells (Lobsiger et al., 2009;
Manjaly et al., 2010)] are indirectly or directly affected in ALS.
Reactive microglia are also present in ALS-affected tissues, but
not in SBMA (Philips and Robberecht, 2011), proving that
neuroinflammation and oxidative stress may play a significant
role in ALS (Ferraiuolo et al., 2011). As in SBMA, the striatal
skeletal muscle target cells can also be directly affected in ALS
(Dobrowolny et al., 2008; Onesto et al., 2011; Cicardi et al.,
2018; Meroni et al., 2019). Ninety percent of ALS cases appear
as sporadic (sALS) forms, and only 10% of cases are caused by
inherited mutations linked to familial (fALS) forms. The two
types of ALS are clinically indistinguishable. Up to now, more
than 30 genes have been found altered in fALS (Robberecht and
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Philips, 2013; Cook and Petrucelli, 2019; Mathis et al., 2019;
Mejzini et al., 2019), and each of these accounts for disease, which
mainly occurs as monogenic disease, even if disease modifier
genes might exist. It is noteworthy that several of the gene
products that cause a specific fALS have been reported to acquire
an aberrant behavior of their wild-type (wt) forms in sALS. This
suggests the existence of common pathways that lead to motor
neuronal death in both fALS and in sALS (Neumann et al., 2006;
Daoud et al., 2009; Bosco and Landers, 2010).

ALS has a very high variability in terms of both age of onset
and disease progression, and it seems to occur earlier in males
compared to females (Vegeto et al., 2020), with a male/female
ratio of 1–3 in the geographic region and population evaluated in
the study (Kurtzke, 1982; Haverkamp et al., 1995; Manjaly et al.,
2010). The two sexes also show different symptomatology, since
in males the disease predominantly begins in the lumbar tract
of the spinal cord, while in females ALS mainly begins in the
bulbar region (see Blasco et al., 2012 for an extensive review). It is
likely that hormonal sex steroids may influence the neurotoxicity
of factors involved in the pathogenesis of ALS (see Vegeto et al.,
2020 for an extensive review).

Historically, the superoxide dismutase 1 (SOD1) gene is the
first gene associated with fALS. However, this mutation only
accounts for 15% of all fALS cases. SOD1 encodes a ubiquitously-
expressed antioxidant enzyme that acts as a free radical scavenger
enzyme (Bendotti et al., 2012). The most frequent fALS form
(almost 50% of all fALS) is due to a mutation in the C9orf72
(chromosome 9 open reading frame 72) gene; in particular, the
mutation consists of an expansion of a hexanucleotide (G4C2)
repeat located in the 5′-untranslated region of the C9orf72 gene.
Surprisingly, despite its location in an intronic sequence, the
G4C2 expansion (which is transcribed in both directions) is
utilized by ribosomes as a starting point for translation; this
results in the production of five different dipeptides (DPRs; Ash
et al., 2013; Gendron et al., 2013; Lashley et al., 2013; Mori et al.,
2013). The process has been identified as an unconventional
translation and named ‘‘repeat-associated non-ATG (RAN)
translation’’ (Zu et al., 2011). The five DPRs do not have a
physiological role, but they only exert toxicity in the expressing
cells of affected individuals. Other mutant genes are less
frequently represented in fALS: examples are the genes encoding
TARDNA-binding protein 43 (TDP-43), the ALS-linked fused in
sarcoma/translocated in liposarcoma (FUS/TLS), the ubiquilin-2,
the optineurin, the valosin-containing protein/p97 (VCP/p97),
and others. These alterations occur in a few fALS families, but
the same proteins (even if in the wt form) can be dysregulated
in sALS, suggesting that their functions are crucial to maintain
neuronal homeostasis (a list of the most common genemutations
identified so far in fALS is reported in Table 1). In particular,
TDP-43 is considered a hallmark for sALS since it mislocalizes
from nucleus to cytoplasm, where it aggregates in inclusions.
These inclusions are enriched by TDP-43 caspase-3-cleaved
fragments containing the C-terminal unstructured domain (Ratti
and Buratti, 2016).

A careful analysis of the gene products identified so far
suggests that several of their coded proteins have functions
that cluster in specific intracellular processes. One of the most

represented pathways is the PQC system (Table 1). In fact,
different ALS-associated proteins are directly involved in the
PQC system and others indirectly affect the PQC system due to
their mutation. Indeed, when mutated, they become unable to
properly reach the folded conformation and misfold. Misfolded
proteins must be cleared from cells, and with this mechanism
they may overwhelm the PQC system capability to handle
proteotoxic stresses. As in the case of ARpolyQ and in all other
elongated polyQ-containing proteins, which cause adult-onset
MNDs, the misfolded ALS proteins tend to segregate from the
nuclear or cytoplasmic compartments via a liquid-liquid phase
partitioning (Molliex et al., 2015; Patel et al., 2015; Ganassi et al.,
2016; Lee et al., 2016; Alberti et al., 2017; Boeynaems et al.,
2017; Freibaum and Taylor, 2017; Mackenzie et al., 2017). This
leads to an initial seed of aggregates with well-defined physical-
chemical properties, which then mature into aggresomes and
insoluble inclusions (Davies et al., 1997; DiFiglia et al., 1997; Li
et al., 1998; Lieberman et al., 1998; Kopito, 2000; Mediani et al.,
2019). The accumulating proteins may thus damage the PQC
system by saturating its functional capabilities or by clogging
the pathways devoted to protein clearance. For these reasons,
by forming aggregates, misfolded ARpolyQ or ALS-associated
proteins may perturb not only the PQC system, but also a series
of pathways that depend on the proper functioning of the PQC
system to maintain the correct cellular homeostasis.

THE PROTEIN QUALITY CONTROL
SYSTEM

Most cell types affected in MNDs are post-mitotic or generally
characterized by a poor mitotic index. This means that
these cells might accumulate aberrant proteins that cannot
be diluted by cell self-renewal or by simple partitioning into
duplicated intracellular compartments generated as a result of
cell division. Thus, these cells must develop a very sophisticated
system to maintain their proper protein homeostasis. Therefore,
post-mitotic non-dividing cells like neurons, motor neurons, or
skeletal muscle cells, as well as poorly replicating cells, like glial
cells, are highly prone to respond to misfolded protein species.
Misfolded species may be produced in response to different
cell stresses or as a consequence of gene mutations. These cells
are able to respond to these stresses in a very powerful way:
the overexpression of specific chaperones and co-chaperones,
paralleled by the potentiation of the degradative pathways. All
these factors are extremely well-coordinated to protect against
proteotoxicity, and their synergic activities constitute the PQC
system mentioned above. The PQC system thus acts as the
first line of defense and because of its protective action, its
selective modulation represents a valuable target for therapeutic
intervention in all protein misfolding diseases, including MNDs
like SBMA and ALS.

The PQC system is composed of a very large number of factors
clustered in specific families of proteins that work together to
define the fate of every single protein starting from its proper
folding after synthesis or denaturation, and it routes proteins to
degradation in case the folding fails.
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TABLE 1 | Gene mutations reported in familial amyotrophic lateral sclerosis (fALS).

The table shows the list of the most common mutated genes identified in fALS. The columns describe ALS name, gene symbol, protein function, aggregation propensity, involvement
in PQC and sporadic vs. familial form (o = low; oo = mid; ooo = high). Aggregation prone proteins are highlighted in brown, proteins involved in PQC system in orange, and those
that show both conditions in yellow.
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The Chaperones
The family of intracellular chaperones and their co-chaperones is
composed of more than 180 different proteins, some of which
share a high degree of homology. These chaperones generally
act in a specific subcellular compartment: for example, some
chaperones localize exclusively in the endoplasmic reticulum, in
the mitochondria, in the lysosomes, and/or in the cytoplasm,
where they mainly exert their protective activities. Most
chaperones are also expressed in a cell- and tissue-specific
manner, with some chaperones localized exclusively in one tissue
(e.g., in the testis), while others are ubiquitously expressed.
In addition, chaperones may be regulated in response to cell
stresses. Indeed, chaperones have been discovered as proteins
induced by heat shock, and found to protect cells against thermal
damages. Because of this, they have been named ‘‘heat shock
proteins’’ or HSPs (DiDomenico et al., 1982). This name still
stands formany chaperones, even if they have been demonstrated
to possess much wider activities against a spectrum of variables
capable of damaging intracellular proteins (e.g., oxidative stress,
hypoxia, DNA damage, aberrant translation, etc.). Based on their
structure and functions, these factors have been classified in
subfamilies of chaperones. Originally, chaperones were grouped
based on their apparent molecular weight after their biochemical
identification in SDS-PAGE (small HSPs, HSP40s, HSP60s,
HSP70s, HSP90s, and HSP100), but this classification now
reflects their functions in the folding processes. Based on
HUGO Gene Nomenclature Committee, a new nomenclature
has been adopted for the human HSP families: HSPB (small
HSP), DNAJ (HSP40), HSPD (HSP60), HSPA (HSP70), HSPC
(HSP90), and HSPH (HSP110; Kampinga et al., 2009; see also
Kampinga and Craig, 2010) for an extensive review). Chaperones

often require the assistance of co-chaperones, which serve as
nucleotide exchange factors (NEFs), like the members of the
BCL2-associated athanogene (BAG) protein family (Takayama
and Reed, 2001; Figure 1).

The Degradative Systems
Cells, including post-mitotic cells like neurons and skeletal
muscle cells, utilize two major degradative systems to
enzymatically destroy aberrant proteinaceous materials and
recycle their components for other proteins production. This
process is assisted by chaperones (and their co-chaperones),
which route aberrant proteins to degradative systems.

Proteins undergoing this degradation are damaged proteins
or regulatory proteins that ended their functions. The two
degradative systems are: (a) the ubiquitin proteasome system
(UPS); and (b) the autophago-lysosomal pathway (ALP). Of note,
UPS acts both in the cytosolic and nuclear compartment, while
ALP acts only in the cell cytoplasm.

(a) The UPS is a highly specific and very selective
proteolytic system mainly devoted to the clearance of short-
lived proteins. The UPS inactivates proteins controlling cell cycle
progression, apoptosis, transcription, and cell differentiation.
Moreover, the UPS mediates the immune response and it
is responsible for the clearance of damaged monomeric
proteins. UPS is based on two subsequent steps: the protein
is labeled by a covalent binding to ubiquitin (a small protein
of 76 amino acids), which is itself ubiquitinated forming a
poly-ubiquitin chain of several molecules of ubiquitin (Pickart,
2001a,b); and this poly-ubiquitinated protein is degraded
by the 26S proteasome. The recognition of the protein to
be degraded is mediated by different chaperones of the

FIGURE 1 | The role of heat shock proteins (HSP70) in the protein quality control (PQC) system. HSP70 plays an essential role in the protein folding process.
Through its interaction with HSP40, HSP70 is able to fold the proteins in non-native conformations. HSP70 and HSP40 are not the only HSPs involved. In fact, the
HSP90 system can assist protein folding in an independent way and the small HSPs respond to acute stress conditions. Notably, when necessary nucleotide
exchange factors (NEFs/BAGs) route HSP70 client proteins to degradative pathways (Ubiquitin-proteasome system and/or autophagy).
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HSP70/HSP40 families in a complex (Figure 1). HSP70 has
the ability to interact with specific E3-ubiquitin ligases (such
as the C-terminus HSP70 interacting protein, CHIP), which
selectively ubiquitinate misfolded proteins (Ciechanover, 1994;
Ciechanover and Brundin, 2003; Ciechanover and Kwon, 2015).
The ubiquitination cascade is rather complex. Ubiquitination
initially requires the activation of E1 enzymes that activate
ubiquitin; next, the activated ubiquitin is transferred to
E2 enzymes, which in concert with the E3-ubiquitin ligases
bind ubiquitin to a lysine residue of the substrate protein.
E3-ubiquitin ligases have slightly different functions (Jackson
et al., 2000; Joazeiro and Weissman, 2000). In addition,
deubiquitinating enzymes (DUBs) are involved in this process
(Amerik and Hochstrasser, 2004); DUBs maintain the cellular
pool of free ubiquitin by processing ubiquitin precursors and
recycling ubiquitin from poly-ubiquitinated substrates. Once
polyubiquitinated, the substrate protein is recognized by the
SQSTM1/p62, and other proteins of this class (Klionsky et al.,
2016) and routed to the proteasome for degradation. The
26S proteasome has a typical barrel shape constituted by a
large, multi-subunit protease complex: a 20S core complex
with catalytic activity and a 19S regulatory complex, the cap.
The cap receives the polyubiquitinated substrate, removes the
poly-ubiquitin chain and induces its translocation into the 20S
complex. Here, the substrate protein must enter the narrow
central 20S cavity for the enzymatic degradation to small
peptides. To this aim, folded proteins must be unfolded by the
19S subunit to reach a ‘‘linear’’ conformation. Thus, globular
or aggregated proteins are not processed by the proteasome
(Ciechanover and Brundin, 2003), and may even clog its catalytic
core. Molecular chaperones and co-chaperones cooperating
with the proteasomal-mediated degradation of ubiquitinated
substrates include the already mentioned HSP70/HSP40 (now
identified as HSPAs/DNAJs) and the HSP70/BAG1 complexes
(Figure 1; Demand et al., 2001; Alberti et al., 2002; Kampinga and
Craig, 2010; Kampinga and Bergink, 2016; Cristofani et al., 2017;
Cicardi et al., 2018, 2019). In the latter case, the HSP70/CHIP
complex, initially described as required for the substrate
ubiquitination, can associate to BAG1, and together with
SQSTM1/p62 it drives the ubiquitinated misfolded protein to
proteasomal degradation.

(b) The lysosomal-mediated system collects proteins
from various origins. The system is typically divided into
microautophagy, chaperone-mediated autophagy (CMA),
and macroautophagy (normally identified as autophagy).
These systems are evolutionarily well-conserved processes
required for the degradation of proteins or large cytosolic
components via the lysosome (Mizushima et al., 2008). In
the case of microautophagy, the cytosolic components are
directly engulfed into lysosomes via an invagination of its
membrane (Sahu et al., 2011). In CMA, only a specific subset
of proteins can be processed: those containing a pentapeptide
lysosome-targeting motif KFERQ or related consensus motifs
(also generated by specific post-translational modifications;
Orenstein et al., 2013; Kaushik and Cuervo, 2018; Kirchner
et al., 2019); the sequence allows the direct translocation
of cargo into lysosome. CMA requires the docking to the

lysosomal receptor lysosome-associated membrane protein 2A
(LAMP2A), as well as the protein unfolding by a chaperone
complex containing HSC70, BAG1, HSC70-interacting protein
(HIP), Hsp-organizing protein (HOP), and HSP40 (DNAJB1;
Kampinga et al., 2009; Kampinga and Craig, 2010; Kampinga
and Bergink, 2016). Instead, in macroautophagy (which the
general term ‘‘autophagy’’ usually refers to), the cytosolic
components are engulfed into the autophagosome, a double-
membrane vesicle that then fuses with the lysosome, in
order to deliver its content to the lysosome for degradation
(Xie and Klionsky, 2007). Initially considered as a sort of
non-specific degradation for long-lived proteins, organelles,
or protein aggregates, it is now clear that autophagy is tightly
regulated by several pro-autophagic factors (Mizushima
et al., 2008; Sardiello et al., 2009). In this latter form of
autophagy, it is also possible to distinguish between ‘‘in
bulk’’ autophagy and selective autophagy. While ‘‘in bulk’’
autophagy is characterized by a very high clearance capability
but is rather non-specific since it entraps large portion of
cytoplasm, selective autophagy is highly specific and involves
specific molecular regulators (Kaushik and Cuervo, 2018).
Selective autophagy includes chaperone-assisted selective
autophagy (CASA; Arndt et al., 2010; Kettern et al., 2011;
Sarparanta et al., 2012; Ulbricht et al., 2013, 2015; Ghaoui
et al., 2016; Sandell et al., 2016; Cicardi et al., 2019; Cristofani
et al., 2019; Rusmini et al., 2019), organelles-specific types of
autophagy (mitophagy, lysophagy, ribophagy, granulophagy,
etc.), or processes aimed at removing large protein aggregates
(aggrephagy; Nivon et al., 2012; Stürner and Behl, 2017;
Aparicio et al., 2020).

CASA has attracted large attention in the field of NDs,
specifically in MNDs, since this highly selective autophagy is
based on the recognition ofmisfolded substrates by a heteromeric
complex composed of a small HSP, the HSPB8, with its
co-chaperone BAG3. Once the misfolded protein is bound to
HSPB8/BAG3, the HSP70/CHIP dimer (already seen in the
UPS pathway) can be recruited. Here, the misfolded protein
is rapidly ubiquitinated by CHIP, allowing recognition by the
autophagy receptor SQSTM1/p62 (and related proteins) and
forming the CASA complex. Some studies include HSP40 or
DNAJ proteins in this complex (Sarparanta et al., 2012; Sandell
et al., 2016). In this context, the role of SQSTM1/p62 is different
from that exerted in association with BAG1/HSP70/CHIP,
which allows the use of the UPS pathway. When acting with
HSPB8/BAG3/HSP70/CHIP, the SQSTM1/p62 protein interacts
with the ubiquitinated misfolded proteins (or other cargoes)
and the lipidated form of the microtubule-associated proteins
1A/1B light chain 3B (LC3-II) anchored to the autophagosome
membrane. To allow SQSTM1/p62 and LC3-II-action, the
CASA complex takes advantage of a dynein binding motif
present in the BAG3 sequence. The CASA complex bound to
dynein is transported along microtubules to the microtubule
organizing center (MTOC). Ubiquitinated and SQSTM1/p62-
positive misfolded proteins are concentrated at MTOC to form
the aggresomes. Meanwhile, LC3-II decorated-autophagosomes
are generated, allowing aggresome insertion into a nascent
autophagosome. The autophagosome containing the CASA
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complex and the misfolded proteins fuses with the lysosome
to allow the degradation of the engulfed material following the
canonical autophagic pathway.

Selective autophagy is also involved in the degradation
of damaged organelles like mitochondria and lysosomes. In
mitophagy, the damaged mitochondria stabilize PINK1 on
its outer membrane. PINK1 recruits E3-ubiquitin ligases, like
Parkin, which amplify the ubiquitination of proteins in the
outer membrane mediating recruitment of the autophagic
receptors that interact with LC3-II present on the forming
autophagosome membrane (Youle and Narendra, 2011). Some
of the mitochondrial membrane proteins, like mitofusin, are
polyubiquinated with K48 ubiquitin chains. These proteins are
substrates of VCP/p97, an AAA+ ATPase, that segregates these
proteins from the mitochondria membrane and promotes their
degradation via UPS. The removal of these proteins is necessary
for mitochondria degradation (Tanaka et al., 2010; Tanaka, 2010;
Kimura et al., 2013). In lysophagy, ruptured lysosomes expose
galectins (Gal-3, Gal-8) as damage signals. Gal-8 is directly
recognized by autophagy receptors, while Gal-3 recruits and
binds TRIM16. Gal-3/TRIM16 complex promotes ubiquitination
of lysosomal proteins and recruits autophagy initiation factors
to trigger local phagophore formation (Thurston et al.,
2012; Chauhan et al., 2016). Moreover, K63-ubiquitinated
proteins recruit autophagy receptors, while K48-ubiquitinated
proteins are targeted by VCP/p97 to UPS degradation.
VCP/p97 recruitment to lysosome membranes and functioning
are mediated by its cofactors and adaptors YOD1, UBXD1,
and PLAA. The removal of K48 polyubiquitinated proteins is a
critical step to promote lysosome degradation (Fujita et al., 2013;
Akutsu et al., 2016; Papadopoulos et al., 2017).

The Unfolded Protein Response (UPR) and
the Endoplasmic Reticulum-Associated
Degradation (ERAD)
UPR and ERAD are two other key pathways devoted to the PQC
in cells. UPR is typically activated in the presence of an abnormal
excess of misfolded proteins, while ERAD mediates their
degradation by taking advantage of the cytosolic proteasome
mentioned above. In fact, the accumulation of misfolded proteins
in the endoplasmic reticulum (ER) activates the UPR. This action
is mediated by three different ‘‘sensors’’—inositol requiring
enzyme 1 (IRE1α), PKR-like endoplasmic reticulum kinase
(PERK), and activating transcription factor 6 (ATF6; Hetz,
2012)—that signal to dedicated pathways to stimulate either
protein folding or protein degradation. During this process,
ribosomes are forced to attenuate protein translation. ERAD
has a specific function in PQC system since the ER is a major
site for protein folding. When aberrant ER-resident proteins
are processed by ERAD, they are released into the cytosol for
proteasomal (when these are still soluble) or for autophagic
clearance (when they are in an aggregated form; Hetz, 2012).
Even in the case of ERAD, the proteins are ubiquitinated by
specific E3-ubiquitin ligases, like HRD1 in the SEL1L-HRD1
protein complex (where SEL1L acts as a cofactor). Ubiquitinated
misfolded proteins can be ‘‘retro-translocated’’ or ‘‘dislocated’’

(extracted) from the ERmembrane and transported to the cytosol
mainly by the activity of VCP/p97. VCP/p97 in complex with
UFD1-NPL4 first binds HRD1 and the ubiquitinated proteins,
then addresses substrates to the proteasome via shuttle cofactors
(Ye et al., 2005; Senft and Ronai, 2015). Even in the case of
the UPR-ERAD, a central role is played by an HSP70, BiP (or
HSPA5 or GRP-78), which has low intrinsic ATPase activity,
enhanced by co-chaperones of the DNAJ-proteins (the same
class of the HSP40, like ERdj4 or DNAJB9). In addition to
protein folding, the ER controls the Ca2+ homeostasis, being
the major intracellular Ca2+ reservoir (Hetz and Mollereau,
2014). When misfolded proteins accumulate in the ER, the
depletion of ER Ca2+ impacts on cell activity and enhances
stress. Store-operated Ca2+ influx is activated in these conditions
to assure the replenishment of Ca2+ levels (Szegezdi et al.,
2006). If ER stress is prolonged, the ability of the UPR to
restore ER homeostasis is reduced and this may cause ER
stress-induced apoptosis by activation of caspase 12 (Yoneda
et al., 2001). Once activated, the UPR-ERAD converges on
the proteasome or to autophagy; therefore, in this review we
will only focus on the proper degradative pathways. Details on
UPR-ERAD can be found elsewhere (for an extensive review see
Hwang and Qi, 2018).

Release Mediated by Extracellular Vesicles
Emerging data strongly suggest that the extracellular secretion
may also play an important role in the maintenance of
intracellular protein homeostasis by cooperating with or
even being a part of the PQC system (Desdín-Micó and
Mittelbrunn, 2017; Xu et al., 2018; Guix, 2020). In fact, it has
been found that several NDs-related proteins are secreted in
double membrane spherical particles known as extracellular
vesicles. This is the case for the amyloid-beta peptide and
tau/phosphorylated tau for Alzheimer’s disease (Pérez et al.,
2019), alpha-synuclein for Parkinson’s disease (Longoni et al.,
2019), misfolded/mutant SOD1, TDP-43 and its pathological-
related C-terminal fragments (of 35 kDa and 25 kDa) and
FUS for ALS (Basso and Bonetto, 2016; Iguchi et al., 2016;
Hanspal et al., 2017; Sproviero et al., 2018), and progranulin,
TDP-43, and C9orf72 DPRs for FTD and ALS-FTD (Benussi
et al., 2016; Iguchi et al., 2016; Westergard et al., 2016). The
extracellular vesicles are heterogeneous in size and are mainly
classified into three different types: exosomes, microvesicles, and
apoptotic bodies. These vesicles differ for size, proteins, and
lipids composition and intracellular origin. In fact, exosomes
are secreted membrane vesicles (approximately 30–120 nm in
diameter) formed intracellularly and released from exocytosis of
multivesicular bodies, whereas apoptotic bodies (approximately
1,000–4,000 nm in diameter) are released by dying/apoptotic
cells. Microvesicles (approximately 200–1,000 nm in diameter)
are shed from cells by an outward protrusion (or budding) of
the plasma membrane followed by fission of their membrane
stalk (for a detailed review see Akers et al., 2013; Colombo et al.,
2014; van Niel et al., 2018). A tight connection between PQC
and extracellular vesicles is particularly true for exosomes (Xu
et al., 2018). As stated above, exosomes are intraluminal vesicles
of the endosomal compartment that maturate into a structure
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called the multivesicular body after a very dynamic process. The
multivesicular body may release its content into the lysosome
for degradation or, under certain conditions, it may fuse with
the plasma membrane and secrete its intraluminal vesicles,
the exosomes. Interestingly, components of the CASA complex
may also affect/take part in extracellular vesicles pathway:
for example, STUB1/CHIP deficiency resulted in an increased
secretion of small extracellular vesicles that are enriched in
ubiquitinated and/or undegraded proteins and protein oligomers
(Ferreira et al., 2019), and BAG3 is found to be involved in
the exosome secretion of mutant Huntingtin upon proteasome
blockade (Diaz-Hidalgo et al., 2016). These evidences suggest
that extracellular vesicles have to be considered as new actors
in the proteostasis scenario, together with chaperones and the
degradative systems.

HOW THE PROTEIN QUALITY CONTROL
SYSTEM PROTECTS AGAINST
MISFOLDED PROTEIN TOXICITY IN SBMA
AND ALS

Data collected over the last 30 years suggest that ARpolyQ and
several ALS-associated proteins (listed in Table 1) may lead to
PQC system alterations (Kabashi and Durham, 2006; Voisine
et al., 2010; Rusmini et al., 2016, 2017; Cristofani et al., 2018,
2019). At the same time, the boost of key proteins involved in
PQC system regulation is protective in SBMA and ALS (Waza
et al., 2006; Yu et al., 2011; Giorgetti et al., 2015; Crippa et al.,
2016b; Rusmini et al., 2016, 2017, 2019, 2020; Cristofani et al.,
2018, 2019; Mandrioli et al., 2019).

Figure 2 summarizes how all the PQC system components
work synergistically to prevent misfolded protein accumulation
in these diseases.

Folding Process
The first line of PQC system intervention on the misfolded
protein is an attempt to restore the proper protein folding.
Even if the folding process is well-understood, many questions
still remain open in the case of disease-associated misfolded
proteins; in particular, to what extent the refolding of a
protein may occur after the first aggregation steps. The main
actors in the folding process are the HSP70s (also named
HSPAs), which are similar to nanomachines capable of switching
conformation using hydrolysis of ATP (Figure 1). This allows
HSP70 to change conformation in order to assist protein folding,
disaggregation, and degradation (see Kampinga and Craig,
2010; Kampinga and Bergink, 2016 for an extensive review).
HSP70 is a hub that requires the assistance of HSP40s (or
DNAJ proteins) in order to recognize the protein to be folded,
and of NEFs, like the BAGs, which exchange ADP/ATP during
the hydrolytic process (Sondermann et al., 2001; Rauch and
Gestwicki, 2014).

Misfolded proteins responsible for SBMA and ALS are able
to alter this finely-tuned process. These misfolded proteins
escape the correct folding and expose unstructured domains
highly prone to aggregate. Such domains are present in the

FIGURE 2 | The PQC system. The fate of misfolded proteins is finely tuned
by the PQC system. This system is centered on a group of chaperones and
co-chaperones assisting proteins to reach their correct conformation or
directing proteins to degradative systems. Each pathway needs specific
proteins that assist the action of HSP70: (i) HSC70 interacting protein 1 (HIP)
and HSP70-HSP90 organizing protein (HOP) in the folding process; (ii)
sequestosome 1 (SQSTM1/p62), E3-ubiquitin ligase C-terminus HSP70
interacting protein (CHIP), BAG family molecular chaperone regulator 3
(BAG3) and heat shock protein B8 (HSPB8, B8 in figure) in chaperone
assisted selective autophagy (CASA); (iii) Lysosome-associated membrane
glycoprotein 2 (Lamp2A) in chaperone mediated autophagy (CMA); and (iv)
SQSTM1/p62, CHIP, BAG family molecular chaperone regulator 1 (BAG1) in
ubiquitin proteasome system (UPS). The HSP70 interactors at lysosome
membrane remain to be determined [indicated in figure as (?)] even if
coimmunoprecipitation and colocalization studies identified HSP90, HSP40,
HOP, HIP, and BAG1. Their role in CMA and microautophagy remains to
be determined.

ARpolyQ in its poorly structured N-terminus containing the
polyQ stretch, in the prion-like domains of TDP-43 and FUS
proteins, and maybe also in the five DPRs derived from
the C9orf72 mRNA, which do not possess tertiary structures.
These unstructured domains may clamp together in a liquid-
liquid partitioning of phases, forming membraneless organelles
attracting other compatible molecules (e.g., RNAs or proteins
which normally interact with these unstructured proteins). The
mutations in these proteins greatly enhance their capability
to generate liquid-liquid intracellular compartments, which
soon after their formation may mature into aggresomes, stable
aggregates, and even insoluble inclusions trapping specific
intracellular factors (Molliex et al., 2015; Patel et al., 2015;
Ganassi et al., 2016; Alberti et al., 2017; Boeynaems et al., 2017;
Mackenzie et al., 2017; Mateju et al., 2017; Marrone et al.,
2018). Specific proteins are known to accelerate the conversion
of the aggregates formed after phase separation into stable
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insoluble aggregates. Conversely, chaperones and co-chaperones
may prevent this conversion, delaying the maturation into
stable structures and facilitating the disassembling of the newly
formedmembraneless organelles. This activity of chaperones and
co-chaperones should permit the refolding process of amisfolded
protein even after its entrapping in the aggresomes when they
are still dynamic (Jaru-Ampornpan et al., 2013; Mattoo and
Goloubinoff, 2014; O’Driscoll et al., 2015; Zaarur et al., 2015;
Mathew and Stirling, 2017; Kitamura et al., 2018; Alexandrov
et al., 2019).

Alterations of UPS in SBMA and ALS
Evidence suggests that ARpolyQ, SOD1, TDP-43, and its ALS
associated fragments, as well as other ALS-proteins, including
at least one out of five DPRs of C9orf72, are processed via the
proteasome (Rusmini et al., 2007, 2010, 2011, 2013, 2019; Sau
et al., 2007; Crippa et al., 2010b, 2016a; Onesto et al., 2011;
Cristofani et al., 2017, 2018; Cicardi et al., 2018, 2019). However,
the large amounts of misfolded proteins formed when specific
gene mutations occur may overwhelm the UPS capability to
degrade them efficiently. This process is accentuated in aged
cells in which the chaperone and UPS activities are reduced
(Ciechanover and Brundin, 2003; Terry et al., 2004, 2006; Wang
K. et al., 2018; Hegde et al., 2019). It is also possible, as in the
case of the elongated polyQ tract of the AR, that the proteasome
proteolytic capability is unable to digest the long polyQ sequence
since no consensus cleavage sites for its enzymatic activity are
present between the Qs; thus, long uninterrupted polyQ size
might block the narrow catalytic site, where only a single protein
can enter and be degraded. We showed that while the wtAR
with a 23Q stretch can be cleared via the proteasome even
in presence of androgens (Rusmini et al., 2007), the mutant
ARpolyQmay impair the UPS function; in fact, by expressing the
ARpolyQ in basal condition (absence of androgens), we noted
an accumulation of the proteasome activity reporter GFP-CL1
(GFPu) as an indication that the elongated polyQ is poorly
processed by the UPS and interferes with the activity of this
degradative pathway. Interestingly, the inactivated ARpolyQ
does not play toxicity in all cell models tested. Surprisingly,
when the ARpolyQ is activated by androgens (which bound at
the AR C-terminus), the protein is thought to acquire toxic
conformations (Stenoien et al., 1999; Simeoni et al., 2000;
Piccioni et al., 2002; Poletti, 2004), but the UPS is fully functional
(Rusmini et al., 2007) since the GFPu reporter is fully degraded
by the UPS. An explanation for this unexpected phenomenon is
that by inducing the ARpolyQ toxic conformation, androgens
also induce its misfolding (possibly via a phase partitioning
phenomenon; Eftekharzadeh et al., 2019; Escobedo et al.,
2019) and sequestration into subcellular compartments (the
aggregates), protecting the cell from this dangerous protein
conformation (Rusmini et al., 2007, 2010). The formation of
aggregates acts as a sink that permits UPS desaturation from the
excess of ‘‘free’’ polyQ to be processed. Meanwhile, aggregates
might stimulate autophagy for ARpolyQ clearance (see below). It
is thus expected that also autophagy alterations might contribute
to the accumulation of stable insoluble ARpolyQ aggregates
in cells (Rusmini et al., 2013; Giorgetti et al., 2015; Cristofani

et al., 2017; Cicardi et al., 2019). As will be discussed below,
the potentiation of CASA restores normal ARpolyQ clearance.
A similar UPS role has been found involved in the clearance
of ALS-misfolded proteins. Mutant SOD1 is mainly cleared by
the UPS, and its pharmacological inhibition with MG132 results
in an accumulation of ubiquitin-positive SOD1 aggregates in
cells (Crippa et al., 2010a,b, 2016a; Cicardi et al., 2018). This
aggregated SOD1 is poorly removed by autophagy but, as seen
for ARpolyQ, the induction of CASA restores complete clearance
of aggregating mutant SOD1 (Crippa et al., 2010a,b, see below).
TDP-43 and its 35 kDa and 25 kDa TDP-43 fragments follow the
same route of degradation identified for inactive ARpolyQ and
mutant SOD1 (Crippa et al., 2016a; Cicardi et al., 2018, 2019).
Even in this case, UPS inhibition results in an accumulation and
mislocalization of TDP-43 and fragments, aside from the 25 kDa
TDP-43 fragment. CASA induction reverts also this phenotype
(Crippa et al., 2016a; Cicardi et al., 2018). It is unclear whether
autophagy defects play a major role in the accumulation of
these TDP-43-related aberrant species and this may underline
differences in the type of toxicity exerted by these MNDs
proteins. Recent works have shown that TDP-43 inclusions and
TDP-43 hyperphosphorylation (typical hallmarks of ALS-motor
neurons) are also present in muscles in sALS patients. This
discovery raised a question: whether TDP-43 misfolded species
could accumulate and exert toxicity in muscle cells. We found
that the insoluble TDP-43 fragments also accumulate in muscle
C2C12 cells, but their aggregation is reverted by tuning the
expression of key components of the CASA complex. Whether
the accumulation of these fragments in muscle tissue is causative
of muscle atrophy is yet to be elucidated (Cicardi et al., 2018).

Also, the C9orf72 DPRs degradation is mediated by UPS and
autophagy, even with different behavior of the five DPRs, since
only the polyGP is efficiently degraded by the UPS (Cristofani
et al., 2018). PolyGP is also degraded via autophagy that is able
to efficiently remove polyPA, polyGR, and polyGA (Cristofani
et al., 2018). Conversely, only the polyPR seems to be resistant
to both degradative systems in basal condition. The reasons for
these differences are still unclear, but CASA activation prevents
the accumulation of all five DPRs (Cristofani et al., 2018), as will
be described below.

Collectively, these data suggest that several MND-associated
misfolded proteins can be cleared by the UPS system, possibly
in a monomeric state. It is expected that UPS overwhelming
will result in an accumulation of these species that, once
concentrated in specific subcellular compartments (liquid-liquid,
aggresomes, etc.), may reversibly aggregate. This mechanism
might protect from misfolded protein toxicity since these
species are sequestered, limiting their potential toxicity. If the
accumulation persists, the aggregates may mature to more stable
and potentially toxic species, and thus must be removed using
alternative strategies by the cells.

Alteration of Autophagy and CASA in
SBMA and ALS
Alteration of autophagy has been reported in animal and cell
models of SBMA (Montie and Merry, 2009; Yu et al., 2011;
Doi et al., 2013; Rusmini et al., 2013, 2015, 2019; Chua et al.,
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2014; Cortes et al., 2014b; Thellung et al., 2018; Cicardi et al.,
2019) and ALS (Kabuta et al., 2006; Morimoto et al., 2007;
Li et al., 2008; Wang et al., 2012; Crippa et al., 2013; Xiao
et al., 2015; Evans and Holzbaur, 2019; Nguyen et al., 2019).
Despite this, the complexity of the autophagic pathway makes it
difficult to fully understand which level of this multistep process
is affected by the presence of misfolded proteins. It is evident
from experimental data that autophagy activation has a beneficial
role in disease since pharmacological or genetic induction of
autophagy ameliorates disease phenotype (e.g., delaying disease
onset, slowing down its progression or ameliorating motor
behavior; Montie et al., 2009; Wang et al., 2012; Castillo et al.,
2013; Kim et al., 2013; Tohnai et al., 2014; Zhang et al., 2014;
Giorgetti et al., 2015; Li et al., 2015; Perera et al., 2018; Wang
Y. et al., 2018; Rusmini et al., 2019). Unfortunately, not all
studies agree with these observations (Zhang et al., 2011). By
focusing on CASA, which has already been mentioned above,
it must be noted that HSP70 chaperones and others require
the assistance of co-chaperones, like the member of the NEF
family (Kampinga and Craig, 2010), which includes the BAGs
(Takayama and Reed, 2001). Cells utilize different BAGs to
route misfolded proteins either to the UPS or to autophagy
(Figure 1). BAG1 associates to HSP70 and CHIP to route
misfolded proteins to the UPS, while BAG3, in association
with HSPB8, interacts with HSP70/CHIP to route misfolded
proteins to autophagy (Figure 2). This allows to select which
pathway has to be followed bymisfolded proteins to be efficiently
cleared from cells; the perturbation of this equilibrium may
result in misfolded proteins accumulation (Cristofani et al.,
2017, 2019; Rusmini et al., 2017). The importance of the CASA
complex in cell protection against proteotoxicity is underlined
by the fact that mutations in the genes coding for almost all
components of the CASA complex have been associated with
human diseases. Indeed, mutations in HSPB8 cause diseases of
motoneurons and/or muscle cells [Charcot-Marie-Tooth (CMT)
type 2L disease, hereditary distal motor neuropathy type II
(dHMN-II), or distal myopathy; Fontaine et al., 2006; Irobi et al.,
2010; Ghaoui et al., 2016; Al-Tahan et al., 2019]. Mutations in
BAG3 are causative of dilated cardiomyopathy (Arimura et al.,
2011), muscular dystrophy (Selcen et al., 2009), giant axonal
neuropathy, and late-onset axonal CMT neuropathy (Jaffer et al.,
2012; Shy et al., 2018). Interestingly, three BAG3 mutations
involve the Pro209 residue (Pro209Leu, Pro209Ser, Pro209Glu),
which falls in one of the two HSPB8-interacting Ile-Pro-Val
(IPV) motifs. These Pro209 mutants still retain the ability
to bind to all CASA members but they impair HSP70 client
processing, and they accumulate at the aggresome preventing
target protein degradation and sequestering CASA members
(Meister-Broekema et al., 2018; Adriaenssens et al., 2020).
Mutation in STUB1/CHIP have been found in Gordon Holmes
syndrome (multisystemic neurodegeneration; Hayer et al., 2017)
and more recently in SCA48 (Genis et al., 2018), and a
destabilized CHIP (linked to six different variants) is present
in SCA16 (Pakdaman et al., 2017; Kanack et al., 2018); also,
a missense mutation in the CHIP-ubiquitin ligase domain was
reported as the cause of a form of spinocerebellar autosomal
recessive 16 (SCAR16; Shi et al., 2013, 2018). Mutations of

the SQSTM1/p62, which recognizes the CHIP-ubiquitinated
cargo inside the CASA complex (some authors include it as
a member of this complex), are responsible for fALS (Fecto
et al., 2011; Teyssou et al., 2013). Of note, it has been suggested
that in skeletal muscle, DNAJB6 of the DNAJ/Hsp40 family
(HSP70 co-chaperones) suppresses aggregation of misfolded
proteins involved in NDs (Hageman et al., 2010) and
participates to the formation of the CASA complex (Sarparanta
et al., 2012). Interestingly, a mutation in DNAJB6 causes
Limb-girdle muscular dystrophies (LGMDs), characterized by
aggregates of DNAJB6 sequestering CASA complex proteins
(Sandell et al., 2016).

The CASA complex is involved in mutant SOD1-associated
fALS (Crippa et al., 2013). Indeed, mutant SOD1 induces a
robust autophagic response both in the spinal cord and in
muscle. BAG1, BAG3, HSPB8, LC3, and SQSTM1/p62 are
significantly upregulated in mutant SOD1 transgenic ALS mice
at the symptomatic stage (16 weeks). Notably, the autophagic
response is much higher in muscle than in spinal cord,
supporting the absence of high molecular weight insoluble
species of mutant SOD1 in muscle; this also suggests that the
toxicity exerted by mutant SOD1 in muscle cells is probably
not related to the classical mechanism of intracellular protein
aggregation (Galbiati et al., 2012, 2014). Interestingly, an analysis
performed in SBMA knock-in mouse model revealed that
the CASA complex is highly upregulated in skeletal muscle
after disease onset, while no variations were observed in the
spinal cord. In fact, HSPB8 and BAG3 mRNA and protein
levels are increased in SBMA mice at the symptomatic stage
compared to control, as well as the co-chaperone BAG1,
involved in routing misfolded proteins to UPS. The increased
BAG3 to BAG1 ratio suggested that autophagy is the main
proteolytic pathway activated in muscle tissue during SBMA
progression andCASA complex is involved in reducing ARpolyQ
toxicity in skeletal muscle, which is a primary site of SBMA
pathogenesis (Rusmini et al., 2015). HSPB8 seems to be a
limiting factor for the CASA complex (Crippa et al., 2010a,b).
HSPB8 overexpression rescues from protein accumulation and
aggregation of mutant SOD1 and TDP-43 in cell models of ALS
(Crippa et al., 2010a,b), while its silencing has opposite effects
favoring misfolded proteins accumulation in motor neurons
(Crippa et al., 2010a,b). Overlapping data were obtained with
other misfolded proteins implicated in Alzheimer’s disease,
Parkinson’s disease, a form of spinal cerebellar ataxia, (SCA3),
SBMA, fALS, and FTD. In fact, HSPB8 enhances the autophagy
clearance of beta-amyloid, alpha-synuclein (α-syn), the polyQ
proteins huntingtin, ataxin-3, and ARpolyQ, as well as all
five DPRs from the C9orf72 mRNA (Chávez Zobel et al.,
2003; Wilhelmus et al., 2006; Carra et al., 2008a,b; Crippa
et al., 2010b, 2016a; Bruinsma et al., 2011; Seidel et al., 2012;
Rusmini et al., 2013, 2016; Giorgetti et al., 2015; Cicardi
et al., 2018), while HSPB8 downregulation has the opposite
effects (Crippa et al., 2010b, 2016a,b; Rusmini et al., 2013;
Cristofani et al., 2017).

Since HSPB8 may be a limiting factor of CASA complex
activity and its overexpression is sufficient to restore
autophagy, it is clear that this protein represents a valid
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therapeutic target for these NDs. It has been demonstrated
that HSPB8 expression is induced by estrogens and other
selective estrogen receptor modulators (SERMs; Sun et al.,
2007; Piccolella et al., 2014, 2017; Meister-Broekema et al.,
2018), and this could help to explain why gender differences
occur in the appearance of several NDs (Vegeto et al., 2020).
Recently, we set up a high throughput screening (HTS) using
a reporter luciferase gene under the transcriptional control
of the human HSPB8 promoter. With this system, we found
that colchicine [a Food and Drug Administration (FDA)-
and European Medicine Agency (EMA)-approved drug]
stimulates HSPB8 expression and enhances the autophagy
clearance of the insoluble TDP-43 species (Crippa et al., 2016a)
in models of ALS. The drug is presently in phase II clinical
trial for ALS (Mandrioli et al., 2019). Other HSPB8 inducers
are some disaccharides, like trehalose, melibiose, or lactulose
(Rusmini et al., 2013, 2019; Giorgetti et al., 2015). Trehalose
has been tested in mouse models of Huntington’s disease,
ALS, Parkinson’s disease, Alzheimer’s disease, succinate
semialdehyde dehydrogenase deficiency, and oculopharyngeal
muscular dystrophy, and found to be capable of ameliorating
disease course and symptomatology (Tanaka et al., 2004;
Davies et al., 2006; Rodriguez-Navarro et al., 2010; Perucho
et al., 2012; Schaeffer and Goedert, 2012; Castillo et al., 2013;
Du et al., 2013; Sarkar et al., 2014; Zhang et al., 2014; He
et al., 2016). The mechanism of action of trehalose and its
analogs, melibiose and lactulose, was recently uncovered. These
disaccharides induce transient lysosomal permeabilization
and possibly calcium release from lysosomes. These events
trigger the Transcription Factor EB (TFEB) pathway, mediated
by the calcium-dependent phosphatase PPP3/calcineurin,
which dephosphorylates TFEB. Trehalose-activated TFEB
migrates into the nucleus where it acts on CLEAR responsive
elements to enhance the expression of genes controlling
autophagy and lysosomal biogenesis. With this mechanism
trehalose/TFEB-mediated activation of autophagy promotes
the clearance of damaged lysosomes through lysophagy,
but in parallel exerts neuroprotection by promoting the
degradation of mutant and misfolded proteins from neurons
(Rusmini et al., 2019).

Both colchicine and trehalose also induce BAG3 expression
(Lei et al., 2015; Crippa et al., 2016b), indicating that these
compounds may act via a general potentiation of CASA. Other
drugs have been found able to stimulate BAG3 expression
(e.g., proteasome inhibitors, TNF-related apoptosis-inducing
ligand, fludarabine, cytosine arabinoside, and etoposide) but
unfortunately, these drugs are used in chemotherapy with
relevant side effects, and are thus not suitable for NDs (Romano
et al., 2003; Chiappetta et al., 2007; Rapino et al., 2014). However,
they might serve as molecule templates for the development of
safer and better tolerated derivatives.

Alteration of CMA in SBMA and ALS
Nothing is known so far about the involvement of CMA in
the degradation of ARpolyQ in SBMA. Instead, recent data
suggest that CMA may play a role in NDs, including ALS
(Ormeño et al., 2020). Indeed, CMA is essential in Parkinson’s

disease where its dysregulation modifies the onset or progression
of the disease (Arias and Cuervo, 2011; Cuervo, 2011; Alfaro
et al., 2018; Kaushik and Cuervo, 2018). Alpha-synuclein protein,
leucine-rich repeat kinase 2 (LRRK2), Parkinson disease protein
7 (PARK7), and DJ-1, as well as myocyte-specific enhancer
factor 2D protein (MEF2D), which are dysregulated or mutated
in Parkinson’s disease, are CMA substrates (Vogiatzi et al.,
2008; Yang et al., 2009; Arias and Cuervo, 2011; Cuervo,
2011; Orenstein et al., 2013; Murphy et al., 2015; Alfaro et al.,
2018; Kaushik and Cuervo, 2018). Alzheimer’s disease is also
associated with CMA since the beta-amyloid peptide (Aβ),
the microtubule-associated protein Tau or the Regulator of
calcineurin 1 (RCAN1) are involved in Alzheimer’s disease and
are dysregulated when CMA is altered (Liu et al., 2009; Wang
et al., 2009, 2010; Park et al., 2016). CMA also plays a role in
Huntington’s disease (Koga et al., 2011; Qi et al., 2012), and
mutant huntingtin can sequester LAMP2A and HSC70, two
major players of CMA (Alfaro et al., 2018).

In ALS, CMA has been involved in TDP-43 metabolism
(Huang et al., 2014). These data were recently corroborated
by a study of the group of Budini et al., who pointed out
that also TDP-43 can be a CMA substrate (Ormeño et al.,
2020). This study started from the observation that TDP-43
contains a KFERQ-like domain, the consensus sequence that
allows the interaction with HSC70 (Huang et al., 2014); mutation
in this domain blocks the ubiquitin-dependent binding of
TDP-43 with HSC70. Other authors have shown that LAMP2A
downregulation induces the intracellular accumulation of the
ALS-associated TDP-43 fragments of 35 and 25 kDa (Huang
et al., 2014), and TDP-43 can also be forced to be degraded
via CMA (Tamaki et al., 2018). Ormeño et al. (2020) showed
in vitro that a recombinant form of TDP-43 is processed by
isolated rat liver lysosomes, a process that can be reduced by
competition with the GAPDH protein, a typical CMA substrate.
Endogenous TDP-43 accumulates in CMA+ lysosomes of the
brain (Ormeño et al., 2020). By using an artificial TDP-43
aggregate-prone protein, Ormeño et al. (2020) demonstrated
its interaction with HSC70 and LAMP2A, which causes an
upregulation of CMA activity and lysosomal damage. These
data open up the question of how CMA is involved not only
in the few fALS forms associated with mutations of TDP-
43, but also in the vast majority of sALS forms characterized
by an intense mislocalization and accumulation of TDP-43 in
affected neuronal and motor neuronal cells of ALS patients. By
analyzing the two CMA regulators (LAMP2A and HSC70) in
peripheral blood mononuclear cells (PBMCs) of ALS patients,
it was found that the levels of the lysosome receptor LAMP2A
were similar in control and ALS PBMCs, while the expression
of the cytosolic chaperone HSC70 was found reduced, but
the total amount of insoluble TDP-43 protein was found
increased and accompanied by aberrant intracellular localization
(Arosio et al., 2020). In parallel, HSC70 downregulation
in human neuroblastoma cells correlates with the increased
accumulation of the TDP-43 protein (Arosio et al., 2020). These
data are in line with experimental observation showing that
HSC70 is reduced in motor neurons of TDP-43-based ALS
fly models, as well as in iPSCs C9orf72 models differentiated
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to motor neurons (Coyne et al., 2017). In addition to these
observations, in ALS-PBMCs, the ratio of the expression
levels and protein of BAG1 and BAG3, which determines
the equilibrium between proteasome and autophagy (including
CASA), was also found altered (Arosio et al., 2020). Thus,
even if CMA is not directly affected in ALS-PBMCs, the
reduction of the CMA regulator HSC70 may be involved in
ALS pathogenesis.

Alteration of UPR-ERAD in SBMA and ALS
As mentioned above, proteasome and autophagy work together
in response to proteotoxic stimuli. Both pathways are also
involved downstream in the UPR occurring in the ER.
The UPR, activated in the ER lumen, generates a transient
translational inhibition along with the induction of chaperones
and the stimulation of the degradative pathways. Misfolding
proteins here are identified by BiP/GRP78 (an HSP70),
which assists the ERAD, also activating PERK and IRE1.
The PERK receptor attenuates translation in response to
UPR involving oligomerization and autophosphorylation
of PERK with eIF2alpha phosphorylation. In parallel, the
transcription factor XBP1 activated by alternative splicing
induces UPR stress genes, while cleaved activated ATF6 exits
the ER and moves to the nucleus to stimulate other UPR
genes. Collectively, this restores ER activities: in SBMA, an
ARpolyQ N-terminal fragment activates ER stress-inducible
promoter via ATF6, IRE1, and PERK. Indeed, ARpolyQ
toxicity is enhanced by ATF6 blockage and reverted by
ATF6 overexpression. Also, stimulation of PERK increases
ARpolyQ toxicity (Thomas et al., 2005). Thus, ARpolyQ
induces UPR, while UPR stimulation is protective in
SBMA (Rusmini et al., 2016). In a SBMA knock-in mouse
model, the downregulation of transcription factor C/EBP
homologous protein (CHOP), involved in UPR-ERAD,
worsened muscle atrophy (Yu et al., 2011). In parallel, in
mouse embryonic stem cells (ESCs), ARpolyQ inclusions
sequester CHIP and BiP/GRP78, inducing ER stress and
apoptosis. UPR was found with the induction of the ER
chaperones BiP/GRP78 and GRP94 and the stress markers
ATF6, phosphorylated PERK, GADD153/CHOP, and spliced
XBP-1. Notably, BiP/GRP78 overexpression reverted this
phenotype, while BiP/GRP78 downregulation had the opposite
effect (Yang et al., 2013). As mentioned above, ER stress and
Ca2+ homeostasis are tightly connected. In mouse model of
SBMA (Sopher et al., 2004; Malik et al., 2011; Montague et al.,
2014) alteration of Ca2+ homeostasis has been reported in
embryonic motor neurons in response to ER stress causing
ER-stress-induced apoptosis (Montague et al., 2014). ARpolyQ
specifically depleted ER Ca2+ levels and the store-operated
Ca2+ influx (Hetz and Mollereau, 2014; Tadic et al., 2014),
possibly via the reduction of the sarcoendoplasmic reticulum
Ca2+ ATPases (SERCA) 2b pump activity. This pump allows
ER Ca2+ re-uptake (Foradori and Handa, 2008), and its
dysregulation activates caspase 12 (Montague et al., 2014).
Thus, ER stress is also involved in SBMA pathogenesis
and may represent an additional therapeutic target for
this disease.

ER morphology alterations occur both in ALS patients and
ALS mouse models (Dal Canto and Gurney, 1995; Dal Canto,
1995; Oyanagi et al., 2008; Lautenschlaeger et al., 2012), possibly
because of protein accumulation in ER causing ER stress (Sasaki,
2010). Also, the Golgi apparatus is affected in ALS (Fujita et al.,
2000; Stieber et al., 2000). Mutant SOD1 inclusions in ER are
positive for BiP/GRP78 and calnexin (Wate et al., 2005; Kikuchi
et al., 2006), while some ER chaperones are upregulated in
ALS patients and mice (Atkin et al., 2006). Notably, mutant
SOD1 specifically binds Derlin-1, which controls the ERAD
machinery, and triggers ER stress-induced apoptosis (Nishitoh
et al., 2008). ER stress in ALS may also result from altered
ER calcium homeostasis (Grosskreutz et al., 2010) or by
ER-mitochondria calcium cycle unbalance (Damiano et al., 2006;
Grosskreutz et al., 2010; Jaronen et al., 2014). In addition,
ATF6, phospho-PERK, and phospho-eIF2α are elevated in ALS
mice and cell models (Atkin et al., 2006, 2008; Saxena et al.,
2009). In the spinal cord of ALS patients and mice, IRE1 is
increased (Atkin et al., 2006, 2008) and its phosphorylated form
correlated with spliced XBP1 in ALS mice (Kikuchi et al., 2006).
Notably, autophagy is induced in double knockout/transgenic
mice with mutant G86R-SOD1 and XBP1 blockage (Hetz et al.,
2008; Hetz, 2012; Hetz and Mollereau, 2014), suggesting that
autophagy may serve to protect when UPR/ERAD fails. A recent
study performed by the group of de Belleroche suggests that
at least 40 different target genes, associated with ERAD and
regulated by XBP1 or ATF6, are altered in spinal cord specimens
from ALS patients; this is paralleled by severe alterations and
activation of the IRE1α-XBP1 and ATF6 pathways (Montibeller
and de Belleroche, 2018). Among these genes, co-chaperones of
the DNAJ family (DNAJB9 and DNAJC10) modulating HSPA5
(BiP/Grp78, which is the only HSP70 in the ER; Kampinga and
Bergink, 2016) were increased in this dataset. Both DNAJB9 and
DNAJC10 are involved in ERAD (Behnke et al., 2015) and
may suppress cell death induced by ER stress (Kurisu et al.,
2003). As occurs in SBMA, misfolded proteins also impact
ERAD-UPR in ALS, suggesting that similar strategies based on
the reinforcement of this pathway can contribute to restore
protein homeostasis in affected cells.

CONCLUSIONS

In conclusion, data accumulated over the past 30 years have
suggested that specific proteins cause MNDs by triggering
aberrant responses in neurons and other cells involved in this
group of diseases. The alteration of the PQC system is presently
thought to be one of the major factors responsible for both the
onset and progression rate of the disease. PQC systems failure
could be directly associated with a mutant protein involved in
one of the PQC pathways, or indirectly associated with effects
caused by the overproduction of misfolded proteins that saturate
or impair the PQC system activity. This leads to a reduced
PQC potential to maintain the proper cellular homeostasis,
especially during cell stresses. Notably, this system is presently
considered a potential druggable target, since it provides huge
numbers of players with activity that can be pharmacologically
or genetically enhanced or modulated. Indeed, several of the
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cooperative factors playing a role in the PQC system can be
specifically induced or downregulated, allowing the potentiation
of a single arm of this defense mechanism. In many cases, the
restoration of the proper function of one PQC arm has positive
effects on the other arms of the system; they together provide
a redundant mechanism capable of efficiently clearing most
of the aberrant aggregating proteins, thus reducing cell death.
Different approaches aimed to potentiate one or more arms of
the PQC system have already been preclinically tested and are
under investigation in clinical trials. Hopefully, these approaches
will identify new treatments to counteract neurodegeneration
in MNDs.
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