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Background: Bone marrow stromal cells (BMSCs) has been reported to have beneficial

effects in improving behavioral deficits, and rescuing dopaminergic neuron loss in rodent

models of Parkinson’s disease (PD). However, their pooled effects for dopaminergic

neuron have yet to be described.

Objective: To review the neuroprotective effect of naïve BMSCs in rodent models of PD.

Methods: The PubMed, EMBASE, and Web of Science databases were searched

up to September 30, 2020. Inclusion criteria according to PICOS criteria were as

follows: (1) population: rodents; (2) intervention: unmodified BMSCs; (3) comparison: not

specified; (4) primary outcome: tyrosine hydroxylase level in the substantia nigra pars

compacta and rotational behavior; secondary outcome: rotarod test, and limb function;

(5) study: experimental studies. Multiple prespecified subgroup and meta-regression

analysis were conducted. Following quality assessment, random effects models were

used for this meta-analysis.

Results: Twenty-seven animal studies were included. The median quality score was

4.7 (interquartile range, 2–8). Overall standardized mean difference between animals

treated with naïve BMSCs and controls was 2.79 (95% confidence interval: 1.70,

3.87; P < 0.001) for densitometry of tyrosine hydroxylase-positive staining; −1.54

(95% confidence interval: −2.11, −0.98; P < 0.001) for rotational behavior. Significant

heterogeneity among studies was observed.

Conclusions: Results of this meta-analysis suggest that naïve BMSCs therapy

increased dopaminergic neurons and ameliorated behavioral deficits in rodent models

of PD.

Keywords: bone marrow stromal cell, Parkinson’s disease, meta-analysis, efficacy, animal experimentation

INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by clinical motor symptoms
of bradykinesia, muscle rigidity, tremor, and postural instability (Jankovic, 2008), resulting from
the selective degeneration of dopaminergic neurons in the substantia nigra pars compacta
(SNpc) (Michely et al., 2015) and intraneuronal protein aggregates called Lewy bodies (Lashuel
et al., 2013). As the fastest growing neurodegenerative disease in the world, PD prevalence is
projected to exceed 12 million by 2040 (Dorsey et al., 2018). The main therapies of PD include
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L-3,4-dihydroxyphenylalanine (L-DOPA) dopamine agonists,
enzyme inhibitors and deep brain stimulation (Dong et al., 2016).
However, the above therapies remain insufficient to recover
the massive loss of dopaminergic neurons. Cellular therapy is
another novel therapeutic tool that offers considerable hope and
promise to promote neural recovery in PD (Lo Furno et al.,
2018; Staff et al., 2019). Various source tissues have been tested
for efficiency of mesenchymal stem cells therapy for PD, such
as human bone marrow (Ye et al., 2007), adipose (Berg et al.,
2015; Cucarian et al., 2019), olfactory mucosa (Simorgh et al.,
2019), placenta (Kim et al., 2018), umbilical cord (Zhao et al.,
2016), umbilical cord blood (Lee et al., 2019), and deciduous
teeth (Zhang N. et al., 2018). Among the many kinds of
mesenchymal stem cells in preclinical studies, bone marrow-
derived mesenchymal stem cells are the most well-tested.

Bone marrow stromal cells (BMSCs, also known as bone
marrow-derived mesenchymal stem and progenitor cells) have
the potential to differentiate to mesenchymal lineage, such as
osteoblasts, chondrocytes, adipocytes, and muscle (Prockop,
1997). BMSCs are easily accessible and isolated through
aspiration of the bone marrow. They are free of ethical
controversy, and are associated with fewer immunological
reactions (Pittenger et al., 1999). They also have the ability to be
easily expanded on a large scale, which is very convenient and
suitable for clinical use (Dezawa, 2006). BMSCs have the potential
to differentiate into functional dopaminergic neurons (Dezawa
et al., 2004; Bae et al., 2011; Datta et al., 2011; Venkatesh and Sen,
2017) without forming tumors in preclinical studies (Rengasamy
et al., 2016).

Numerous researches have evaluated the efficacy of BMSCs
transplantation for PD, yet there are some disputes over
results. Prior meta-analysis either took a broader approach to
mesenchymal stem cells therapy (Riecke et al., 2015) or only
included the induced pluripotent stem cells therapy (Zhang
Y. et al., 2018). Neither have offered a meta-analysis of
the relevant study to investigate both histopathological and
functional efficiency of BMSCs transplantation for PD. Our aim
was to perform a meta-analysis to review published animal
studies employing the use of naïve BMSCs therapy following PD,
and to provide information for the future clinical translation of
BMSCs to the bedside.

MATERIALS AND METHODS

Preferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) was used to perform this meta-analysis
(Moher et al., 2009).

Search Strategy
Studies of bone marrow-derived mesenchymal stem cell-based
therapy for PD rodent models were identified from PubMed,
EMBASE, andWeb of Science through September 30, 2020 using
the following search strategy: (“mesenchymal stem cells” OR
“mesenchymal stromal cells” OR “mesenchymal stem cell” OR
“mesenchymal stromal cell” OR “bone marrow stem cell” OR
“bonemarrow-derived stromal cell”) AND (“Parkinson’s disease”
OR “Parkinson disease” OR “PD”). The publication language

was limited to English. We also searched the reference lists of
eligible studies.

Inclusion and Exclusion Criteria
The studies’ eligibility criteria were set up according to the
PICOS-scheme (population, intervention, control, outcome and
study design) (Riva et al., 2012). The inclusion criteria were as
follows: (i) Parkinson’s animal model (rodent models); (ii) testing
the effects of unmodified BMSCs in at least one experimental
group; (iii) setting sham-controlled group or condition; (iv)
providing adequate data on behavioral testing or densitometry
of tyrosine hydroxylase-positive (TH+) staining in the SNpc;
(v) study: experimental studies presented in original research
articles; and (vi) published in English. The exclusion criteria
were as follows: (i) researches that only evaluated the efficacy
of transfected or modified cell transplantation; (ii) studies that
only tested stem cells other than bonemarrowmesenchymal stem
cells; (iii) BMSCs administered before PD model.

Study Selection
After removal of duplicates, all published articles were conducted
by two investigators independently. When the two investigators
agreed, irrelevant studies were excluded. All relevant articles were
retrieved for a comprehensive review, and the two researchers
independently evaluated these articles using criteria outlined
above. Any differences or uncertainties were resolved through
consensus and judged by a third investigator when necessary.

Data Abstraction
The following information were abstracted by two investigators
independently and entered electronically: authors, year
published, study country, source of BMSCs, species of animals,
animal model, animal gender, anesthetic type, cell dose,
delivery route, and timing of BMSCs, follow-up (the longest
observation time of outcomes after BMSCs administration), the
outcomes data.

When only graphs were available, values were obtained from
images using GetData Graph Digitizer software. The average
reading of the two researchers were used to analysis data. If
the standard deviation was not reported, standard error was
converted to standard deviation by multiplying the square root
of the group size. If a research contained multiple experimental
groups differentiated by cell dose or delivery route and timing
that were contrasted with the control group, these experimental
groups would be included separately as independent studies. If
the outcomes were evaluated at different follow-up times, only
the longest one was extracted.

Quality Assessment
To evaluate the quality of the eligible studies, we used the
Collaborative Approach to Meta-Analysis and Review of Animal
Data from Experimental Studies (CAMARADES) checklists
(Macleod et al., 2004), which consist of the following items:
(1) publication in a peer-reviewed journal, (2) statements
describing temperature control, (3) randomized treatment
allocation, (4) allocation concealment, (5) use of aged animal
models, (6) blind assessment of outcome, (7) avoidance of
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anesthetics with significant intrinsic neuroprotective activity,
such as ketamine, (8) reporting of a sample size calculation,
(9) statement of compliance with regulatory requirements,
and (10) declarations of potential conflicts of interest. A
sum of the quality scores was recorded for each study, with
a total score of 10 points. Two researchers independently
scored the studies. Any differences or uncertainty were resolved
by consensus.

Statistical Analysis
Combined effect size was calculated as standardized mean
difference (SMD) between BMSCs treated group and control
group. The random-effects model and Hedges calculation
(Durlak, 2009) were applied to get the pooled effect size, and
all analysis was performed with Stata software (version 12.1).

Overall, an effect size of 0.2 represents a small effect, 0.5 and 0.8
represent medium and large, respectively (Schulz et al., 1995).
A P-value <0.05 was considered statistically significant. The I2

statistic was used to analyze heterogeneity, and it was defined
as low (25–50%), moderate (50–75%), or high (>75%) (Higgins
et al., 2003).

Seven clinical characteristics were used to grouping the effect
size of outcome: BMSCs species (Allogeneic or Xenogeneic);
BMSCs dose (≤1E5, 1E5–1E6,≥1E6); delivery time (<14, 14–21,
≥21 days); follow-up duration (≤4, 4–8, >8 weeks); delivery
route (intrastriatal, intravenous, intracerebral, intranigral,
intranasal); PD model [6-hydroxydopamine (6-OHDA),
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP),
Roteneone]; Gender (male, female). Pre-specified subgroup
analysis and meta-regression analysis (Higgins and Thompson,

FIGURE 1 | PRISMA flow diagram for review and selection process of studies included in meta-analysis of BMSCs in rodent models of Parkinson’s Disease.
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2002) were performed to study the possible relations between the
outcomes and the above clinical characteristics.

Publication bias was evaluated using funnel plots (Sterne
et al., 2011), and the symmetry of funnel plots was performed
with Egger regression (Egger et al., 1997). If necessary, any
non-negligible bias would be corrected using the trim-and-fill
approach (Sterne et al., 2001).

RESULTS

Study Inclusion
Electronic searching identified 597 articles in PubMed, 800
articles in EMBASE, and 1,090 articles in Web of Science. After
removal of duplicates, 826 articles were screened by abstract
and/or title, resulting in 763 articles excluded. By reading the full
text of the remaining 63 articles, 36 were excluded due to review,

TABLE 1 | Percentage of included studies satisfying each criterion of

CAMARADES checklists.

Quality score criterion Percentage of

qualified studies (%)

Publication in a peer-reviewed journal 100

Control of temperature 44

Randomized treatment allocation 51.8

Allocation concealment 29.6

Use of aged animal models 0

Blind assessment of outcome 29.6

Avoidance neuroprotective anesthetics 55.5

Sample size calculation 0

Compliance with animal welfare regulations 100

Statement of conflict of interest 63

not having unmodified BMSC experiments, not bone marrow
derived cells, no in vivo experiment, BMSCs administered before
lesion, or no primary outcomes. Therefore, 27 studies were
included in the meta-analysis (Figure 1). All studies published in
peer-reviewed journals.

Study Characteristics
The characteristics of the 27 studies are summarized in
Supplementary Tables 1, 2. All studies were carried out in
rodents (rats and mice). Intervention included MSCs obtained
from mice, rat, or human bone marrow. The most common
PD model was the 6-OHDA, although other methods were also
used, such as the Rotenone and MPTP. Following induction of
PD, BMSCs were administrated either immediately or over a
period varying from 24 h to 5 weeks. The mean follow-up ranged
from 8 days to 20 weeks. The most common delivery route
used for BMSCs was intrastriatal route. Others used were the
intravenous, intracarotid, intracerebral (into left/right ventricle),
intrathecal (into subarachnoid space), and intranasal route.
Histopathological outcome was assessed by densitometry of
TH+ staining in 18 studies. Behavioral outcomes were evaluated
by rotational behavior in 20 researches, rotarod test in five
researches, open field test in three researches, limb function
(cylinder, adjusting step, staircase tests, treadmill locomotion test,
and paw-reaching tests) in eight studies, and forced swimming
test in one study. Considering that densitometry of TH+

staining in SNpc and rotational behavior are the most common
evaluations used in rodent studies of PD, we took them as
co-primary outcomes in this review.

Quality Assessment
The quality assessment of included studies is summarized in
Table 1, the details are presented in Supplementary Table 3. The
quality scores varied from 2 to 8, with a mean value of 4.7.

FIGURE 2 | Forest plot shows mean effect size and 95% CI for (A) densitometry of TH+ staining in the substantia nigra pars compacta, (B) rotational behavior

between BMSCs therapy group and control group in individual trials and all studies combined. Weights have been calculated using random effects model. Degree of

heterogeneity in the pooled estimates is represented at I2 statistic. SMD, standardized mean difference; BMSCs, Bone marrow stromal cells.
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According to our statistical results, all the articles were published
in a peer-reviewed journal and claimed compliance with animal
welfare regulations. No study used aged animals.

Meta-Analysis
The data were extracted from the studies included
(Supplementary Table 2). The composite weighted mean
(95% confidence interval) effect size for densitometry of TH+

staining was 2.79 (1.70, 3.87) (P < 0.001) (Figure 2A); for
rotational behavior was −1.54 (−2.11, −0.98) (P < 0.001)
(Figure 2B). We also conducted pooled analysis for rotarod tests
(n = 6) and limb function (n = 7). The result was similar: The
composite weighted mean (95% CI) effect size for rotarod tests
was 1.77 (0.40, 3.15) (P < 0.001, I2 = 85.6%), and 0.28 (−0.52,
1.08) (P = 0.001, I2 = 73.4%) for limb function. The Higgins I2

index indicated significant heterogeneity among four outcomes
(P < 0.001).

Stratified Analysis and Meta-Regression
Analysis
Table 2 summarizes the data of primary outcomes in diverse
subgroup analysis. In general, significant efficacy of BMSCs
transplantation were observed in most subgroups. Partial
subgroups fail to reach the statistical significance (P < 0.05),
which may be caused by insufficient sample size. Although
significant difference was found between groups in partial
subgroup analysis, we could not find the source of heterogeneity.
In the most subgroups with two or more studies included,
substantial heterogeneity was found (I2 > 75%). In order to
further investigate the unexplained heterogeneity, multivariate
meta-regression was used to test the influence of all clinical
characteristics on the outcomes. However, for densitometry
of TH+ staining, no significant sources of heterogeneity were
found. For rotational behavior, the administration time was the
significant source of heterogeneity (P = 0.009).

Publication Bias
We assessed publication bias by funnel plots (Figure 3A
for densitometry of TH+ staining; Figure 3B for rotational
behavior). No evident publication bias was observed by visual
inspection. The Egger test presented significant publication bias
for rotational behavior (P = 0.001) but not for densitometry
of TH+ staining (P = 0.061). After adopting trim-and-fill
correction for rotational behavior outcomes, the estimated value
remained unchanged.

DISCUSSION

The first open-labeled clinical study ascertaining the safety and
efficacy of BMSCs in PD patients was performed in 2010, where
seven patients who received unilateral injections of autologous
BMSCs into the sublateral ventricular zone demonstrated the
safety of transplantation (Venkataramana et al., 2010). The pilot
clinical study in 2012 demonstrated a modest improvement
during “on” and “off” period on the UPDRS scoring system in
early-stage PD patients (Venkataramana et al., 2012). Table 3
includes the related clinical trials that are registered with

ClinicalTrails.gov. Although BMSCs have shown a promising
role in PD in initial clinical pilot studies, there are a number
of uncertain questions with respect to the delivery timing,
route of administration, and BMSCs dose. As the evidence
generated from animal model provide a framework for designing
clinical trials, it is important to explore the pooled effects
of preclinical studies. What stages (acute/chronic) of PD are
indicated for stem cell therapy, what doses of BMSCs are optimal,
how do we deliver BMSCs, how long to survive within the
hostile ischemic microenvironment, and how do we improve
neurological function? (Figure 4). Prior meta-analysis either
took a broader approach to multiple different mesenchymal
stem cell type (Riecke et al., 2015) or only included the
induced pluripotent stem cell (Zhang Y. et al., 2018). These
studies did not generate an effect size of histological outcomes
of PD, only evaluate the behavioral outcomes. TH+ staining
has been frequently examined as histological identification of
dopaminergic neurons (Barzilay et al., 2008). Thus, we took
densitometry of TH+ staining as the measure of histological
outcomes in PD animal models.

Main Findings
This meta-analysis suggests the following: (1) Based on the
defined quantification of the absolute value of the effect, we
observed effect sizes of BMSCs on histological and behavioral
outcomes were very large. All estimates other than limb
function were statistically significant. In general, this meta-
analysis suggested that deficits of both motor function and
TH+ levels in rodent models were alleviated by BMSCs therapy.
(2) Administration time was correlated with effect size in
densitometry of TH+ staining and rotational behavior. BMSCs
therapy initiated more than 3 weeks post-PD showed the
greatest efficacy, followed by 2–3 weeks post-PD, and then
therapy initiated within 2 weeks. (3) Intravenous seems to be
more effective compared with intrastriatal to improve rotational
behavior and increase densitometry of TH+ staining. But the
number of animals included for intravenous administration route
in the pooled analysis were small, this comparison needs to be
proved bymore studies. (4) Xenogenic and allogenic cells showed
similar beneficial effects for rotation behavior, although the latter
increased the densitometry of TH+ staining to a larger extent. But
the number of studies included for xenogeneic group were small.
(5) The included studies do not clearly provide a specific effective
dose of BMSCs. With higher dose levels (>1 × 105), a greater
effect size of BMSCs therapy on densitometry of TH+ staining
was observed. Generally, the above various subgroup analysis can
only generate hypothesis rather than confirming them.

Possible Mechanism of Neuroprotective
Effects
MSCs-based therapy is a multimodal treatment for nervous
system diseases (Badyra et al., 2020). The precise mechanism
by which BMSCs may exert beneficial effects in PD is still
being elucidated, but it appears that multiple mechanisms may
contribute (Glavaski-Joksimovic and Bohn, 2013; Fan et al.,
2020). First, anti-inflammatory properties of BMSCs. BMSCs
administration in rats dramatically decreased dopaminergic
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TABLE 2 | Subgroup analysis of rotational behavior and densitometry of TH+ staining in animal models of Parkinson’s disease associated with BMSC therapy.

Variable Densitometry of TH+ staining in the SNpc Rotation behavior

No. of

reports

Pooled estimates

(95% CI)

Q statistic P-value

for

heterogeneity

I2 value (%) Between group

P-value

No. of

reports

Pooled estimates

(95% CI)

Q statistic P-value

for

heterogeneity

I2 value (%) Between

group

P-value

BMSC species <0.001 0.013

Allogeneic (mice/rats) 14 2.14 (1.03, 3.26) 146.17 <0.001 91.10% 16 −1.35 (−1.97, −0.73) 80.95 <0.001 81.50%

Xenogeneic (human) 4 5.22 (2.54, 7.90) 20.89 <0.001 85.60% 7 −1.91 (−3.19, −0.63) 49.3 <0.001 87.80%

BMSCs dose <0.001 0.125

≤1E5 4 0.72 (−1.10, 2.53) 32.12 <0.001 90.70% 4 −1.84 (−3.54, −0.15) 22.07 <0.001 86.40%

1E5–1E6 6 3.42 (1.58, 5.27) 28.94 <0.001 82.70% 9 −1.68 (−2.56, −0.79) 58.68 <0.001 83.00%

≥1E6 8 3.59 (1.65, 5.52) 103.03 <0.001 93.20% 7 −1.20 (−2.23, 0.16) 35.33 <0.001 87.30%

Administration time 0.101 <0.001

<2 weeks 5 3.31 (0.56, 6.06) 52.29 <0.001 90.00% 4 −0.58 (−1.45, 0.29) 7.06 0.07 57.50%

2–3 weeks 5 1.82 (0.18, 3.47) 59.64 <0.001 93.30% 7 −0.94 (−1.82, −0.06) 37.69 <0.001 84.10%

≥3 weeks 4 1.22 (−1.63, 4.07) 36.35 <0.001 91.70% 5 −3.03 (−3.96, −2.11) 8.68 0.07 53.90%

Follow-up period <0.001 0.026

≤4 weeks 10 3.18 (1.55, 4.81) 115.75 <0.001 92.20% 11 −1.78 (−2.78, −0.78) 77.37 <0.001 87.10%

4–8 weeks 6 3.10 (1.23, 4.97) 50.37 <0.001 90.10% 8 −1.14 (−1.95, −0.34) 38.14 <0.001 81.60%

>8 weeks 2 −0.99 (−3.02, 1.05) 4 0.045 75% 4 −1.87 (−3.23, −0.51) 13.59 0.004 77.90%

Administration route <0.001 <0.001

Intrastriatal 9 1.06 (0.01, 2.12) 59.32 <0.001 86.50% 14 −1.13 (−1.73, −0.53) 60.19 <0.001 78.40%

Intravenous 4 4.65 (2.52, 6.77) 16.21 0.001 81.50% 5 −1.88 (−3.53, −0.24) 42.24 <0.001 90.50%

Intracerebral 2 5.26 (3.73, 6.79) 0.44 0.507 0 3 −3.47 (−4.90, −2.04) 4.62 0.099 56.70%

Intranasal 1 5.82 (3.63, 8.02) NA NA NA 0 NA NA NA NA

Intracarotid 1 −0.71 (−1.73, 0.31) NA NA NA 1 −0.14 (−1.12, 0.84) NA NA NA

Intrathecal 1 11.12 (7.18, 15.06) NA NA NA 0 NA NA NA NA

PD model 0.001 0.006

6-OHDA 13 2.86 (1.54, 4.17) 162.80 <0.001 92.60% 21 −1.57 (−2.17, −0.97) 126.25 <0.001 84.20%

Roteneone 2 4.11 (1.02, 7.20) 5.98 0.014 83.30% 1 −0.16 (−1.04, −0.72) NA NA NA

MPTP 3 1.73 (−1.14, 4.60) 21.88 <0.001 68.80% 1 −2.68 (−3.96, −1.40) NA NA NA

Gender 0.004 0.736

Male 15 3.15 (1.94, 4.36) 155.07 <0.001 91.60% 18 −1.74 (−2.43, −1.05) 113.31 <0.001 85.00%

Female 3 0.27 (−2.56, 3.11) 25.78 <0.001 92.20% 4 −0.72 (−1.85, 0.41) 18.6 <0.001 83.90%

BMSCs, bone marrow stromal cells; PD, Parkinson’s disease; TH+, tyrosine hydroxylase positive; NA, not available; SNpc, substantia nigra pars compacta.
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FIGURE 3 | Funnel plot for (A) densitometry of TH+ staining in the substantia nigra pars compacta, (B) rotational behavior. Each dot in the figure represents a study,

with the y-axis signifying study quality and the x-axis showing the study results. SMD, standardized mean difference.

TABLE 3 | Clinical trials using BMSCs in PD that are registered with ClincalTrials.gov (as of October 2020).

No. NCT Years Type of trial Locations Recruitment

status

Phase Ages (years) Allo/Auto Route of

admistration

No. of BMSCs Follow-up

period

NCT00976430 2009 Open Label India Terminated Not Applicable 35–70 Autologous Stereotactically

(striatum)

Not Applicable 18 months

NCT01446614 2011 Open Label China Unknown Phase 1/2 30–65 Autologous Intravenous 6 × 105 per kg,

qw, for 4 weeks

12 months

NCT02611167 2015 Open Label United States Completed Phase 1 45–70 Allogeneic Intravenous 1/3/6/10 × 106

per kg

52 weeks

NCT04506073 2020 Randomized

controlled trial

United States Not yet recruiting Phase 2 50–79 Allogeneic Intravenous 3 infusions of 10 ×

106 per kg 3

months

78 weeks

BMSCs, bone marrow stromal cells.

FIGURE 4 | Key issues that the settlement of which would facilitate the transition of BMSCs research in PD from bench to bedside. PD, Parkinson’s Disease; BMSCs,

Bone marrow stromal cells.

neuronal loss in the SNpc, which was obviously accompanied
by reduced activation of microglia (Park et al., 2008; Suzuki
et al., 2015), as well as the expression of inducible nitric oxide

synthase and tumor necrosis factor-alpha (Kim et al., 2009).
By inducing M2 microglia polarization, BMSCs can enhance α-
synuclein clearance in vitromodel (Park et al., 2016). Activated by
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FIGURE 5 | The possible mechanisms of BMSCs therapy for PD. PD, Parkinson’s Disease; BMSCs, Bone marrow stromal cells; GDNF, SDF-1α, Stromal cell-derived

factor 1a; BDNF, Brain-derived neurotrophic factor; Glial cell-derived neurotrophic factor; VEGF, Vascular endothelial growth factor; EGF, Epidermal growth factor;

HGF, Hepatocyte growth factor; NPCs, Neural progenitor cells; IDO, Indoleamine-2,3-dioxygenase; IFNγ, Interferon γ; TGF-α, Transforming growth factor alpha;

TGFβ1, Transforming growth factor beta 1; PGE, Prostaglandin; DC, Dendritic cell.

inflammatory signals, MSCs also secrete the anti-inflammatory
protein TNF-α-stimulated gene 6 protein (Choi et al., 2011),
IL-6, and IL-10 (Jinfeng et al., 2016). But whether BMSCs can
promote the switch of M1 microglia status into M2 phenotype
and increase the anti-inflammatory protein in PD animal model
needs further study. Second, paracrine activity of BMSCs.
BMSCs can secrete factors including brain-derived neurotrophic
factor, glial cell-derived neurotrophic factor, and vascular
endothelial growth factor (Sadan et al., 2009), which can improve
neuronal survival. Glial cell-derived neurotrophic factor released
by BMSCs may protect catecholaminergic and serotonergic
neuronal perikarya and transporter function (Whone et al.,
2012), which may be effective for abrogating the non-motor
symptoms of PD. As an important medium for paracrine effects,
BMSCs-derived exosomes contain a variety of biomolecules,
such as proteins, messenger RNA, and miRNA (e.g., miR-124,
and miR-145), which contribute to neuroprotection and mediate
immunomodulatory effects (Kojima et al., 2018; Mendes-
Pinheiro et al., 2019). Finally, neuronal differentiation of BMSCs.
Previous report has presented that BMSCs could be induced
to form dopamine decarboxylase-positive cells along the line
of restoring/replacing dopamine cell loss (Jiang et al., 2002).
Alleviating motor symptoms of induced BMSCs transplantation
has been tested in animal model of PD (Dezawa et al., 2004).
Whether BMSCs can differentiate to a variety of neuronal
phenotypes (such as noradrenergic, serotonergic, and cholinergic
cell types), and improve the non-motor symptoms of PD requires

further research. The above mechanisms have shown that
transplantation of BMSCs can not only improve PD symptom
directly by neuronal differentiation, but also trigger endogenous
brain repair through the modulation of anti-inflammatory
cytokines, proteomes, and neurotrophic factors (Figure 5).

Limitations
There are several limitations to our meta-analysis. First,
our approach can only include the studies that have already
been published in English. Unpublished data may change
our results. In addition, none of the included studies
investigated the safety of BMSCs injection on PD in animal
models. we are incapable of evaluating the clinical safety of
BMSCs application. Finally, a good study should have an
adequate sample size with a formal calculation (Campbell
et al., 1995). Nevertheless, no studies in the meta-analysis
conducted sample calculation, which indicated the lack of
statistical power to ensure proper estimation of the treatment
effects (Schulz and Grimes, 2005).

Future Direction
There is significant work to be done for the future clinical
translation. Firstly, most research subjects are rats, and their
similarities to humans are limited. Therefore, since the outcomes
for rodent model cannot be directly extended to humans,
primates should be used to obtain more results. Secondly, PD is
an age-related disease, and themajority of PD patients are elderly.
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As previously stated, data shows a direct relation between age
and the occurrence of PD (Tysnes and Storstein, 2017). Thus,
the impact of age should be considered in preclinical studies
given that the epidemiology of PD and response to therapy
may vary widely in the developing, juvenile, adult, and elderly
brains. However, the current research models are based almost
exclusively on healthy adult animals. It is doubtful whether
cell therapy can achieve the same treatment effect in elderly
Parkinson’s animal model.

CONCLUSION

Preclinical researches have showed the potential role of BMSCs
to be an effective therapy for PD patients. But, determining the
clinical parameters by ourmeta-analysis is inevitably confounded
by high publication bias. Considering the limited internal and
external validity, our conclusions should be confirmed in more
strictly randomized control studies and carefully interpreted
in relation to the design of future animal studies or clinical
translation. Generally, the use of BMSCs as a novel therapeutic
strategy for PD is promising.
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