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Neuromodulation techniques such as deep brain stimulation (DBS) are a promising
treatment for memory-related disorders including anxiety, addiction, and dementia.
However, the outcomes of such treatments appear to be somewhat paradoxical, in that
these techniques can both disrupt and enhance memory even when applied to the same
brain target. In this article, we hypothesize that disruption and enhancement of memory
through neuromodulation can be explained by the dropout of engram nodes. We used
a convolutional neural network (CNN) to classify handwritten digits and letters and
applied dropout at different stages to simulate DBS effects on engrams. We showed that
dropout applied during training improved the accuracy of prediction, whereas dropout
applied during testing dramatically decreased the accuracy of prediction, which mimics
enhancement and disruption of memory, respectively. We further showed that transfer
learning of neural networks with dropout had increased the accuracy and rate of learning.
Dropout during training provided a more robust “skeleton” network and, together with
transfer learning, mimicked the effects of chronic DBS on memory. Overall, we showed
that the dropout of engram nodes is a possible mechanism by which neuromodulation
techniques such as DBS can both disrupt and enhance memory, providing a unique
perspective on this paradox.
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INTRODUCTION

Memory systems are crucial for survival and, to a large extent, define who we are. However,
memory systems can fall into disease when expressed pervasively (e.g., anxiety or addiction) or
degenerate (e.g., dementia)—both of which are major health challenges worldwide (World Health
Organization, 2012, 2017). Neuromodulation techniques such as deep brain stimulation (DBS)
have shown promising results as treatments for memory-related disorders (Tan et al., 2019b,
2020b), yet the mechanisms behind these effects are still largely unknown. Furthermore, the
effects of treatments such as DBS appear to be paradoxical, in that they can both disrupt (Hamani
et al., 2010; Tan et al., 2019a) and enhance memories (Hamani et al., 2011; Tan et al., 2020c)
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even when applied to the same brain target (detailed review in
Tan et al., 2020b). We have previously suggested that DBS is able
to disruptmemory by ‘‘removing’’ nodes in an engram (Tan et al.,
2019b). Engrams are a theoretical means by which memory is
physically stored in the brain and can be thought of as a subset
of neurons in a given memory brain region (e.g., hippocampus)
that are recruited in the initial memory encoding phase (Ramirez
et al., 2013). In this manuscript, we take the view that engrams are
plastic synapses (associative/connectionist model), and hence,
engram nodes are synapses between engram neurons (Langille
and Gallistel, 2020). Despite increased knowledge of engrams
and new techniques to study them, the theory that DBS disrupts
memory by ‘‘removing’’ engram nodes (synapses associated
with the engram) remains untested partly due to the lack of
technology to monitor large engram networks in real time.
Besides, this theory does not explain (at least directly) how
memory enhancement is achieved.

The development of machine learning techniques offers a
unique computational approach to simulate hypothetical models
of learning and memory, and the effects of manipulation
on memory, which we have previously used to highlight
potential mechanisms of memory disruption by DBS (Tan
et al., 2019b). To model the learning process, we trained a
convolutional neural network (CNN) to classify handwritten
digits and letters.

CNNs are a type of artificial neural network that is commonly
applied to image recognition tasks. The concept of CNNs was
developed from early observations of the visual cortex by Hubel
and Wiesel (1959, 1962), in which groups of neurons fired
distinctively in response to different light patterns (e.g., straight
lines, circles). In a typical CNN, features are extracted by the
network using a convolutional layer followed by classification.
For image tasks, this convolutional layer is comprised of a series
of convolution filters that are associated with particular patterns
of pixels, which mimic receptive fields in the retina. These
trainable filters are also referred to as weights of the network,
similar to synapse/synaptic strength in biological systems. In
image classification, the CNN decomposes the input image
into patterns of pixels known as features. First, an input
image is partitioned into non-overlapping regions with each
region mapped to a specific neuron. Second, the neurons are
convolved by multiple filters to generate a feature map in the
convolution layer. The resultant feature maps can be further
decomposed by inputting these maps into successive convolution
layers. After a specified number of decompositions, the resultant
features are used to classify the input image using the fully
connected layer.

In this article, we hypothesize that the paradoxical ability of
DBS to both disrupt and enhance memory can be explained
through dropout (a process of randomly shutting down or
dropping neurons) in engram nodes by using CNN to simulate
learning and memory.

Due to limited systematic studies looking at DBS and
memory, we based our modeling on the results from our
previous studies that showed high-frequency stimulation of the
ventromedial prefrontal cortex (vmPFC) could both enhance
(Tan et al., 2020c) and disrupt (Tan et al., 2019a) memory. Based

on these findings, we focused on the hippocampal engram and
implicit associative memories in the proposed simulation.

MATERIALS AND METHODS

Dataset
To model the learning process, we trained a CNN to classify
handwritten digits and letters from the EMNIST dataset. The
EMNIST dataset is a public database of over 800,000 handwritten
digits and letters across 62 different classes (Cohen et al., 2017).
In our study, we used the EMNIST balanced dataset, which is
derived bymerging similar classes of letters. This dataset contains
131,600-28× 28 pixel images of 47 balanced classes (10 digits and
37 uppercase and lowercase letters).

Network Architecture
The CNN consists of an input layer of size 28 × 28 × 1 followed
by two convolution layers of 32 and 64 filters, leading to a
feature map of size 5 × 5 × 64. No padding was used for the
convolutions, and a filter of size 3 × 3 was used in both layers. At
the end of each convolution layer, we applied max pooling with
a 2 × 2 window. Max pooling is a standard process for reducing
the dimensions of feature maps by sampling the maximum value
for a given window size, which forces the network to enhance and
focus on important features (Yamaguchi et al., 1990). Global max
pooling was applied to the feature map to extract 64 × 1 latent
features. For feature classification, the features were passed
through to a fully connected layer of 100 neurons. A rectified
linear unit (ReLU) was applied as an activation function in all
the layers, which is a ramp function where all negative value
neurons are zeroed to ensure unidirectionality. The parameters
in all the networks were optimized using binary cross-entropy or
loss function. All networks were trained for 500 epochs in batches
of 10 images. An epoch is defined as one complete run-through of
all the training data. For the analysis, the average loss of training
data and average classification accuracy of the testing data were
evaluated at the end of each epoch.

Experiments
We conducted three sets of experiments in this study. In
Experiment 1, we trained a network to classify 10 different digits
(0–9) from the EMNIST balanced dataset. We applied dropout (a
process of randomly shutting down or dropping neurons) either
during the training stages or just prior to testing at each epoch.
We used a dropout rate of 50%, such that half the neurons were
dropped at each step (Figures 1A,B). Dropout was only done on
fully connected latter layers of the network. As the aim of the
study was not to train a network to classify the digits accurately
but to analyze the learning process, the network was trained on
1,000 randomly sampled digits as the training dataset, and the
network was evaluated on another 1,000 randomly sampled digits
as the testing dataset. All networks were trained with the same
training dataset and tested with the same testing dataset.

In Experiment 2, we similarly trained a network identical to
that of Experiment 1 but applied variable dropout rates (20%,
40%, 60%, and 80%) during the training stages.
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FIGURE 1 | Methodology. A convolutional neural network (CNN) was trained to classify handwritten digits in the EMNIST dataset (A). Dropout was applied to 50%
of nodes in the fully connected layer (B). Transfer learning was performed to retrain the network to recognize uppercase letters (C).

In Experiment 3, we transferred the network to learn
26 uppercase letters (A to Z) in a process known as transfer
learning, in which the networks and weights of the control (non-
dropout) group and dropout group were applied to the new task
(Figure 1C). We retrained the network to recognize uppercase
letters by stripping the last output layer and replacing it with the
26 classes corresponding to each letter class. We evaluated the
performance of the transfer learning using the trained network
with and without dropout compared to the performance of a
network directly trained on letters without transfer learning
(Figure 1C). Due to the increased complexity of more letter
classes, we used 5,000 randomly sampled letters as the training
dataset and 1,000 randomly sampled letters as the testing dataset.

RESULTS

Experiment 1
To simulate the effects of DBS on memory, we applied dropout
during the training or testing stages. The accuracy of prediction

was used as an indication of how ‘‘well’’ the neural network had
learned the task, which serves as a proxy for memory. Therefore,
a higher accuracy of prediction should indicate higher memory
function. In our experiment, dropout applied during training
improved the accuracy of prediction, whereas dropout applied
during testing dramatically decreased the accuracy of prediction
(Figure 2A).

Experiment 2
To simulate the different parameters of DBS and to further
understand how different rates of dropout would affect DBS
during the training stages, we applied different percentages of
dropout. In our experiments, a dropout of 20%, 40%, or 60%
resulted in a higher training accuracy, whereas a dropout of 80%
resulted in a lower training accuracy (Figure 2B). Interestingly,
20% or 40% dropout resulted in lower training loss (defined as
the average errors made across the testing) than the baseline
initially, and 60% dropout resulted in higher training loss than
the baseline by the second epoch, whereas 80% dropout showed
the highest training loss throughout (Figures 2C,D).
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FIGURE 2 | Dropout in neural nodes disrupted or enhanced learning in the neural networks depending on when it was applied. Dropout applied during training
improved prediction accuracy, whereas dropout applied during testing dramatically decreased prediction accuracy (A). (B) Prediction accuracy of different rates of
dropout during training. (C) The training loss and (D) a zoomed in version of the first 20 epochs in panel (C).

Experiment 3
To simulate a novel memory task post chronic DBS, we applied
the process of transfer learning on the trained network, in which
the networks and weights of the control (non-dropout) group
and dropout groups were applied to a new task. Overall, transfer
learning of a network showed increased accuracy compared
to a network without transfer learning (Figure 3A), indicating
higher memory function. In addition, there were decreased
testing and training losses (Figures 3B,C; defined as the
average errors made across the testing or training, respectively).
Decreased loss indicates better performance or better fitting of
the training/testing data, which serves as a proxy for increased
rate of learning. Transfer learning in neural networks with
dropout resulted in better accuracy (Figure 1) and lower training
and testing loss (Figures 3B,C) compared to transfer learning in
networks with no dropout.

DISCUSSION

We have previously argued that timing plays an important role in
the outcome of DBS on memory (Tan et al., 2020b). DBS applied
post or during behavior testing tended to disrupt memory,
whereas DBS applied prior to behavior testing tended to enhance
memory. However, the mechanisms behind these outcomes are
still relatively unknown. Indeed, we found that dropout applied
during training improved the accuracy of prediction, which was
similar to the enhancement of memory seen when DBS was
applied prior to behavior testing in our previous animal studies
(Liu et al., 2015). On the contrary, we found that dropout applied
post training dramatically decreased the accuracy of prediction,
which was similar to the disruption of memory seen when DBS
was applied during consolidation of memory in our previous
animal studies (Tan et al., 2019a; Figure 2A).
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FIGURE 3 | Transfer learning of networks that underwent dropout showed higher prediction accuracy and faster learning. Compared to non-dropout networks,
transfer learning of neural networks with dropout had increased accuracy (A) with lower training loss (B) and testing loss (C).

We used CNNs (as opposed to standard fully connected
networks) in this study as they are commonly applied in image
recognition tasks. Although CNNs are modeled on the visual
cortex, dropout was only applied on fully connected latter layers
in the network to represent dropouts applied in the hippocampus
rather than in the visual cortex. This mimicked our previous
experiments on the effects of prefrontal cortex stimulation on the
hippocampus (Tan et al., 2019a, 2020c).

In order to simulate different DBS parameters in a generalized
manner, we applied different percentage dropouts during the
training stage. We showed that lower dropout rates (20%)
effectively increased both accuracy and training loss, whereas a
higher dropout rate (80%) drastically decreased the ability of the
neural network to learn the task effectively. First, this indicates
that DBS is more likely to result in lower dropout rates. Second,
it simulates variations in DBS parameters in a generalized way,
showing that even at low dropout rates (20%), the effects are still
robust, and is only ineffective at high dropout rates.

One difference between Experiment 1 and our previous
animal experiments was that chronic DBS was not applied during
the training stage, but rather in the home-cage prior to behavior
experiments. To more accurately represent the enhancement of
memory through chronic DBS prior to a memory task (Liu
et al., 2015), we applied transfer learning in previously trained
networks with or without dropout. We showed that transfer
learning did indeed increase the accuracy of prediction and
decrease training and testing loss (representing an increased
learning rate), indicating that transfer learning was successful in
this model. More importantly, we showed that transfer learning
applied to neural networks with dropout increased the accuracy
of prediction, indicating higher memory function compared
to neural networks without dropout. We further showed that
transfer learning applied to neural networks with dropout had
lower training and testing loss, indicating not only improved
memory function but also increased rate of learning. Overall,
we showed that applying dropout during training provides a
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more robust ‘‘skeleton’’ network, and applying transfer learning
in this network increases accuracy and decreases training and
testing loss. This model showed similar memory enhancement
results to that in our previous study on chronic mPFC DBS
(Liu et al., 2015), which suggests a potential mechanism
for this process.

An early hypothesis of the mechanism of DBS was that it
creates a temporary neural activity lesion (McIntyre et al., 2004).
We further showed that prelimbic cortex DBS was associated
with the disruption of memory and a drop in the neural
activity marker c-fos in the ventral hippocampus (Tan et al.,
2019a). Dropout of neural nodes, while congruent with the
disruption of memory, has not played a major role in the
mechanistic understanding of memory enhancement seen in
DBS, although it should be noted that other mechanisms such
as neurogenesis and wave syncing have been suggested (Tan
et al., 2020b). In this article, we propose that DBS causes dropout
in neural nodes that ‘‘forces’’ the activation of new pathways
and creates more robust networks, similar to how dropout
enhanced the neural networks. Mechanistically in the brain, this
could be hypothesized to relate to increased synaptic plasticity
or synaptogenesis—activating new pathways could be seen as
the formation of new synapses, and the change in weights by
the ‘‘backward steps’’ of dropout could be related to synaptic
plasticity. Indeed, DBS has been shown to be related to both
plasticity and synaptogenesis (Visanji et al., 2015; Pohodich
et al., 2018). It is, however, difficult to properly hypothesize how
DBS achieves this mechanistically due to the complexities of
the changes induced by DBS and the fact we still do not know
how it works. To the best of our knowledge, this article is the
first to suggest a cohesive mechanism in which disruption of
neural activity through DBS can lead to both disruption and
enhancement of memory. Although no behavioral experiments
were performed in conjunction with our modeling, we based
the models on our previous animal behavioral experiments
that showed that DBS prior to the behavioral task resulted
in memory enhancement (Tan et al., 2020c) and DBS during
consolidation of memory resulted in memory disruption (Tan
et al., 2019a), which were similarly demonstrated in this present
article. However, we acknowledge the simplistic and preliminary
nature of our methodology and results. Although more complex
models of associative memory and learning have been previously
presented (Yusoff and Grüning, 2012; Osawa and Kohno, 2015),
the lack of understanding on how neuromodulation actually
affects neuronal firing in memory, especially in a remote
downstream target like the hippocampus (in the case of vmPFC
neuromodulation), makes it difficult to use these models. A
simpler model, like that one presented here, is therefore more
generalizable and better serves as a hypothetical and conceptual
tool for more sophisticated research.

Although DBS has been suggested as a treatment for memory-
related disorders including Alzheimer’s disease (AD) and anxiety
disorders, its mechanism is still largely unknown. In this
article, we suggest hypothetical mechanisms for the effects
of DBS on memory. We showed that dropout of engram
nodes could disrupt memory processes, which might be useful
in translating DBS as a treatment for anxiety disorders like
PTSD (Gouveia et al., 2020). We also showed that dropout of
engram nodes could improve memory function and suggested
that this happens through increased synaptic function. Given
that impaired synaptic plasticity and synaptogenesis have been
associated with AD (Levi et al., 2003; Shankar et al., 2008) and
DBS has shown promise as a treatment for AD (Liu et al., 2015),
dropout of engram nodes could be a potential mechanism of
DBS neuromodulation.

In conclusion, using a machine learning model based on
previous animal experiments, we showed that dropout of nodes
could be a potential mechanism in which neuromodulation
techniques like DBS can both disrupt and enhance memory.
While preliminary in nature, this article serves as a basis for
further experimentation on engrams to understand the effects of
neuromodulation on memory.
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