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Alzheimer’s disease (AD) is one of the most common forms of dementia, marked
by progressively degrading cognitive function. Although cerebellar changes occur
throughout AD progression, its involvement and predictive contribution in its earliest
stages, as well as gray or white matter components involved, remains unclear. We
used MRI machine learning-based classification to assess the contribution of two
tissue components [volume fraction myelin (VFM), and gray matter (GM) volume] within
the whole brain, the neocortex, the whole cerebellum as well as its anterior and
posterior parts and their predictive contribution to the first two stages of AD and
typically aging controls. While classification accuracy increased with AD stages, VFM
was the best predictor for all early stages of dementia when compared with typically
aging controls. However, we document overall higher cerebellar prediction accuracy
when compared to the whole brain with distinct structural signatures of higher anterior
cerebellar contribution to mild cognitive impairment (MCI) and higher posterior cerebellar
contribution to mild/moderate stages of AD for each tissue property. Based on these
different cerebellar profiles and their unique contribution to early disease stages, we
propose a refined model of cerebellar contribution to early AD development.

Keywords: Alzheimer’s disease, dementia, cerebellum, machine learning, MCI (mild cognitive impairment), mild
moderate AD, gray matter (GM), white matter (WM)

INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent form of dementia in the developed world (Reitz
et al., 2011) and is defined by a progressive decline of a variety of cognitive functions and
motor abilities. Accumulating evidence suggests that AD has a lengthy preclinical phase, where
brain pathology accumulates and patient function declines, but symptoms are insufficient to
warrant a clinical diagnosis of dementia. AD neurodegeneration follows specific topographic
patterns of gray and white matter atrophy that emerge during its early stages (Serra et al., 2010).
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Although the pathobiological basis of these alterations remains
unclear, there is increasing evidence that white matter and
myelin alterations occur at the earliest stages of the disease
and are associated with cognitive decline, potentially preceding
gray matter (GM) volume changes and loss (Braak et al.,
2000). This has been supported by emerging preclinical
(Desai et al., 2010), histological (Zhan et al., 2014) and
longitudinal studies documenting white matter changes to
be of particular importance for AD stages (Frings et al.,
2014), in turn stressing the need to better characterize white
matter and myelin change in early stages of cognitive decline
in AD.

While the traditionally focus has been placed on neocortical
and hippocampal atrophies, recent evidence suggests that
the cerebellum undergoes focal atrophy in concert with
interconnected cerebral nodes in both AD and fronto-temporal
dementia (Guo et al., 2016). Histopathology studies of AD
have shown cerebellar amyloid-β oligomers to be affected
in a counter-clockwise pattern during disease progression,
starting in the posterior cerebellar lobe, and paralleling
cerebrum atrophy staging and associated symptom progression
(Jacobs et al., 2018).

However, the functional decline is often present before an
official AD diagnosis has been reached. For example, 60%
of elderly patients with a cognitive decline also suffer from
falls; twice more than those without impairment (Davis et al.,
2011). In a functional MRI study, falling significantly more
often in the elderly has implicated the right cerebellum as
a potential region of interest in early cognitive decline and
aging (Liu-Ambrose et al., 2008). While the cerebellum has
long been associated with motor function, it is also involved
in many non-motor functions, including working memory and
executive functioning (Schmahmann et al., 2001; Bellebaum
and Daum, 2007). Nevertheless, the role of cerebellar white
and GM in disease progression and classifying stages of
early cognitive decline from typical aging remain a challenge.
To address these questions, we used machine learning-based
classification on GM anatomical and volume fraction myelin
images to investigate their contributions to predict the first
two early stages of dementia [mild cognitive impairment
(MCI) and mild and moderate AD] when compared with
typically aging controls. We further calculate their predictive
accuracy within the whole brain and neocortex and compare
them with the anterior, posterior, and whole cerebellum to
investigate the role of cerebellar white and GM in early
AD progression.

MATERIALS AND METHODS

Participants
Forty-three age- and gender-matched participants (15 healthy
controls; 17 MCI; and 11 Mild/Moderate AD) were included.
Subject group demographics are shown in Table 1. A clinical
interview, an assessment of cognitive decline using the
Mini-Mental State Examination (MMSE), and clinical dementia
rating (CDR) scores were used to assign the participants to
the healthy (CDR = 0), MCI (CDR ≤ 0.5), and Mild/Moderate

AD (0.5 ≤ CDR ≤ 1.0) groups. The CDR is a reliable and
valid measure to assess AD stages (Morris, 1993; Nyunt et al.,
2013) and its scores have been shown to usefully predict
functional decline and incident dementia (Woolf et al., 2016).
The MMSE is a 30-point questionnaire that is routinely used
to assess cognitive impairment in clinical and research settings
(Pangman et al., 2000). MANOVAs revealed no significant
group differences in mean age or gender ratio between groups
(p > 0.10, Table 1). Genetic screening was performed on
individuals with AD and APOE (Apolipoprotein E) status
was determined.

MRI Acquisition
All participants were imaged on a Siemens Tim Trio 3T scanner
(Siemens Healthcare GmbH) with a 32-channel head RF array. A
multimodal protocol was performed that included mcDESPOT
myelin water imaging (Deoni et al., 2008), T1-weighted
MP-RAGE anatomical, and diffusion tensor imaging. The
mcDESPOT acquisition consists of eight variable flip angle
T1-weighted spoiled gradient echo (SPGR_images and two sets
of eight variable flip angle T1/T2-weighted fully-balanced steady-
state free precession (bSSFP) images, with each set acquired
with 0 or 180-degree RF phase cycling pattern (Deoni, 2011).
In addition, an inversion-prepared (IR)-SPGR image was also
acquired to correct for flip angle (B1 field) inhomogeneities
(Deoni, 2011).

MRI Analysis
Following the acquisition, data were visually checked for motion-
related artifacts and then a standardized processing pipe-line
was performed that included: (1) Skull stripping using the brain
extraction tool (Smith, 2002) from the FSL software library
(Smith et al., 2004); (2) Linear registration to account for subtle
inter-scan motion using FSL’s linear image registration tool
(Jenkinson et al., 2002; Zhang et al., 2004); (3) Calculation of
the main and transmit magnetic field (B0 and B1) calibration
maps (Deoni, 2011); and (4) Estimation of the VFM at each
brain voxel using a stochastic region contraction approach to
fit a 3-pool model to the acquired SPGR and bSSFP data
(Deoni and Kolind, 2015).

All anatomical and VFM images were first loaded to the
SPM12’s SUIT toolbox (Diedrichsen et al., 2009) to isolate
structures of interest. For the whole brain and neocortex, we
used the following steps for analysis: gray and white matter
tissue class segmentation, DARTEL registration (Ashburner,
2007) to a common inter-subject space, a DARTEL utility
to create Jacobian images. For the cerebellum, we used the
following steps for analysis: SPM12’s SUIT toolbox (Diedrichsen
et al., 2009) to isolate the structure, DARTEL registration
to SUIT space, a DARTEL utility to create Jacobian images.
Jacobian determinant images have previously shown promise
in discriminating neurodegeneration by allowing a comparison
of the expansion and contraction of voxels across and within
subjects (Studholme et al., 2004a,b; Hua et al., 2009, 2010;
Anderson et al., 2012; Aksman et al., 2016). After applying
a thresholded mask created in Matlab to fit the whole brain,
cerebrum or whole/anterior/posterior cerebellum to exclude
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TABLE 1 | Participant demographics.

Healthy aging Mild cognitive impairment Mild to moderate AD ANOVA p-value

Male:Female 3:12 8:9 2:9 0.24
Age 74.7 (5.2) 74.3 (7.7) 78.4 (8.6) 0.12
CDR 0 0.48 (0.2) 0.6 (0.2)
MMSE 29.4 (1) 27.8 (1.7) 22 (1.6)
APOE Not tested 15 3 0
APOE ε2ε2 0 0
APOE ε2ε3 1 0
APOE ε3ε3 6 4
APOE ε2ε4 0 0
APOE ε3ε4 5 5
APOE ε4ε4 2 2

Mean values are given for male to female ratios, age in years, CDR and MMSE values as well as APOE status for all participants. Standard deviations are noted in brackets and p
values on the right show non-significant differences between groups. Abbreviations: AD, Alzheimer’s Disease; CDR, Clinical Dementia Rating; MMSE, Mini-Mental State Examination;
APOE, Apolipoprotein E.

extracerebral or extracerebellar voxels, we used a two-class linear
support vector machine learning algorithm, implementing the C
cost support vector classifier at a fixed value of C = 1 throughout
all classifications. Within the full dataset, we defined a set that is
split into a training set N of subjects used to train the classifier,
and a set T of subjects that are used to test the classifier’s
prediction ability. Specifically, we used leave-one-out cross-
validation to learn a function from the data that can accurately
predict the labels of unseen or new patterns and thus evaluate
the classifier’s performance. The model parameters learned in
the training phase are represented as weights (weighted images
are displayed in Supplementary Figure 1) and demonstrate the
relative contribution of each feature to the predictive task.

Using freely available Matlab code1, we created Jacobian
weighted images, forward maps, as well as p and t thresholded
maps at p ≤ 0.005. Cerebellar masks were created by using the
SUIT atlas (Diedrichsen et al., 2009) by combining vermis, left
and right cerebellar lobules I–V to create the anterior cerebellar
mask, and vermis, left and right cerebellar lobules VI–X to create
the posterior cerebellar mask. The cerebrum mask consisted
of the whole brain mask but excluding the cerebellum and
brainstem. Jacobian weighted GM volume will be referred to as
GM volume throughout the manuscript.

RESULTS

As expected, cognitive decline increased with increasing
dementia stages (Table 1). The cerebellum as a region of
interest displayed up to 28% higher classification accuracy when
compared with the neocortex and up to 18% higher classification
accuracy when compared with the whole brain, with the highest
prediction accuracy of 75% of cerebellar VFM formild/ moderate
dementia (all results thresholded at p≤ 0.005, Figure 1). Clusters
with the highest cerebellar effects were localized in the lateral
cerebellum (x/y/z: 33/26/29 and 37/58/38 in SUIT space).

Weighted images are shown in Supplementary Figure 1.
While classification accuracy increased with AD stages, GM
volume was the best predictor for the earliest stage of dementia
(MCI), while VFM demonstrated the highest prediction

1https://github.com/leonaksman/lpr

accuracy for the mild/moderate stage of dementia when
compared with typically aging controls. Similarly, the cerebellar
GM showed the highest prediction accuracy for CDR score
(66.8%; Supplementary Figure 2), and consistently higher
prediction accuracy when compared with the neocortex
(Supplementary Figure 2). When dividing the cerebellum
into its anterior and posterior lobe, the posterior cerebellar
contribution increased in both GM volume and VFM
(Figure 2). These changes were strongest in the Crus I/II
(Figure 2).

DISCUSSION

In this study, we investigated the contribution of cerebellar GM
volume and VFM to predict the first two early stages of AD (MCI
and mild/moderate AD) when compared with the whole brain
and cerebrum gray matter volume and volume fraction myelin.

Our findings suggest VFM and GM volume loss occur
in the early stages of AD, with distinct patterns of anterior
and posterior cerebellar contributions (Figure 2). Specifically,
disease classification was driven by differences in the posterior
cerebellumwith its prediction accuracy increasing with symptom
severity, paralleling histopathological findings of cerebellar β in
the posterior cerebellar lobe (Jacobs et al., 2018).

The cerebellum can be divided functionally into the motor
and sensorimotor functions processed in the anterior- posterior
lobe and cognitive functions in posterior cerebellar regions,
enabled by its distinct neuroanatomic (Middleton and Strick,
2001; Kelly and Strick, 2003) and functional connectivity
(Buckner et al., 2011) connections. During the development
of AD, cerebellar GM volume appears to follow a predictable
pattern, affecting the vermis and posterior lobe in the early
stages of the disease, continuing to evolve to the anterior lobe
with disease progression (Jacobs et al., 2018). Indeed, lower
GM cerebellar anterior volume has been shown in patients with
early-onset AD carriers compared to non-carriers (Reiman et al.,
2012) as well as in patients with MCI, although the direct
nature of its contribution remains unclear possibly because of
the diffuse nature of the disease (for a review, Jacobs et al.,
2018). In contrast, cerebellar white matter volume declines more
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FIGURE 1 | Weighted prediction t-maps for the whole brain and cerebellum. Jacobian gray matter (GM) volume and volume fraction myelin (VFM) prediction t-maps
for the cerebrum, whole brain, and whole cerebellum for mild/moderate Alzheimer’s disease (AD; above) and mild cognitive impairment (MCI; below). Prediction
accuracy percentage is noted in brackets and t-values ranging from 0 to 5 are indicated with a color bar on the right, with the lowest t-value in black to the highest
t-value in green. x/y/z coordinates for the neocortex and whole-brain are 64/78/58 in DARTEL space, and 70/47/43 for the cerebellum in SUIT space.

FIGURE 2 | Weighted prediction t-maps for the whole, anterior, and posterior cerebellum. Jacobian GM volume and VFM prediction t-maps for the whole, anterior,
and posterior cerebellum for mild/moderate AD (left), and MCI (right). Prediction accuracy percentage is noted in brackets and t-values ranging from 0 to 5 are
indicated with a color bar on the right, with the lowest t-value in black to the highest t-value in green. All x coordinates are x = 70 in SUIT space.

rapidly than GM volume, a pattern similar to that observed in
the cerebral hemispheres (Jernigan et al., 2001). This pattern
of different white and GM volume decline was supported by

our study results, where myelin water fraction demonstrated the
highest prediction accuracy, underlining the role of white matter
alterations at the earliest stages of dementia.
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These early developments of AD are also reflected
microstructurally, as more diffuse amyloid-beta deposits in
early-onset patients showed cerebellar pathology 30 years earlier
than sporadic patients (Cole et al., 1993). Here, the degree of
cerebellar amyloid-beta was negatively correlated with the age of
onset, indicating cerebellar atrophy as a possible biomarker for
the early stages of AD. This cerebellar pathology in early-onset
AD is further accompanied by cerebellar motor phenomena
such as ataxia, especially in PSEN1 mutations (Bateman et al.,
2011). Motor phenomena precede the loss of cognitive functions
and are associated with early detectable cognitive impairments
of MCI and incident AD (Camicioli, 2010). This is in line with
our results where the anterior cerebellar contribution to AD was
strongest in the early stages followed by increasing posterior
cerebellar contribution with cognitive function loss as indicated
by decreasing CDR values and prediction (Table 1, Figure 2,
Supplementary Figure 2). Our results are further paralleled
by histological findings, where the concentration of cerebellar
soluble fibrillar amyloid oligomers was inversely correlated with
MMSE AD classification performance but positively with the
presence of cerebral plaques and tangles, suggesting that AD
molecular changes possibly already occur in the cerebellum in
the preclinical stages and may contribute to the symptomatology
and pathophysiology of the disorder (Mann et al., 1990). While
our cerebellar findings seem to mirror these histopathological
findings, it remains unclear whether this pattern corresponds to
microtissue changes and should be followed up by combining
VFM and GM volume MRI scans and histopathology of the
cerebellum on tissue from early AD stages.

Cerebellar amyloid-β oligomers have been documented to
be affected in a counter-clockwise manner starting in the
posterior cerebellar lobe, thus paralleling cerebrum atrophy
staging and associated symptom progression (Jankowsky et al.,
2004; Gentier et al., 2015), has led to an AD stage model
of cerebellar atrophy starting from the posterior to the
anterior lobe with disease progression (Jacobs et al., 2018).
Based on our findings, we propose a refined model of
cerebellar contribution to AD development. We suggest that
early AD disease stages are driven by both the anterior and
posterior cerebellum, but an initially higher anterior cerebellar
lobe contribution to the classification of the earliest stages
of the disease and posterior cerebellar lobe contribution
increasing with symptom severity. This parallels cerebellar
functionality and AD symptom disease progression, as motor
phenomena that are classically associated with anterior cerebellar
dysfunction, such as ataxia, are early AD symptoms preceding
cognitive symptoms that have been associated with posterior
cerebellar dysfunction.

While high prediction accuracies of up to 75% could
indicate an important contribution of the cerebellum to the
earliest stage of AD (mild/ moderate), it decreases for MCI to
around 50%. This discrepancy might suggest a less substantial
contribution of the cerebellum to MCI development. However,
when investigating cerebellar sub-regions, a pattern of higher
anterior cerebellar contribution to MCI classification appears
(64.9% prediction accuracy; Figure 2), which could be linked to
its essential role in motor function and dysfunction.

Our findings support the role of cerebellar contribution to the
early stages of AD pathology and define its unique contribution
to early disease development prediction as well as subregions
driving this classification. However, the cerebellum is often
regarded as being spared in AD pathology and is consequently
usually used as a control area or reference region in PET
imaging studies over total brain volume to control for differences
(for example, Dukart et al., 2010). Nevertheless, when a study
compared regional glucose metabolism normalization methods
using either total cerebral or cerebellar volume, cerebellar
normalization was determined superior in identifying dementia
patients in comparison to control subjects (Dukart et al., 2010).
Together with our findings, it can be suggested to rather chose
global brain measures than cerebellar volume for normalization
methods to avoid bias towards early AD stages.
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SUPPLEMENTARY FIGURE 1 | Weighted maps for the whole brain and
cerebellum. Jacobian gray matter (GM) volume and volume fraction myelin (VFM)
weighted maps for the cerebrum, whole brain, and whole cerebellum for
mild/moderate AD (above) and mild cognitive impairment (below). Prediction
accuracy percentage is noted in brackets and t-values ranging from 0 to 5 are
indicated with a color bar on the right, with the lowest t-value in black to the
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highest t-value in green. x/y/z coordinates for the neocortex and whole-brain are
64/78/58 in DARTEL space, and 70/47/43 for the cerebellum in SUIT space.

SUPPLEMENTARY FIGURE 2 | Weighted prediction t-maps for the whole brain
and cerebellum. Jacobian gray matter (GM) volume and volume fraction myelin
(VFM) weighted maps for the cerebrum, whole brain, and whole cerebellum for

clinical dementia rating (CDR) scores. Prediction accuracy percentage is noted in
brackets and t-values ranging from 0 to 5 are indicated with a color bar on the
right, with the lowest t-value in black to the highest t-value in green. x/y/z
coordinates for the neocortex and whole-brain are 64/78/58 in DARTEL space,
and 70/47/43 for the cerebellum in SUIT space.
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