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Purpose: To develop and validate an integrative nomogram based on white matter

(WM) radiomics biomarkers and nonmotor symptoms for the identification of early-stage

Parkinson’s disease (PD).

Methods: The brain magnetic resonance imaging (MRI) and clinical characteristics

of 336 subjects, including 168 patients with PD, were collected from the Parkinson’s

Progress Markers Initiative (PPMI) database. All subjects were randomly divided into

training and test sets. According to the baseline MRI scans of patients in the training set,

the WM was segmented to extract the radiomic features of each patient and develop

radiomics biomarkers, which were then combined with nonmotor symptoms to build

an integrative nomogram using machine learning. Finally, the diagnostic accuracy and

reliability of the nomogram were evaluated using a receiver operating characteristic curve

and test data, respectively. In addition, we investigated 58 patients with atypical PD

who had imaging scans without evidence of dopaminergic deficit (SWEDD) to verify

whether the nomogramwas able to distinguish patients with typical PD from patients with

SWEDD. A decision curve analysis was also performed to validate the clinical practicality

of the nomogram.

Results: The area under the curve values of the integrative nomogram for the training,

testing and verification sets were 0.937, 0.922, and 0.836, respectively; the specificity

values were 83.8, 88.2, and 91.38%, respectively; and the sensitivity values were 84.6,

82.4, and 70.69%, respectively. A significant difference in the number of patients with

PD was observed between the high-risk group and the low-risk group based on the

nomogram (P < 0.05).

Conclusion: This integrative nomogram is a new potential method to identify patients

with early-stage PD.
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INTRODUCTION

Parkinson’s disease (PD) is a common age-related progressive
neurodegenerative disease (Dorsey et al., 2007). PD begins subtly
and progresses slowly; thus, when the diagnosis is clear, most
patients are in the middle or late stages of the disease. As the
use of neuroprotective drugs by these patients has little effect on
the speed of PD progression (LeWitt, 2015), an early diagnosis
is of paramount importance for identifying disease onset and
developing effective treatment plans. Currently, the diagnosis
of PD mainly depends on the patient’s medical history and
clinical symptoms; however, the early stages of PD can include
many atypical symptoms such as sleep disorders, decreased
olfactory function and cognitive disturbances, and these non-
motor symptoms often precede clinical motor signs (Mielke
and Maetzler, 2014). Unfortunately, the cardinal and defining
nonmotor symptoms used for the early diagnosis of PD in the
clinic, particularly the symptoms that are typical of the early
stages, also occur in patients with other disorders (Trojano
and Papagno, 2018; De Pablo-Fernández et al., 2019), and the
diagnostic error rate is as high as 25% among practitioners with
limited clinical experience in diagnosing early-stage of PD (Miller
and O’Callaghan, 2015). Thus, it is very challenging to diagnose
early-stage PD based on current diagnostic standards.

In recent years, progress has been achieved in magnetic
resonance imaging (MRI) technology in the field of
neuroimaging (Agosta et al., 2017), such as structural MRI
(Tzarouchi et al., 2010), diffusion tensor imaging (Schwarz
et al., 2013), and blood oxygen level-dependent functional MRI
(Benzagmout et al., 2019). These different techniques represent
effective methods for non-invasively studying changes in brain
morphology and function associated with PD. However, given
the high cost of long functional imaging sessions and a general
lack of standard imaging protocols, as represented by differences
between MRI systems, scanning protocols and magnetic
field strength (Frederick and Meijer, 2014), these complex
scanning techniques cannot become widespread in clinical
practice. Therefore, the identification of a simple, noninvasive
measure to preclinically identify patients with early-stage PD
is important.

Radiomics is a recently emerged field of radiology that
quantifies imaging data with the aid of advanced image
processing techniques, including high-throughput analysis
and feature selection, to build biomarkers for the complete
characterization of tumors (Liu et al., 2019). At this stage, the
new quantitative imaging technology of radiomics has already
been used to diagnose neurodegenerative diseases, including
PD (Shinde et al., 2019). Nevertheless, most PD studies using
radiomics examine only the substantia nigra (SN), where iron
accumulation is spatially heterogeneous, allowing clinicians to
easily distinguish patients with PD from healthy people (Guan
et al., 2017). While the SN provides robust disease biomarkers,
the concern is that radiomic analysis of the SN depends on the
use of a special sequence, such as quantitative susceptibility
mapping or neuromelanin-sensitive imaging, to display the
contours of the SN. Understandably, the complexity of this
technology has limited its clinical application.

However, the SN of patients with PD is not the only area
exhibiting obvious disease-related tissue changes. White matter
(WM) has also exhibits been reported to exhibit widespread
microstructural alterations in patients with early-stage PD in
the absence of gray matter atrophy and cognitive impairment
(Pelizzari et al., 2020). In addition, several studies have shown
widespread WM and gray matter changes in individuals with
PD (Muthuraman et al., 2017; Koirala et al., 2019). Hence, an
investigation of WM microstructural integrity in patients with
PD may enable more successful exploration of early biomarkers
of PD. Previous studies based on diffusion tensor imaging have
shown that patients with PD present a greater decrease in WM
integrity (Pozorski et al., 2018) than healthy people and often
display extensive changes in the microstructure of WM in the
early stage of PD even before the onset of cortical neuron
loss (Rektor et al., 2018). Based on this evidence, structural
changes occur earlier than physiological changes in the early
stage of PD. Moreover, a three-dimensional radiomic analysis
of WM throughout the brain was recently shown to reflect
microstructural changes based on conventional T1-weighted
imaging sequences (Shu et al., 2020), which may be more suitable
than diffusion tensor imaging sequences for clinical application
based on cost alone. Accordingly, we hypothesized that the
structural changes in WM in patients with early-stage PD would
also be detected by a radiomic analysis and would be of potential
use for exploring new imaging-based disease biomarkers. To
the best of our knowledge, this type of analysis has not yet
been performed.

PD is a complex neurodegenerative disorder in which many
different pathophysiological processes have been identified in
different brain regions. Furthermore, a single WM biomarker
will not be able to accurately diagnose and monitor disease
progression; rather, a combination of different biomarkers should
be used to provide a more comprehensive approach. As shown
in previous studies, early diagnosis has been accomplished by
the detection of multiple factors including impaired olfaction,
depression, rapid eye movement sleep behavior disorder (RBD),
excessive daytime sleepiness (EDS) and cognitive decline (CD)
(Kalia and Lang, 2015), which usually occur in the prodromal
stage of PD (Filippi et al., 2018). Accordingly, the purpose of this
study was to explore the possibility of developing novel imaging
biomarkers of PD from WM using radiomics and combining
them with prodromal nonmotor symptoms to generate an
integrative nomogram for disease classification. Overall, we hope
to propose a low-cost and highly accurate method for identifying
patients with early-stage PD.

MATERIALS AND METHODS

Patients
The datasets used to build the model were all obtained from
the Parkinson’s Progress Markers Initiative (PPMI) database
(http://www.ppmi-info.org), which is the first global and
comprehensive international Parkinson’s research database
(Parkinson Progression Marker Initiative, 2011). The PPMI
is a landmark observational clinical study designed to
comprehensively evaluate cohorts of significant interest
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FIGURE 1 | Flowchart of the recruitment process in the current study.

using advanced imaging, biological, clinical and behavioral
assessments to identify biomarkers of PD progression. Because
the PPMI is a longitudinal study, we chose to use the baseline
data to study early-stage PD. Importantly, all subjects were in
the first or second stage of the disease according to the Hoehn-
Yahr scale, and none of them had received drug treatment.
The average interval between the development of clinical
symptoms and the diagnosis of PD in these patients was 16.5 ±

14.9 months. Therefore, we defined the disease stage of these
subjects as the early stage of PD. The detailed characteristics
of the patients and the disease duration are provided in the
Supplementary Materials. After age and sex matching, 168
healthy controls (HCs) and 168 patients with PD were selected
from the database. These 336 subjects were then randomly
divided into a training set (n = 234) and a test set (n = 102).

The training set was used to build the diagnostic model, and
the test set was used to verify the reliability of the model. We
also investigated 58 age- and sex-matched patients with atypical
PD from the PPMI who had imaging scans without evidence
of dopaminergic deficit (SWEDD) to determine whether the
model was able to distinguish patients with typical PD from
patients with SWEDD. The matching details are provided in the
supporting materials. Figure 1 shows the recruitment process for
the research study.

Whole-Brain White Matter Segmentation
and Image Preprocessing
We obtained T1-weighted MRI data from the PPMI database.
The PPMI diffusion MRI data were acquired using Siemens
Tim Trio and Siemens Verio 3 Tesla MRI scanners at 32
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FIGURE 2 | Details of the extracted features. Three hundred seventy-eight features were extracted from six categories.

different international sites based on a standardized protocol.
T1-weighted MRI data were obtained using the following
parameters: TR = 2300ms, TE = 2.98ms, TI = 900ms, image
matrix = 240 × 256 × 176, and voxel resolution = 1 ×

1 × 1 mm3. All images were automatically segmented into
whole-brain gray matter, WM and cerebrospinal fluid volumes
using the spm12 software package (https://www.fil.ion.ucl.ac.
uk/spm/software/spm12/). The WM boundaries were manually
adjusted using ITK-SNAP software (http://www.itksnap.org) by
two experienced neuroradiologists (radiologist A and radiologist
B, with 5 and 10 years of neuroimaging experience, respectively)
who were blinded to the clinical data. This modification was
accomplished using the following steps: (1) removal of nonbrain
tissue, brainstem, and cerebellum and (2) modification of WM
segmentation. Then, the WM volumes were imported into AK
software (Quantitative Analysis Kit, version 1.2, GE Healthcare)
for image preprocessing. First, all images were resampled to
1 × 1 × 1 mm3 resolution through linear interpolation to
eliminate the effect of anisotropy on the features. A Gaussian
filter was then applied to reduce noise, and the magnetic field
inhomogeneity was corrected, which also assisted with reducing
the effects of external interference factors. Finally, the intensity
was standardized to limit the grayscale values of all images to a
range of 0-32 and ensure that they would be compared without
bias (Sun et al., 2018).

Radiomic Feature Extraction
AK software was used to extract 378 radiomic features
based on the WM images, including histogram (42 features),
Haralick (10 features), form factor (9 features), gray-level co-
occurrence matrix (126 features, GLCM), run-length matrix
(180 features, RLM) and gray-level size-zone Matrix (11
features, GLSZM) features. A detailed description of the
features is provided in Figure 2. These features have been
shown to characterize cancer heterogeneity and potentially
reflect changes in the image structure (Mayerhoefer et al.,
2020). In addition, we used the features that were most
robust to manual correction by different radiologists (Shu
et al., 2019) to ensure the stability and repeatability of
the radiomics features. The Spearman rank correlation test
was used to calculate the correlation coefficient (CC) of
each feature between feature set A (from radiologist A) and
feature set B (from radiologist B). Features with a CC>

0.8 were considered robust features (Wu et al., 2016). The
quantitative value of robust features is the average of the
two features.

Establishment of an Overarching Radiomic
Biomarker
Not every single feature is equally relevant to the diagnosis
of PD. Furthermore, data reduction or feature selection is

Frontiers in Aging Neuroscience | www.frontiersin.org 4 December 2020 | Volume 12 | Article 548616

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.itksnap.org
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Shu et al. Identifying Early-Stage Parkinson’s Disease

FIGURE 3 | Workflow used to build the radiomic model.

necessary to obtain meaningful results from pattern recognition
analysis (Ashburner, 2009). In the present study, the minimum
redundancy maximum relevance (mRMR) algorithm was used
to extract robust features from the training set (Mukaka, 2012).
The aim of the maximum relevance procedure was to select
features with the maximal correlation with the actual PD
diagnosis. At the same time, the minimum redundancy process
ensured that the selected features had minimal redundancy
among the other features, and we defined features with CCs
greater than 0.1 and 0.8 as high-correlation and low-redundancy
features, respectively. Then, the mRMR method was used to
obtain an optimal feature set with a high correlation and
low redundancy. Second, the least absolute shrinkage and
selection operator (LASSO) algorithm was then applied to
reduce the dimensionality of the optimal feature set. Finally, a
gradient boosting decision tree (GBDT) algorithm was utilized
to select radiomic features and build the composite radiomic
biomarker. In order to quantify the radiomics biomarker
discriminability, a score was calculated using the biomarker
model from each patient in the training set. This result
reflected the possibility of PD and was defined as the rad-
score. The training set biomarker formula was employed to
calculate the scores for the test set. Finally, the accuracy of the
radiomic biomarker obtained from the training and test sets
was evaluated by constructing a receiver operating characteristic
(ROC) curve. To further verify the clinical efficacy of the
radiomics biomarker, we conducted a stratified analysis of the
rad-scores for patients with different nonmotor symptoms.

Detailed information on dimensionality reduction is provided in
the Supplementary Materials.

Construction of the Integrative Nomogram
Stepwise logistic regression analysis was performed to select
independent predictors of PD for each potential predictive
variable: demographic characteristics (i.e., family history of PD,
age, and sex), nonmotor symptoms (i.e., impaired olfaction,
depression, RBD, EDS, and CD) and radiomic biomarkers in
the training set. In addition, machine learning, an important
part of radiomics, improves the accuracy, performance, and
predictive ability of the model (Chen et al., 2018; Watson et al.,
2019). Accordingly, five machine learning classifiers were used
to construct the predictive model and included support vector
machine (SVM), Bayes, logistic regression, random forest, and
decision tree classifiers. All models were examined using 5-fold
cross-validation, in which 20% of the data were used to test the
biomarker that was created with the other 80% of data. Different
test and training set data were used for every 5-fold cross-
validation, and the average classification accuracy was calculated
based on 10 iterations of 5-fold cross-validation. The accuracy
of the model using different machine learning classifiers was
evaluated with an ROC curve and the DeLong test. Finally,
the best machine learning method was applied to develop a
predictive model for PD based on independent predictors, and
an integrative nomogram was constructed. Figure 3 shows the
workflow for creating the radiomics model. Detailed information
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TABLE 1 | Descriptive statistics of the three datasets.

Variables Training set Test set SWEDD set P-value

(n = 234) (n = 102) (n = 58)

n (%) n (%) n (%)

Sex Male 146 (62.4) 64 (62.7) 37 (63.8) 0.981

Female 88 (37.6) 38 (37.3) 21 (36.2)

Age Years 61.9 ± 9.7 61.6 ± 9.8 60 ± 9.7 0.399

Family history No 196 (83.8) 88 (86.3) 43 (74.1) 0.129

of PD Yes 38 (16.2) 14 (13.7) 15 (25.9)

Impaired olfaction No 92 (39.3) 33 (32.4) 25 (43.1) 0.336

Yes 142 (60.7) 69 (67.6) 33 (56.9)

Depression No 211 (90.2) 85 (83.3) 45 (77.6) 0.023

Yes 23 (9.8) 17 (16.7) 13 (22.4)

RBD No 171 (73.1) 70 (68.6) 36 (62.1) 0.232

Yes 63 (26.9) 32 (31.4) 22 (37.9)

EDS No 191 (81.6) 84 (82.4) 45 (77.6) 0.738

Yes 43 (18.4) 18 (17.6) 13 (22.4)

CD No 207 (88.5) 89 (87.3) 52 (89.7) 0.898

Yes 27 (11.5) 13 (12.7) 6 (10.3)

Hoehn-Yahr stage Stage 0 106 (45.3) 47 (46.1) 3 (5.2) <0.0001*

Stage 1 54 (23.1) 21 (20.6) 30 (51.7)

Stage 2 74 (31.6) 34 (33.3) 25 (43.1)

SWEDD, scans without evidence of dopaminergic deficit; RBD, rapid eye movement sleep

behavior disorder; EDS, excessive daytime sleepiness; CD, cognitive decline. P values,

significance levels of differences in variables among the training set, test set and SWEDD

set. The values in parentheses indicate the percentage of each variable in the training set

or test set. *P < 0.05.

about the machine learning techniques used in the present study
is provided in the Supplementary Materials.

Assessment of the Integrative Nomogram
Based on the nomogram, the risk score of PD was calculated for
each patient. The accuracy of the nomogram obtained from the
training and test sets was then evaluated with an ROC curve.
A calibration curve was generated to evaluate the calibration
performance, and the Hosmer-Lemeshow test was performed to
analyze the goodness-of-fit of the nomogram. We attempted to
distinguish the patients with PD in the SWEDD dataset to further
evaluate the performance of the integrative nomogram. A dataset
of age- and sex-matched patients with SWEDD and PD was
collected from the PPMI, and the probability of PD was defined
from the model score and was calculated for each patient using
the integrative nomogram. Taking the threshold of the Youden
index of the ROC curve as the classification point, we divided all
cases into a low-risk and a high-risk group according to themodel
score. Based on the actual PD patients in different risk groups, the
clinical effect of the nomogram was determined. Finally, the net
benefit of the model was evaluated using decision curve analysis
(DCA) (O’Brien, 2007).

Statistical Analyses
Statistical analyses were performed with the Statistical Package
for the Social Sciences (SPSS) version 22.0 (SPSS, Inc., Chicago,
IL, USA), GraphPad Prism 6 (GraphPad Software, San Diego,

CA, USA) and R software (version 3.3.1). Differences between
categorical variables were examined using a chi-square test.
Parametric data were assessed using an independent-sample
t-test, whereas nonparametric data were assessed using the
Mann-Whitney U-test. All analyses were controlled for age and
sex. The nomogram was constructed, and calibration plots were
generated using the “rms” package. The DCA was performed
with the “dca.R.” package. Results with a two-tailed P< 0.05 were
considered significant.

RESULTS

Comparison of Patients’ Clinical Data
Significant differences in Hoehn-Yahr staging were observed
between patients in the three datasets (training set, test set and
SWEDD set), but other clinical features were not significantly
different, as shown in Table 1. However, a family history of PD,
impaired olfaction and CD were significantly different between
HCs and patients with PD in both the training and test sets, and
RBD was significantly different between HCs and patients with
PD in the test set. No other significant differences existed, as
shown in Table 2.

Development and Accuracy of the
Radiomic Biomarker
After dimensionality reduction was applied to the 378 extracted
features, four features were ultimately selected to construct
the radiomics biomarker using logistic regression analysis.
Detailed information on the dimensionality reduction process
and features is provided in the Supplementary Materials. The
rad-score was calculated from the formula for the radiomics
biomarker, and it displayed favorable predictive efficacy in the
training and test sets (the area under the curve (AUC) values
were 0.838 and 0.826, respectively; the specificity was 83.8 and
84.3%, respectively; and the sensitivity was 71.8 and 74.5%,
respectively). In addition, the nonmotor symptoms of patients
with PD were compared using the rad-score. We observed
a significant difference in rad-scores between patients with
PD without olfactory disturbances and patients with PD and
olfactory impairment, as illustrated in Figure 4.

Development of an Integrative Nomogram
A family history of PD, impaired olfaction, CD and radiomics
biomarkers were independent predictors of PD according to
the univariate logistic regression analysis. ROC curves showed
that radiomics biomarkers had the highest diagnostic efficacy
among these independent predictors (Figure 5). Then, impaired
olfaction, CD and radiomics biomarkers were selected as the
factors to construct the integrated model using a stepwise
logistic regression analysis, as shown in Table 3. Based on
three independent predictors, five machine learning methods
were used to construct the model. The AUC values of the
SVM, Bayes, logistic regression, random forest, and decision
tree classifiers in the training set were 0.927, 0.903, 0.937,
0.914, and 0.897, respectively. The predictive performance
of the different machine learning methods is presented in
the Supplementary Material. The DeLong test showed a
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TABLE 2 | Clinical characteristics of the training and test sets.

Variable Training set (n = 234) Test set (n = 102)

HC (n = 117) PD (n = 117) HC (n = 51) PD (n = 51)

n (%) n (%) P-value n (%) n (%) P-value

Sex Male 75 (64.1) 71 (60.7) 0.589 31 (60.8) 33 (64.7) 0.682

Female 42 (35.9) 46 (39.3) 20 (39.2) 18 (35.3)

Age Years 62.5 ± 9.9 61.4 ± 9.7 0.417 60.7 ± 9.1 62.1 ± 10 0.473

Family history of PD No 105 (89.7) 91 (77.8) 0.013* 49 (96.1) 39 (76.5) 0.004*

Yes 12 (10.3) 26 (22.2) 2 (3.9) 12 (23.5)

Impaired olfaction No 78 (66.7) 14 (12) <0.0001* 27 (52.9) 6 (11.8) <0.0001*

Yes 39 (33.3) 103 (88) 24 (47.1) 45 (88.2)

Depression No 108 (92.3) 103 (88) 0.272 43 (84.3) 42 (82.4) 0.79

Yes 9 (7.7) 14 (12) 8 (15.7) 9 (17.6)

RBD No 88 (75.2) 83 (70.9) 0.461 40 (78.4) 30 (58.8) 0.033*

Yes 29 (24.8) 34 (29.1) 11 (21.6) 21 (41.2)

EDS No 99 (84.6) 92 (78.6) 0.237 41 (80.4) 43 (84.3) 0.603

Yes 18 (15.4) 25 (21.4) 10 (19.6) 8 (15.7)

CD No 114 (97.4) 93 (79.5) <0.0001* 51 (100) 38 (74.5) <0.0001*

Yes 3 (2.6) 24 (20.5) 0 (0) 13 (25.5)

RBD, rapid eye movement sleep behavior disorder; EDS, excessive daytime sleepiness; CD, cognitive decline. P-values, significance levels of differences in variables between the training

and test sets. The values in parentheses indicate the percentage of each variable in the training set or test set. *P < 0.05.

significant difference in the AUC value of the logistic regression
model compared with the other machine learning methods.
Accordingly, the logistic regression classifier was used to build
the models and develop an integrative nomogram, as depicted in
Figure 6.

Performance of the Nomogram
The calibration curves showed the consistency between the
predicted PD probability and the actual PD probability for
the nomogram in both the training and testing sets. The
Hosmer-Lemeshow test did not reveal a significant difference
between the performance of the nomogram in the training
and testing sets (P > 0.05), indicating the lack of a deviation
from the fit. The accuracy, specificity, and sensitivity of the
nomogram for identifying PD were 0.937, 83.8, and 84.6%,
respectively, for the training set and 0.922, 88.2, and 82.4%,
respectively, for the test set. The DCA curves also showed good
net benefits, which indicated the superior diagnostic accuracy
of the nomogram, as indicated in Figure 7. The integrative
nomogram showed good classification results in the datasets
containing patients with PD and SWEDD from the PPMI.
The AUC, sensitivity and specificity were 0.836, 70.69, and
91.38%, respectively. Finally, the dataset was divided into a
high-risk group and a low-risk group according to the best
diagnostic threshold of the nomogram (cutoff value: 0.2862),
and the chi-square test revealed a significant difference in the
number of patients with PD between the high-risk group and
the low-risk group (χ2

= 40.474, φ = 0.5847, P < 0.001;
Figure 8).

DISCUSSION

Our results show a difference in the value of radiomic biomarkers
based on whole-brain white matter between patients with PD
and HCs, suggesting that the microstructure of the WM in
patients with PD is altered at the early disease stage (Rektor
et al., 2018). Furthermore, the difference in the rad-score in
the olfactory subgroup suggested that WM damage might be a
risk factor for impaired olfaction. In addition, the integrative
nomogram showed good performance for identifying patients
with early-stage PD, particularly in the SWEDD dataset. We
believe that the diagnostic model for PD will be expanded in the
future, particularly given the convenience and speed of using the
nomogram in the clinic.

Brain MRI is commonly used in clinical practice to evaluate
the structural anatomy and pathology of the brain and is also
used in the diagnostic workup of PD to exclude the presence
of subcortical vascular pathology or other causes of secondary
parkinsonism and to differentiate PD from atypical parkinsonism
(Heim et al., 2017). However, conventionalMRI does not increase
the diagnostic value when the clinical diagnosis is uncertain,
which is particularly true in the early stages of PD (Brooks,
2000; Meijer et al., 2012). Encouragingly, we were able to use
T1-weighted images to identify patients with PD in the present
study, which will further expand the application of conventional
MRI sequences for the early diagnosis of PD. Similar studies
using T2-weighted imaging (T2WI) from conventional MRI have
constructed a radiomic model to distinguish patients with PD
from HCs (Liu et al., 2020); however, the authors manually
placed regions of interest at the caudate nucleus and putamen,
which is a very subjective and time-consuming process. These
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FIGURE 4 | Violin plots of subgroups of patients stratified by non-motor symptoms. The blue line represents the median, and the red lines represent the first and third

quartiles. RBD, rapid eye movement sleep behavior disorder; EDS, excessive daytime sleepiness; FD, family history of PD; DP, depression; CD, cognitive decline; IO,

impaired olfaction.
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FIGURE 5 | Diagnostic accuracy of the independent predictors in the training and test sets. FD, family history of PD; CD, cognitive decline; IO, impaired olfaction.

TABLE 3 | Stepwise logistic regression analysis of the nomogram for PD prediction.

Variable Univariate logistic regression analysis Multivariate logistic regression analysis

OR (95% CI) P-value OR (95% CI) P-value

Sex (male vs. female) 1.237 (0.52–2.943) 0.631 NA NA

Age (per 1-year increase) 0.97 (0.928–1.015) 0.19 NA NA

Family history of PD (No vs. Yes) 2.5 (1.194–5.237) 0.015* NA NA

Impaired olfaction (No vs. Yes) 16.992 (6.51–44.352) <0.0001* 16.251 (6.549–40.326) <0.0001*

Depression (No vs. Yes) 1.557 (0.382–6.337) 0.537 NA NA

RBD (No vs. Yes) 0.719 (0.277–1.863) 0.497 NA NA

EDS (No vs. Yes) 1.297 (0.427–3.936) 0.646 NA NA

CD (No vs. Yes) 23.783 (3.34–169.356) 0.002* 28.34 (4.441–180.874) <0.0001*

Radiomic score (per 0.1 increase) 2.9 (2.108–3.99) <0.0001* 2.934 (2.145–4.013) <0.0001*

NA, not available, as the variable was not included in the multivariate logistic regression analysis; RBD, rapid eye movement sleep behavior disorder; EDS, excessive daytime sleepiness;

CD, cognitive decline. The P value indicates whether the variable is an independent predictor of PD, and * represents P < 0.05.

structures are also very small, and the segmentation is not
sufficiently accurate. Overall, imaging WM is very accessible
and inexpensive in clinical practice compared to imaging of
the caudate nucleus and putamen. In addition, we inferred
that PD might tend to cause greater damage in WM than
other neurological degenerative diseases, as evidenced by the
excellent performance of the WM-based radiomics integrative
nomogram for distinguishing patients with PD from patients
with SWEDD. This increased performance may be due to WM
changes that likely represent axonal degeneration and myelin
damage, which often occur early in disease progression (Burke
and O’Malley, 2013) and support our hypothesis. Interestingly,
WM is not the main pathological substrate of PD, and the
difference in radiomics features further confirms the existence
of a compensatory mechanism in the brain tissue in response

to early-stage PD (Mizuno et al., 2010), which will be studied in
the future.

Adeli et al. combined MRI and SPECT and achieved a PD
diagnostic accuracy of 97.5% (Adeli et al., 2017). Obviously,
this figure exceeds the predictive accuracy reported in the
current study, but the accuracy reported in the previous study
mainly depended on the SPECT data, whereas the results of our
study mainly depended on MRI data alone. In our results, the
diagnostic efficiency of the radiomic biomarker based on MRI
was 83.8%, much higher than the value for other nonmotor
symptoms. Nonetheless, the diagnostic efficiency of radiomic
biomarkers was lower in the present study than that the study
by Wu et al. (2019), who showed that the diagnostic efficiency
of radiomic biomarkers based on 18F-FDG PET images was
90.97%. However, because PET is not widely used in routine
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FIGURE 6 | (A) ROC curves of the five machine learning methods. (B) Heatmap of p-values obtained using the model compared with each of the other machine

learning methods based on the DeLong test. (C) Integrative nomogram used to detect PD. The nomogram was developed using the training set. In the nomogram, a

vertical line is first generated according to the value of the rad-score to determine the corresponding score. Similarly, the scores for CD and olfaction are also

determined. Then, the total score is calculated as the sum of the three scores described above. Finally, a vertical line is generated according to the value of the total

score to determine the probability of PD.

Frontiers in Aging Neuroscience | www.frontiersin.org 10 December 2020 | Volume 12 | Article 548616

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Shu et al. Identifying Early-Stage Parkinson’s Disease

FIGURE 7 | Calibration of the radiomics nomogram for PD in the training and test sets (A,B). The dashed line represents the reference line where an ideal biomarker

would lie, the dotted line represents the performance of the biomarker, and the solid line corrects for any bias in the biomarker. ROC curves of the radiomics

(Continued)
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FIGURE 7 | nomogram for detecting the presence of PD in the training and test sets (C,D). A DCA was performed to show the clinical effectiveness of the nomogram

in predicting the presence of PD in patients included in the training and test sets (E,F). The y-axis represents the net benefit. The pink line represents the radiomics

nomogram. The solid black line represents the hypothesis that all patients had PD. The black dotted line represents the hypothesis that no patients had PD. The x-axis

represents the threshold probability. The threshold probability is where the expected benefit of treatment is equal to the expected benefit of avoiding treatment. For

example, if the possibility of PD in a patient is over the threshold probability, then a treatment strategy for PD should be adopted. The decision curves for the test set

showed that if the threshold probability is between 0 and 0.88, then the use of the radiomic nomogram to predict PD provides a greater benefit than treating either all

or none of the patients.

FIGURE 8 | ROC curves for the nomogram in predicting PD in the validation dataset (A). Bar plots show a significantly higher incidence of PD in the high-risk group

than in the low-risk group (B). *represents p < 0.05.

clinical practice, the method may lack practicality. Of course,
we should not ignore the other factors that were used to build
the model, including CD and impaired olfaction, which also
contributed substantially to the model. In fact, impaired olfaction
is one of the most common and typical nonmotor disorders
associated with PD (Fullard et al., 2017), and most patients with
PD develop an impairment of olfaction 4–6 years before they start
to present motor impairment (Reichmann, 2017). This finding
may also explain why olfactory impairment is the only non-
motor symptom displaying statistically significant differences in
the scores of the radiomics biomarker in patients with PD, and a
deterioration in the sense of smell has been postulated to reflect
extrastriatal neurodegeneration in patients with PD (Schrag et al.,
2017). Accordingly, we speculate that olfactory damage may also
reflect early changes in the WM microstructure, but further
research is needed.

The advantages of the nomogram are also reflected in other
aspects of this study. We analyzed 3D WM images, while most
previous studies were based largely on a cross-sectional analysis
of the SN (Takahashi et al., 2018; Cheng et al., 2019; Li et al.,
2019). Nevertheless, a cross-sectional image of the SN may

not completely reflect the early typical pathological changes
associated with PD, and larger whole-brain changes will likely
give a better representation of the global alterations associated
with the disease. Four radiomic features were selected in the
present study, including two features of RLM. In a previous
study, RLM features, which reflect roughness and directionality,
were also associated with the progression of white matter
hyperintensity (WMH) (Li et al., 2017). Directionality refers to
a specific route or angle of the nerve fasciculus. In normal WM,
nerve fibers are properly oriented and regulated; nevertheless,
when myelin is damaged, the neural structure may be disrupted
(Yu et al., 2004), consistent with the white matter damage
observed even in patients with early-stage PD in previous studies
using advancedMRI technologies, such as DTI (Bergamino et al.,
2020; Sanjari Moghaddam et al., 2020), showing that structural
changes in the WM may underlie the clinical and pathologic
heterogeneity of PD and cause relative cognitive impairment.
Therefore, WM is a promising brain tissue to provide new
insights that will be important for the early diagnosis of PD.

The correction curve and DCA showed the stability and
clinical diagnostic benefits of the nomogram (AUC of 0.937),
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but the sensitivity of the nomogram may still be lower than that
of cerebrospinal fluid, which was the first identified biomarker
of PD (Olsson et al., 2016). As shown in a similar study,
early diagnosis of PD based on a cerebrospinal fluid model
constructed using machine learning achieved a sensitivity of
90% (Dos Santos et al., 2018). Regardless, the nomogram
used in this study as a noninvasive evaluation tool may be
more suitable for clinical application than invasive detection of
cerebrospinal fluid. Furthermore, the accuracy of the nomogram
decreased from 0.937 to 0.836 when applied to patients with
SWEDD compared with HCs. We speculate that this decrease
may be due to early microstructural changes in WM caused
by other neurological diseases in patients included in the
SWEDD dataset, and similar to patients with early-stage PD,
these changes were accelerated. However, the difference between
patients with PD and patients with SWEDD is likely attributable
to the lack of dopaminergic neurons (Wyman-Chick et al.,
2016); therefore, the model will undoubtedly further reflect the
pathological mechanism of dopaminergic damage (Liu et al.,
2018). Additionally, participants classified as having SWEDD
who would later be diagnosed with PD might be distinguished
from patients who would not develop PD. The nomogram was
able to discriminate patients without evidence of dopaminergic
deficits typical of PD from patients with other neurological
disorders, which might be useful to clinicians, particularly when
the nomogram is combined with imaging data.

Despite the overall positive results presented here, the current
study still has some limitations. First, regarding the samples
used for external verification, a larger sample size from multiple
research centers is needed to verify and improve the results of the
present study. Second, the patients with PDwho were included in
this study may have been in different neurological disease stages,
and differences in WM features were still observed between
patients with PD and HCs (the severity of PD did not appear
to affect the results of this study). Final, we did not consider
the possible effect of chronic dopaminergic medications on our
results; the regimen of neuropsychiatric medications provided
to patients during illnesses potentially affects brain structures
(Zeng et al., 2015). Nevertheless, analysis of this cohort enabled
us to establish a preliminary nomogram, facilitating the future

consideration of long-term medication use in a larger and more
diverse prospective study.

Although early diagnosis of PD is still based on clinical
criteria, the advent of integrative nomograms will provide
an imaging measure that can detect early-stage PD and may
serve as a basis for future disease prediction studies in
longitudinal cohorts.
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