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Movement disorders are neurological conditions in which patients manifest a diverse
range of movement impairments. Distinct structures within the basal ganglia of the
brain, an area involved in movement regulation, are differentially affected for every
disease. Among the most studied movement disorder conditions are Parkinson’s (PD)
and Huntington’s disease (HD), in which the deregulation of the movement circuitry due
to the loss of specific neuronal populations in basal ganglia is the underlying cause
of motor symptoms. These symptoms are due to the loss principally of dopaminergic
neurons of the substantia nigra (SN) par compacta and the GABAergic neurons of the
striatum in PD and HD, respectively. Although these diseases were described in the 19th
century, no effective treatment can slow down, reverse, or stop disease progression.
Available pharmacological therapies have been focused on preventing or alleviating
motor symptoms to improve the quality of life of patients, but these drugs are not
able to mitigate the progressive neurodegeneration. Currently, considerable therapeutic
advances have been achieved seeking a more efficacious and durable therapeutic effect.
Here, we will focus on the new advances of several therapeutic approaches for PD
and HD, starting with the available pharmacological treatments to alleviate the motor
symptoms in both diseases. Then, we describe therapeutic strategies that aim to restore
specific neuronal populations or their activity. Among the discussed strategies, the use
of Neurotrophic factors (NTFs) and genetic approaches to prevent the neuronal loss in
these diseases will be described. We will highlight strategies that have been evaluated
in both Parkinson’s and Huntington’s patients, and also the ones with strong preclinical
evidence. These current therapeutic techniques represent the most promising tools for
the safe treatment of both diseases, specifically those aimed to avoid neuronal loss
during disease progression.

Keywords: Parkinson’s disease, Huntington’s disease, neurotrophic factors, pharmacological therapy, gene
modifiers, cellular replacement
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INTRODUCTION

Movement disorders are characterized by disabilities in speed,
fluency, quality, and ease of motor execution, impairments that
could be due to an excess or lack of voluntary movements
(Shipton, 2012). Movement is produced by the coordinated
action of several cortical and subcortical brain structures such
as the spinal cord, brainstem, cerebral cortex, cerebellum,
and basal ganglia, which collectively fine-tune voluntary and
involuntary movements (Ferreira-Pinto et al., 2018). Particularly,
the basal ganglia structure comprises a group of subcortical
nuclei including the striatum (subdivided in most mammals
in caudate and putamen), internal globus pallidus (GPi) and
external globus pallidus (GPe), substantia nigra (SN) pars
reticulata (SNpr) and compacta (SNpc), and subthalamic nucleus
(STN), that together with the primary motor cortex and the
thalamus, comprise the motor circuit involved in the control
of voluntary movement (Albin et al., 1989; Obeso et al.,
2008; Calabresi et al., 2014). The striatum is composed of
medium spiny neurons (MSNs), a type of GABAergic neurons
representing 90–95% of striatal neurons (Dubé et al., 1988),
cholinergic and GABAergic interneurons (Lapper and Bolam,
1992). MSNs are innervated by glutamatergic (excitatory) inputs
from the cortex and thalamus, together with dopaminergic inputs
from the SN (Pickel et al., 1992). In turn, MSNs differentially
express dopamine (DA) D1 or D2 receptors, which determine
their participation in two motor circuits: the direct or indirect
pathways. The direct pathway is composed of the striatum, GPi,
SNpr, thalamus, and motor cortex, promoting the activation of
movement through the inhibition of the GPi, in addition to the
consequent disinhibition of the thalamus. The indirect pathway,
formed by the striatum, GPe, STN, SNpr, thalamus, and motor
cortex favors the inhibition of movement by activating the STN
with the consequent inhibition of the thalamus (Figure 1A;
Calabresi et al., 2014). Alterations in these brain regions are
associated with a spectrum of abnormal movement disorders.
Among the most studied movement disorders are Parkinson’s
(PD) and Huntington’s disease (HD; Figures 1B,C), which are
the main focus of this review.

PD is the second most common chronic and progressive
neurological disorder with no effective cure (Emamzadeh and
Surguchov, 2018) PD incidence is currently around 200 in
100,000 persons (Ball et al., 2019) and the number of PD
patients is expected to reach 10 million by 2030 (Dorsey
et al., 2007; Ball et al., 2019). PD is mainly an idiopathic
disorder with multifactorial etiology, with aging being one of
its main risk factors (Hou et al., 2019). Nevertheless, genetic
factors have been associated with 5–10% of PD cases (Kim
and Alcalay, 2017). Clinical features of PD are a combination
of motor symptoms including muscle rigidity, gait difficulty,
postural instability, bradykinesia, and tremor at rest (Rees
et al., 2018). Also, non-motor symptoms include sensory and
sleep alterations, constipation, cognitive impairment, dementia,
anxiety, depression, and mood disorders at an early stage of the
disease (Munhoz et al., 2015).

One of the two neuropathological criteria required for the
diagnosis of PD is the progressive loss of dopaminergic neurons

within the SNpc of the basal ganglia (Figure 1B; Agid, 1991;
Hirsch et al., 1999). However, not all dopaminergic neurons are
equally vulnerable: those that project their axons to the putamen
are more vulnerable than those that project their axons to
cognitive areas. The second pathological criteria is the presence
of α-synuclein (α-syn)-positive inclusions accumulated in Lewy
bodies in neurons (Double, 2012). Although the main hallmarks
of PD are well described, diagnosis before classic clinical features
occur is not currently achievable. Motor symptoms are observed
when 70% of the striatal dopaminergic neurons terminals
are lost and half of the dopaminergic neurons in the whole
brain have degenerated (Double, 2012; Surmeier et al., 2017;
Fu et al., 2018).

The current PD treatment is a pharmacological therapy
that increases DA levels to provide symptomatic relief.
Unfortunately, this therapeutic strategy has limited efficacy.
However, new therapeutic alternatives under development
attempt to modify the pathology of PD by increasing DA
production or improving neuronal health. These approaches
efficiently delay neurodegeneration as well as PD symptoms
in preclinical models and patients. Currently, finding new
treatments that modify pathological PD progression, prevent
the dopaminergic neuronal loss, counteract aberrant neuronal
activity, and delay the appearance of motor symptoms is the
principal goal of many investigations.

HD is the world’s most common monogenic neurological
disorder (Huntington’s Disease Collaborative Research Group,
1993), characterized by its autosomal dominant inheritance,
midlife onset and progressive course with a combination of
motor, cognitive and behavioral features. HD is caused by a
mutation in the gene that encodes for the protein huntingtin
(HTT), which leads to an expanded CAG trinucleotide, causing
an abnormally long polyglutamine (polyQ) tract in HTT. This
repetition ranges between 6–35 glutamine units in the normal
population.When this tract is≥40 glutamines long, themutation
is highly penetrant, triggering a disease process that leads to the
onset of motor symptoms. Mutant HTT (mHTT) exhibits gain-
of-toxic properties, causing dysfunction and death of GABAergic
MSNs of the striatum, which is particularly vulnerable to mHTT
toxicity (Figure 1C). Once signs and symptoms begin, they
progress inexorably throughout the illness, which is inevitably
fatal, with a median survival from motor onset of 18 years (Ross
et al., 2014).

We describe current pharmacological therapies for both
diseases, cellular replacement strategies to restore lost
neuronal populations, administration of Neurotrophic factors
(NTFs) to increase neuronal viability and health, electrical
neuromodulation to restore movement circuitry lost, and
genetic approaches to decrease mHTT and α-syn levels. We
focused on studies that have reached clinical testing, highlighting
preclinical evidence that supports those clinical trials. The
clinical trials mentioned throughout this review are summarized
in Tables 1, 2. For those strategies in which clinical trials
have not been performed, we present the current state of
investigations and remark the important drawbacks that must
be solved before these therapeutic approaches jump into
clinical trials.
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FIGURE 1 | I Schematic representation of the direct and indirect pathways in basal ganglia in physiological, Parkinson’s (PD), and Huntington’s disease (HD)
conditions. (A) Physiologically, the direct (green line) pathway participates in the activation of movement. This pathway is engaged when the activation of the cortex
produces a release of glutamate into the striatum, activating GABAergic medium spiny neurons (MSNs) of the direct pathway. By releasing GABA to the substantia
nigra pars reticulata (SNpr) and the internal globus pallidus (GPi), MSNs inhibit neurons of the SNpr/GPi that are also GABAergic. This causes activation of the
glutamatergic neurons present in the thalamus, which projects to the cortex, resulting in the activation of movements. On the contrary, the indirect pathway (red line)
participates in the inhibition of movement. When GABAergic MSNs that indirectly project to the SNpr through the external globus pallidus (GPe) and the subthalamic
nucleus (STN), release GABA into the GPe, inhibits GABAergic neurons present in the GPe. This leads to the disinhibition of the glutamatergic neurons of the STN,
which activates GABAergic neurons of the SNpr/GPi. These neurons inhibit neurons present in the thalamus, resulting in a reduction of movement. The selection and
execution of movement reflect a dynamic balance between both pathways. (B) In PD, the loss of dopaminergic neurons of the SNpc, induces an overactivation of
the indirect pathway and decrease of movement. Consequently, there is an increase of GABAergic activity of the GPi/SNpr over thalamic neurons that project to the
cortex, leading to loss of movement (hypokinetic disorder). (C) In HD (early stage), MSNs of the indirect pathway appear to be affected before the MSNs of the direct
pathway. This induces an increase of GABAergic (or inhibitor) activity of the GPe over the STN, which causes the loss of inhibitory activity of the GPi/SNpr over
thalamic neurons that project to cortex, leading to the appearance of choreic movements (hyperkinetic disorder).

CURRENT PHARMACOLOGICAL
TREATMENTS TO ALLEVIATE MOTOR
SYMPTOMS IN PD AND HD

Currently, no approved drugs can modify the progression of
either PD or HD. Available pharmacological therapies only
aim to treat motor symptoms to improve the quality of life
of patients but, ultimately, these drugs do not mitigate the
progressive neurodegeneration.

For PD, pharmacological approaches are designed to
reestablish DA levels through: (i) increasing DA availability
using DA precursors like levodopa (L-dopa) or dopaminergic
agonists like pramipexole, and (ii) inhibiting DA degradation
by monoamine oxidase B inhibitors [MAO-BI, like selegiline
(Eldeprylr) and rasagiline (Azilectr)] or catechol-O-methyl
transferase inhibitors [COMTI, like entacapone (Comtanr)]
and tolcapone (Tasmarr; Van de Schyf, 2015; Teijido and
Cacabelos, 2018; Carrera and Cacabelos, 2019). A caveat
in the chronic administration of anti-parkinsonian drugs is
the ‘‘wearing-off’’ phenomenon, which produces additional
psychomotor and autonomic complications, like levodopa-
induced dyskinesia (LID; Fahn et al., 2004; Stacy, 2009; Ammal
Kaidery et al., 2013; Cacabelos, 2017). Moreover, L-dopa
pharmacokinetics is unpredictable and commonly leads to
administration increase, complex regimens, and poor patient
compliance. Nevertheless, L-dopa remains as the gold standard
pharmacological intervention for motor symptoms in PD
patients (Oertel and Schulz, 2016; Fox et al., 2018). Although

the pathophysiology of wearing-off and dyskinesia is complex
and not completely understood, it appears to be linked to the
short plasma half-life of L-dopa, as short-acting dopaminergic
drugs can induce alterations in brain DA concentrations
which lead to motor dysfunction (Olanow et al., 2006; Rajan
et al., 2017). To assess this problem, strategies that prolong
L-dopa plasma half-life have been developed, including the
administration of COMTI. A significant quantity of orally
administered L-dopa is metabolized to 3-O-methyldopa (a
useless metabolite) by COMT in the gastrointestinal tract. By
inhibiting COMT, more L-dopa will be absorbed, increasing
its bioavailability and extending its half-life (Oertel and Schulz,
2016). Some of these drugs are tolcapone, entacapone, and
opicapone (Parkinson Study Group, 1997; Rinne et al., 1998;
Poewe et al., 2002; Cacabelos, 2017). However, the FDA
has restricted the use of tolcapone due to hepatic necrosis
leading to death (Haasio et al., 2001). Common combinations
include L-dopa/carbidopa (an L-dopa decarboxylation inhibitor;
Sinemetr) and L-dopa/benserazide (Madoparr), looking
to prevent systemic adverse effects related to the peripheral
metabolism of L-dopa to DA, including nausea, dyskinesia,
motor fluctuations, hypotension, psychiatric symptoms
(especially hallucinations) and diaphoresis. Duodopa, an
intestinal gel form of L-dopa/carbidopa, provides a more
stable response to L-dopa. Stalevor is a triple-drug, containing
carbidopa, L-dopa, and entacapone (Rezak, 2007). Another
strategy for prolonging L-dopa half-life is the inhibition of
MAO-B, the breakdown-enzyme of DA in the brain, increasing
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TABLE 1 | Parkinson’s disease (PD) therapies under clinical trials.

Sponsor CT Identifier Stage Administration Target Description Start–completion date

Cellular replacement
University of Cambridge NCT01898390 Phase1. Active, not

recruiting
Transplant Striatum TRANSEURO Open Label

Transplant Study in Parkinson’s
disease (TRANSEURO)

May 2012–March 2021

Chinese Academy of
Sciences

NCT03119636 Phase 1–2. Recruiting Transplant (stereotaxis) Striatum Safety and Efficacy Study of Human
ESC-derived Neural Precursor Cells
in the Treatment of Parkinson’s
disease

May 2017–December 2021

Hebei Newtherapy
Bio-Pharma technology
Company Limited

NCT03550183 Phase 1. Recruiting Intravenous infusion Not specified Umbilical Cord Derived
Mesenchymal Stem Cells Therapy
in Parkinson’s disease

January 2018–December
2022

Bundang CHA Hospital NCT01860794 Phase 1–2. Recruiting Transplant Striatum Evaluation of Safety and Tolerability
of Fetal Mesencephalic Dopamine
Neuronal Precursor Cells for
Parkinson’s disease

May 2012–April 2022

Growth factors administration
North Bristol NHS Trust NCT03652363 Phase 2. Completed Bilateral Intraputamenal

Infusions of GDNF
Administered via
Convection enhanced
delivery

Striatum GDNF in ideopathic Parkinson’s
disease

October 2012–April 2016

Herantis Pharma Plc. NCT03295786 Phase 1–2. Complete Intraputamenal DDS Striatum CDNF brain infusion in Parkinson’s
disease patients

September 2017–January
2020

Herantis Pharma Plc. NCT03775538 Phase 1–2. Active, not
recruiting

Intraputamenal DDS Striatum Safety study of CDNF brain infusion
in Parkinson’s disease patients

December 2018–January
2020

Newron Sweden AB NCT02408562 Phase 1–2. Complete Intracerebroventricular Not specified Safety and tolerability study of
rhPDGF-BB in Parkinson’s disease
patients

April 2015–January 2016

Newron Sweden AB NCT01807338 Phase 1–2. Complete Intracerebroventricular Not specified PDGF-BB in Parkinson’s disease
patients

March 2013–October 2014

Electrical stimulation
Northwell Health NCT04184791 Phase No aplica.

Recruiting
DBS STN Study the effect of protocol a 60 HZ

of STN-DBS in Parkinson’s patients
with gait disorder

January 2020–December
2021

University of Miami NCT02022735 Phase No aplica.
Active, recruiting yet

DBS Not specified Evaluation of different parameters of
stimulation for the treatment of gait
disorder in Parkinson’s patient

December 2013–December
2025

Boston Scientific Corporation NCT01221948 Phase 2. Completed. DBS STN Evaluation of effectiviness and safe
of Boston scientific implantable
DBS Vercise system for treatment
of moderate to severe idiopathic
Parkinson’s disease

October 2010–June 2018

(Continued)
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DA levels at synapses. Selegiline, through its metabolite
desmethylselegiline, has also shown anti-apoptotic effects
(Tatton et al., 1996; Parkinson Study Group, 2005; Cacabelos,
2017). Rasagiline is a significantly more potent MAO-BI
that reduces the motor symptoms in PD patients and has
disease-modifying potentials (Parkinson Study Group, 2005;
Rascol et al., 2005; Olanow et al., 2009). IPX066 (Rytary)
is an improved oral formulation of L-dopa approved in
2015 by the FDA containing both an immediate-release
and a sustained-release L-dopa. Published phase II and III
studies show that IPX066 improved Unified Parkinson’s
Disease Rating Scale (UPDRS) motor scores compared to
placebo in early PD patients and reduced wearing-off in
advanced PD patients (Kestenbaum and Fahn, 2015). Before
L-dopa, anticholinergics were the treatment of choice for
PD. However, MAO-BI and modern DA agonists have
largely replaced these drugs. Trihexyphenidyl (Artaner),
benztropine (Cogentinr), and procyclidine (Kemadrinr) is
usually reserved for tremor resistant to dopaminergic agents.
The adverse effects of anticholinergics include blurred vision,
dry mucus membranes, urinary retention, and cognitive changes
(Rezak, 2007).

Dopamine receptor (DR) agonists mimic DA actions in the
brain by directly stimulating DRs. Two common DR agonists
are pramipexole (Mirapexr) and ropinirole (Requipr). These
directly stimulate post-synaptic D2 and D3 receptors in the
striatum and are prescribed as monotherapy or combined with
L-dopa. Potential side effects of pramipexole and ropinirole
include hypotension, sleep, cognitive/psychiatric alterations,
dyskinesias, and compulsive behavior. The latter is believed
to be a result of DA dysregulation in the limbic and frontal
circuits that are connected to the basal ganglia (Evans and
Lees, 2004). Polyoxazoline (POZ) polymer conjugation for
continuous dopaminergic drug delivery may improve motor
symptoms while avoiding side effects. The in vitro and
in vivo pharmacokinetics of POZ-conjugated rotigotine (DA
agonist) was characterized, demonstrating that the sustained
dopaminergic stimulation profile achieved by POZ-conjugated
rotigotine formulations, could represent a significant advance
in the treatment of PD. POZ polymer administration can
improve motor symptoms in a rat model of PD (Eskow Jaunarajs
et al., 2013; Fox et al., 2018). For HD, the only approved
pharmacological therapy for the treatment of motor symptoms
is tetrabenazine, a vesicular monoamine transporter 2 (VMAT-
2) inhibitor that reduces DA neurotransmission via its depletion
from presynaptic vesicles, resulting in a reduction of chorea
manifested by HD patients (Wyant et al., 2017). However,
its side effects, which include sedation, anxiety, depression,
and suicidality have limited its use (Wyant et al., 2017; Dean
and Sung, 2018). In 2017, the FDA approved a deuterated
derivative of tetrabenazine, deutetrabenazine, with improved
pharmacokinetic profile, allowing a less frequent daily dosage
with comparable systemic exposure of the drug, resulting in
less adverse events (Dean and Sung, 2018). No other small
molecules are currently used for HD treatment, but several
therapeutic approaches are in clinical trials, which will be
discussed later.
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TABLE 2 | Huntington’s disease therapies under clinical trials.

Sponsor CT Identifier Stage Administration Target Description Start–completion date

Electrical stimulation
Heinrich-Heine University,
Duesseldorf

NCT02535884 Phase Not Applicable.
Recruiting

DBS GP Study of efficacy and safety of pallidal
DBS in HD patients to improve motor
function. Device: ACTIVAr PC
neurostimulator (Model 37601)

July 2014–October 2020

DNA targeting approaches
Ionis Pharmaceuticals, Inc. NCT02519036 Phase 1–2. Complete Intrathecal CNS Safety, Tolerability, Pharmacokinetics,

and Pharmacodynamics of ISIS
443139 in Participants With Early
Manifest Huntington’s Disease

August 2015–May 2019

Hoffmann-La Roche NCT03342053 Phase 2. Complete Intrathecal CNS This study will test the safety, tolerability,
pharmacokinetics and
pharmacodynamics of
RO7234292 administered intrathecally
to adult patients with Huntington’s
Disease

November 2017–June 2020

Hoffmann-La Roche NCT03761849 Phase 3. Recruiting Intrathecal CNS A Study to Evaluate the Efficacy and
Safety of Intrathecally Administered
RO7234292 (RG6042) in Patients With
Manifest Huntington’s Disease

January 2019–September 2022

Wave Life Sciences Limited NCT03225833 Phase 1b–2a. Recruiting Intrathecal CNS Safety and Tolerability of WVE-120101
in Patients With Huntington’s Disease
(PRECISION-HD1)

July 2017–December 2020

Wave Life Sciences Limited NCT03225846 Phase 1b–2a. Recruiting Intrathecal CNS Safety and Tolerability of WVE-120102
in Patients With Huntington’s Disease
(PRECISION-HD2)

July 2017–December 2020

RNA targeting approaches
UniQure Biopharma B.V. NCT04120493 Phase 1–2. Recruiting Stereotaxic Striatum Safety and Proof-of-Concept (POC)

Study With AMT-130 in Adults With
Early Manifest Huntington Disease

September 2019–May 2026
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FIGURE 2 | I Schematic representation of the different treatments for motor symptoms for PD and HD under clinical and preclinical phases. (A) Approaches
regarding cellular, neurotrophic, electrical, and gene-modifying therapies that are in clinical trials or stage of optimization for PD and HD patients. The lines indicate
the different brain structures that are the target of the therapeutic strategies mentioned. (B) Approaches regarding cellular, neurotrophic, electrical, and
disease-modifying therapies in the preclinical phase using rodent models of PD and/or HD. The lines indicate the different brain structures that are the target of the
therapeutic strategies mentioned.

CELLULAR REPLACEMENT THERAPIES
FOR PD AND HD

In 1967, in an important breakthrough, Cotzias et al. (1967)
demonstrated that the administration of a precursor of DA,
L-dopa, improved motor function in PD patients, leading to
the thought that the cure for PD was discovered. Also in the
1960s, tetrabenazine was introduced as an antipsychotic but also
showed beneficial effects for the treatment of hyperkinetic motor
symptoms, like chorea in HD patients (Dalby, 1969; Huntington
Study Group, 2006). To date, it is known that these drugs do not
reverse disease progression and in many cases do not have the
desired effects. This has brought the idea that local production
of DA and GABA, and therefore the replacement of the neurons
that produce it, would be the ideal treatment for these diseases.

The fact that the major symptoms present in PD and HD patients
are due to the loss of dopaminergic and GABAergic neurons in
specific brain regions, respectively, means that replacing these
specific cell types could help relieve some of the symptoms
present in patients. This has given rise to different branches
of investigations seeking cellular replacement-based therapies,
which have shown promising results in animal models for these
diseases as well as in affected patients (Figure 2).

Human Fetal Tissue as a Source of
Progenitor Cells
The first study demonstrating that dopaminergic neurons
could be replaced using fetal tissue was performed using
6-hydroxydopamine (6-OHDA)-lesioned rats that were
implanted with DA-rich ventral mesencephalic tissue from

Frontiers in Aging Neuroscience | www.frontiersin.org 7 September 2020 | Volume 12 | Article 571185

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Troncoso-Escudero et al. Therapeutic Approaches for Movement Disorders

rat fetuses (Björklund and Stenevi, 1979; Perlow et al., 1979).
These studies were followed by the generation of the first
non-human primates PD model: monkeys lesioned with
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; Burns
et al., 1983). This model manifested several of the patient’s
symptoms, and transplanting primate fetal mesencephalic tissue
into their striatum showed to alleviate these symptoms (Bakay
et al., 1985; Sladek et al., 1987; Taylor et al., 1991). These studies
set foot for the first PD cell replacement therapy in humans.
These clinical trials were performed using dopaminergic neuron
precursors from human fetal tissue, which were transplanted
into the striatum of PD patients (Lindvall et al., 1989, 1992; Freed
et al., 1990, 1992). Transplanted tissue presented no negative
effects at the transplantation site, was functional and survived in
the transplanted brain region, but clinical benefits were variable
(Freed et al., 1992; Kordower et al., 1998; Hagell et al., 1999; Li
et al., 2016).

It is important to understand that dopaminergic neurons
engrafted in the striatum are deprived of their SNpc afferents.
Instead, when dopaminergic neurons are transplanted in the
striatum, they may form connections with cortical, intrastriatal,
and thalamic neurons, which are not normally connected with
nigral dopaminergic neurons. Moreover, considering the nature
of fetal tissue, possibly other types of neurons and glial cells
differentiate in the grafted brain area. Additionally, only a
portion of the grafted fetal tissue corresponds to cells that needed
restoration in the specific brain region. Another important
concern is the presence of α-syn aggregates and Lewy body
inclusions in the grafted cells in PD patients (Kordower et al.,
2008; Li et al., 2008). This highlights the necessity of using a
complementary strategy that allows donor cells to be resistant to
the spreading of α-syn.

On the other hand, by the mid-1980s, the first studies using
fetal tissue were performed in rat models of HD (Table 4).
These studies demonstrated that the grafted tissue survived,
was functional and recovered some of the behavioral alterations
present in HD rats (Deckel et al., 1983; Isacson et al., 1984,
1985; Sanberg et al., 1986). The in vivo functionality of the
grafted striatal fetal tissue was also assessed, showing GABA
release upon dopaminergic and glutamatergic inputs (Campbell
et al., 1993). Diverse studies further demonstrated the effect of
striatal fetal tissue transplantation in diverse pharmacological
models of HD (Hantraye et al., 1992; Nakao et al., 1999)
and by late 1990s, the first clinical trials in HD patients were
performed. HD patients were injected unilaterally or bilaterally
with fetal tissue, which was originated from various donated
embryos. Given the amount of tissue needed and their origin
from different embryos, this strategy causes immune rejection
by the patient’s immune system. Therefore, complementary
immunosuppression therapy is needed, which has shown no
adverse effects on patients (Freeman et al., 2000). After fetal cell
transplantation, patients presented improved cognitive function
and stabilization of motor functions, which worsen a few years
after the surgery (Kopyov et al., 1998; Gallina et al., 2008; also see
Table 1).

Although several clinical trials have been performed using
fetal tissue transplants to treat PD and HD patients, this

technique has a few but important limitations. First, is important
to consider that when using human fetal tissue, tumors can
develop, which could be explained by the presence of actively
dividing immature neuroepithelial cells (Keene et al., 2009).
Second, not only neuronal loss must be corrected, but also
the loss of glial cells. Astrocytes are the most abundant cell
type found in the brain (Miller, 2018) and play important
roles in maintaining brain homeostasis, supporting a neuronal
activity, and metabolism. In PD and HD, there is a deregulation
of astrocyte activity, including electrophysiological changes,
calcium homeostasis, glutamate reuptake, and metabolism,
among others (Booth et al., 2017; Garcia et al., 2019; Gray,
2019). Therefore, the replacement of the lost neurons should be
accompanied by a replacement or modification of the glial cells
that support them.

Pluripotent Stem Cells as a Source of
Differentiated Cell
Pluripotent stem cells (PSCs) are an unlimited source of cells
with the potential to give rise to any type of cell of the
body. Cells differentiated from embryonic stem cells (ESCs)
and induced pluripotent stem cells (iPSCs; Takahashi and
Yamanaka, 2006) are widely used as in vitro models for many
diseases, including neurodegenerative diseases, and also as a
source of cell-replacement therapies. Initial studies demonstrated
that, when midbrain-derived dopaminergic neurons where
grafted in the striatum of rodent models of PD (Table 3),
long-term survival of these cells was observed, which were
tyrosine hydroxylase (TH)-positive neurons, completely reversed
amphetamine-induced rotational behavior and lacked neuronal
overgrowth (Kriks et al., 2011). Importantly, midbrain human
dopaminergic neurons grafted in MPTP-lesioned non-human
primates survived in the grafted area, expressed TH, extended
fibers to the surrounding striatum, and did not present neuronal
overgrowth (Kriks et al., 2011).

However, one limitation regarding the use of PSCs-derived
neurons is the greater immune reaction observed with allogeneic
grafts compared with isogenic cells (Duan et al., 1995;
Morizane et al., 2013). Using both approaches, Hallett et al.
(2015) demonstrated that in a non-human primate PD model
autologous iPSCs-derived midbrain-like dopaminergic neurons
could successfully engraft and survive for as long as 2 years. This
led to improving motor function and complete re-innervation
in the striatum with extensive axonal outgrowth, and no graft
overgrowth, tumor formation or inflammation was observed
(Hallett et al., 2015). Also, as clinical trials are underway,
establishing the optimal and safest protocol for dopaminergic
neurons differentiation is necessary to obtain the adequate
number of neurons that permit improvements in patient’s
motor symptoms. Also, the characterization of the graft is
relevant, as the differentiation protocol could give rise to other
cell types that may alter the physiological conditions in the
grafted site. One important concern about the use of autologous
transplantation using iPSC-derived dopaminergic neurons of
PD patients is that these cells will carry any intracellular
dysfunction related to disease pathogenesis. It is important to
remember that dopaminergic neuron replacement is primarily
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TABLE 3 | Common animal models of Parkinson’s Disease.

Model Characteristics Reference

1. Mouse models
Pharmacological models
6-OHDA Stereotaxic injection in medial forebrain bundle Zigmond and Stricker (1984)
MPTP IP injection induce loss of dopaminergic neurons of nigrostriatal pathway Sonsalla et al. (1987) and Sonsalla and Heikkila (1988)
Rotenone Stereotaxic injection in parenchyma caused damage in dopaminergic

nigrostriatal pathway
Heikkila et al. (1985)

Reserpine Impairment in monoamines storage in intracellular vesicles disrupting motor
activity

Spina and Cohen (1989) and Cooper et al. (2004)

Genetically modified models
A53T Mutation leads formation of neuronal inclusions leading neurodegeneration Giasson et al. (2002)
PINK1 transgenic mice (knockout) Display impaired dopamine release, but not dopaminergic neurons

degeneration
Kitada et al. (2007)

Parkin transgenic mice (knockout) Display abnormalities in dopamine transmission, but not dopaminergic
neuron degeneration

Perez et al. (2005)

DJ-1 transgenic mice (knockout) Display abnormalities in dopamine transmission, but not dopaminergic
neuron degeneration

Goldberg et al. (2005)

LRKK2 transgenic mice (overexpression) Display dopaminergic dysfunction and some behavioral deficits, but not
dopaminergic neurons degeneration

Lin et al. (2009)

Recombinant adeno-associated viral vector (AVV) models
Human WT-α-synuclein Direct injection in SN induce progressive loss of dopaminergic neuron St. Martin et al. (2007)
Human-A53T-α-synuclein Direct injection in SN induce progressive loss of dopaminergic neuron Oliveras-Salvá et al. (2013)
2. Rat models
Pharmacological models
6-OHDA Direct administration in the brain (striatum, subtantia nigra or median

forebrain bundle) cause the loss of dopaminergic neurons
Ungerstedt (1968)

Haloperidol IP injection block striatal dopamine transmission Sanberg (1980)
Rotenone IV or IP administration cause nigrostriatal dopaminergic degeneration Betarbet et al. (2000)
Recombinant adeno-associated viral vector (AVV) models
Human WT-α-synuclein Human-A53T-α-synuclein Direct injection in SN induce progressive loss of dopaminergic neurons and

motor impairtment
Kirik et al. (2002a,b)

Human A30P-α-synuclein Direct injection in SN induce progressive loss of dopaminergic neurons and
motor impairtment

Klein et al. (2002)

3. Large models
Pharmacological models
MPTP rhesus monkey IP injection induce loss of dopaminergic neurons of nigrostriatal pathway Burns et al. (1983)
MPTP squirrel monkey IP injection induce loss of dopaminergic neurons of nigrostriatal pathway Langston et al. (1984)
MPTP marmoset monkey IP injection induce loss of dopaminergic neurons of nigrostriatal pathway Jenner et al. (1984)
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TABLE 4 | Common animal models of Huntington’s disease.

Model Characteristics Reference

1. Mouse models
Genetically modified models
R6/2 Expresses human exon 1 of HTT with ∼150 glutamine repeats Mangiarini et al. (1996)
R6/1 Expresses human exon 1 of HTT with ∼115 glutamine repeats Mangiarini et al. (1996) and Naver et al. (2003)
N171-82Q Expresses a 171 amino acid mutant HTT fragment with 82 glutamine

repeats
Schilling et al. (1999)

YAC128 Expresses full length human HTT with 128 glutamine repeats Slow et al. (2003) and Van Raamsdonk et al. (2005)
BACHD Expresess full lenght human HTT with 97 glutamine repeats Gray et al. (2008)
HdhQ111 knock-in mouse having human HTT exon 1 sequence with

111 glutamine repeats
Wheeler et al. (2000)

HdhQ140 knock-in mouse having human HTT exon 1 sequence with
140 glutamine repeats

Menalled et al. (2003)

HdhQ150 knock-in mouse having mouse HTT exon 1 sequence with
150 glutamine repeats

Lin et al. (2001)

Pharmacological models
Quinolonic acid (QA) QA directly administered to the striatum induces striatal

neurodegeneration
McLin et al. (2006)

3-Nitropropionic acid (3-NP) Repeated injections of 3-NP produce excitotoxic-like lesions of the
striatum

Gould et al. (1985)

2. Rat models
Pharmacological models
Quinolonic acid (QA) QA directly administered to the striatum induces striatal

neurodegeneration
Bordelon et al. (1997)

3-Nitropropionic acid (3-NP) Repeated injections of 3-NP produce excitotoxic-like lesions of the
striatum

Gould et al. (1985)

Kainic acid Intrastriatal injection produces selective degeneration of neurons Coyle et al. (1978)
Ibotenic acid (IBO) Central microinjections induce lesions in the striatum Smith et al. (1987)
3. Larger animal models
Pharmacological models
HD rhesus monkey Expresses mutant exon 1 HTT with 84 glutamine repeats Yang et al. (2008)
HD pigs (N208-105Q) Expresses 208 N-terminal aminoacids of mutant HTT with

105 glutamine repeats
Yang et al. (2010)

focused on the treatment of motor symptoms. Patients in which
symptoms like dementia or other cognitive impairment are
also present may not be benefited completely with this type
of therapy.

One key issue for cellular transplantation into human brains is
the necessity of an important amount of cells. Fetal tissue cells not
only provide a limited number of cells but also come with ethical
and religious concerns. Therefore, the use of iPSCs obtained from
somatic cells of patients is excellent for personalized cell-based
therapy and to model HD in vitro. The first research group to
obtain striatal neurons from HD iPSCs-derived neuronal stem
cells (NSCs) was Zhang et al. (2010), who used iPSCs derived
from an HD patient (Park et al., 2008). These cells not only
express MSNs markers but also could be used as an excellent
model for drug screening in HD research (Zhang et al., 2010).
Using the same HD iPSCs, Zhang et al. (2010) demonstrated
that these cells can be corrected for the CAG mutation by
replacing the expanded 72 CAG repeat with a normal 20–21 CAG
repeat (An et al., 2012). Finally, the corrected iPSCs-derived
NSCs could be successfully differentiated into MSNs in vitro,
and when transplanted into the striatum of R6/2 mice (Table 4)
they differentiated into MSNs neurons (An et al., 2012). The
genetic modification of human iPSCs not only brings us closer
to the proper modeling of diseases but also provides a potential
therapy. It has been demonstrated that iPSCs-derived neuronal
cells from an HD preclinical model develop cellular features

of HD cells, which could be rescued by genetic suppression of
HTT and pharmacological treatment (Carter et al., 2014). Using
human ESCs (hESCs) or human iPSCs (hiPSCs) differentiated
into MSNs progenitors, it has been demonstrated that the
transplantation of these cells into the striatum of rodent HD
models can form functional connections with other cells, and
project their axons to other structures involved in the movement
circuitry, like the SN (Faedo et al., 2017; Adil et al., 2018).

As highlighted previously, since HD is caused by a genetic
mutation, and differentiated MSNs progenitors come from HD
patients, it is imperative to correct the mutation present in these
cells, along with the replacement of the target neurons and other
cell types, like interneurons and glial cells, as they may provide
a healthy and functional environment for the new neurons to
integrate to the local circuitry and survive. Currently, no clinical
trials are assessing the use of PSCs in HD patients.

Cellular Reprogramming for PD and HD
In the adult brain, NSCs are present in the subventricular
zone of the lateral ventricle and the subgranular zone of
the dentate gyrus. These NSCs are capable of generating
neuroblasts, which differentiate into mature neurons (Zhao
et al., 2008; Ma et al., 2009). Despite the presence of a niche
for the generation of new neurons, these cells have limited
migration to remote regions, like the SN and striatum. Hence,
the idea to generate new local neurons from preexisting
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cells has been studied for the last 10 years. Initial studies
have demonstrated that fibroblasts can be reprogrammed
to dopaminergic neurons through the ectopic expression of
transcription factors (Caiazzo et al., 2011; Kim et al., 2011;
Pfisterer et al., 2011). Considering the reprogramming of cells
for the treatment of neurodegenerative diseases, astrocytes
were initially considered as an attractive alternative and their
reprogramming to neurons forming functional synapses was
demonstrated (Berninger et al., 2007; Heinrich et al., 2010).

The first studies in which dopaminergic neurons were
generated by reprogramming human and mouse fibroblasts
using lineage-specific factors for the conversion to dopaminergic
neurons (Caiazzo et al., 2011; Kim et al., 2011). The converted
neurons were positive for several dopaminergic markers and
expressed genes related to the dopaminergic lineage rather than
with the fibroblast of origin (Caiazzo et al., 2011; Kim et al., 2011).
Converted dopaminergic neurons formed synapses, had synaptic
activity in culture, and showed electrophysiological properties
similar to dopaminergic neurons (Caiazzo et al., 2011). The
transplantation of these cells into the brain of wild type (Caiazzo
et al., 2011) and PDmice (Kim et al., 2011) showed that converted
neurons integrated with the host tissue expressed dopaminergic
markers and had electrophysiological responses, which led to an
improvement in mice behavior (Kim et al., 2011).

Also, Addis et al. (2011) were the first to demonstrate that
astrocytes could be reprogrammed into dopaminergic neurons
in vitro. The obtained neurons displayed an up-regulation
of genes expressed by dopaminergic neurons, along with
electrophysiological properties, including the spontaneous firing
of action potentials observed in dopaminergic neurons (Addis
et al., 2011). A few years later, the first human astrocytes were
directly converted into functionally competent dopaminergic
neurons in vitro (Rivetti di Val Cervo et al., 2017) and it
was described for the first time the in vivo conversion of
astrocytes into dopaminergic neurons in the 6-OHDA mouse
model of PD (Rivetti di Val Cervo et al., 2017). These
converted dopaminergic neurons were excitable and expressed
dopaminergic neuron markers, which helped relieve the cycling
behavior observed in these animals. These and other reports
have shown that the cellular reprogramming relies on the
expression of lineage-specific transcription factors. However,
it has been shown that downregulation of PTB in mouse
and human fibroblasts, an RNA-binding protein negatively
controlling neuronal induction and maturation, induces the
conversion of these cells into functional neurons (Xue et al.,
2013, 2016). Considering these finding and that downregulation
of PTB occurs during neurogenesis (Hu et al., 2018), Qian
et al. (2020) recently demonstrated using the 6-OHDA mouse
model of PD that adeno-associated virus (AAV)-mediated
downregulation of PTB using an shRNA convert nigral astrocytes
into functional dopaminergic neurons. These converted neurons
integrate into the nigrostriatal pathway, extending their axons
into the striatum and other brain regions. These neurons
were electrophysiologically functional and restored the striatal
dopamine lost due to the 6-OHDA treatment, leading to a
reversal of the motor deficits observed in these mice (Qian et al.,
2020). Importantly, these results were also observed using an

antisense oligonucleotide against PTB, giving these findings a
potentially clinical approach for the treatment of PD in patients
(Qian et al., 2020).

Not only glial cells can originate dopaminergic neurons.
In an elegant work performed by Niu et al. (2018), authors
demonstrated that striatal neurons could be reprogramed
to dopaminergic-like neurons in the adult mouse striatum.
These neurons, although expressing both dopaminergic and
GABAergic markers, have electrophysiological properties like
endogenous dopaminergic but no MSNs neurons. These
dopaminergic-like neurons were also functionally connected
with surrounding neurons, confirmed by the presence of
spontaneous postsynaptic currents (Niu et al., 2018). Hence,
these results seem to be promising for converting MSNs into
dopaminergic neurons under pathological conditions.

Initial studies have shown that striatal astrocytes can be
reprogramed into proliferative neuroblasts in young, adult
and aged mice brains (Niu et al., 2013), which are interesting
especially for HD, a disease of adult-onset. Furthermore,
when these neuroblasts were treated with NTFs or histone
deacetylase inhibitor, they differentiated into mature neurons
with electrophysiological properties (Niu et al., 2013).
Using (AAV)-based conversion, striatal GABAergic, and
glutamatergic neurons could be originated after reprogramming
NG2 glial cells (Torper et al., 2015). Newly generated neurons
presented electrophysiological properties of functional neurons,
remained stable for a long period, and even integrated into
local neuronal circuitry (Torper et al., 2015). Consequently,
the use of endogenous glial cells for the regeneration of
neuronal population lost under neurodegenerative conditions
has emerged as an interesting source, avoiding the use of
differentiated external cells and therefore minimizing the
possible immunorejection of foreign cells (Li and Chen, 2016;
Srivastava and DeWitt, 2016; Barker et al., 2018).

Recently, using AAV-based reprogramming of striatal
astrocytes, Wu et al. (2020) demonstrated that astrocytes
could be converted to MSNs in the striatum of R6/2 and
YAC128 mice. Converted neurons expressed specific MSNs
markers, showed electrophysiological properties, and projected
their axonal terminals to the GP and SNpr. All these findings
were accompanied by a reduction in striatal atrophy, attenuation
of the phenotypic deficit, and an extended life span of R6/2 mice
with converted MSNs (Wu et al., 2020).

Nevertheless, it is important to complement these reprogram
therapies with a therapy that targets the mutation in the
HTT gene. Converted neurons will sooner or later express
and accumulate mHTT, which will eventually lead to
neurodegeneration. Therefore, in vivo reprogramming of
glial cells into healthy MSNs has an important clinical potential,
which must also be combined with gene therapy strategies to
reduce or ablate mHTT expression in these new neurons. Also,
the application of this approach in the clinic is challenging by
the lack of standardized protocols for cellular reprogramming,
as well as the efficiency of converted cells. This depends on the
donor cell, the type of cell that is needed, the characteristics of
patients that must be considered, i.e., age, the severity of the
disease, and treatment with other drugs, among others. Although
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challenging, in vivo cell reprogramming appears as the most
promising therapy candidate for cellular replacement for PD and
HD patients.

NEUROTROPHIC FACTORS-BASED
THERAPIES FOR PD AND HD

NTFs are molecules that promote the differentiation,
myelination, and survival of neurons, which are also involved
in the neuroinflammatory response (Fernandez and Torres-
Aleman, 2012; Labandeira-Garcia et al., 2017). A reduction
in the bioavailability of NTFs in the peripheral and central
system during aging suggests a role of these factors during
neurodegenerative disorders such as PD and HD (Zuccato and
Cattaneo, 2007; Gasperi and Castellano, 2010; Procaccini et al.,
2016; Salem et al., 2016). NTFs, like Glial cell-line Derived
Neurotrophic Factor (GDNF), Brain-Derived Neurotrophic
Factor (BDNF), Cerebral Dopamine Neurotrophic Factor
(CDNF), Mesencephalic astrocyte-derived Neurotrophic Factor
(MANF), Platelet-Derived Growth Factor (PDGF), Insulin-like
Growth Factors (IGFs), and others have been through preclinical
and clinical trials for PD and HD (Figure 2). Here, we
describe the recently therapeutic approaches based on the
restoration of NTFs levels in the brain to prevent and/or stop the
neurodegenerative process describe in PD and HD.

Glial-Derived Neurotrophic Factor (GDNF)
GDNF is considered as a neuro-restorative therapeutic protein
that induces the regeneration of dopaminergic neurons given
that enhances dopaminergic cell survival and differentiation
in vitro (Lin et al., 1993; Zurn et al., 2001). Besides, GDNF
has shown a protective effect on the survival of noradrenergic
neurons in the locus coeruleus (Arenas et al., 1995), an
affected region in neurodegenerative diseases such as PD
and HD (Zweig et al., 1992; Oertel and Schulz, 2016). The
neuroprotective effects of GDNF have prompted preclinical and
clinical studies. Chronic infusion of GDNF into the lateral
ventricle or the striatum promoted the restoration of the
nigrostriatal dopaminergic system and significantly improved
motor functions in a rhesus monkey PD model (Grondin
et al., 2002). Moreover, GDNF protects nigral dopaminergic
neurons from degeneration and improves motor behavior in
6-OHDA rat models of PD (Tereshchenko et al., 2014). However,
GDNF has limited use due to its inability to cross the blood-
brain barrier (BBB), therefore new administration methods
have been explored, including: (1) the delivery of GDNF in
biodegradable microspheres (Garbayo et al., 2009); (2) gene
therapy using DNA nanoparticle (DNP) technology for the
expression of human GDNF (hGDNF) in the striatum (Fletcher
et al., 2011); (3) the use of intra-cerebroventricular (ICV)
catheters implanted into the basal ganglia (Gill et al., 2003; Nutt
et al., 2003); (4) the use of viral vectors (Kordower et al., 2000);
and (5) GDNF-producing fibroblasts (Grandoso et al., 2007).
ICV administration of recombinant hGDNF to non-human
primates showed to significantly improve locomotor activity after
4 months of treatment (Zhang et al., 1997). Also, intraputamenal
(Ipu) delivery of GDNF in MPTP-lesioned non-human primates

significantly increased DA release (Grondin et al., 2003). Despite
the positive results in the survival of dopaminergic neurons and
improvements in motor behavior (Gill et al., 2003; Patel et al.,
2005; Lang et al., 2006), the invasiveness of the delivery of GDNF
to the brain represents a limitation for its use.

The first attempt to probe the benefits of GDNF in PD
patients consisted of the ICV administration through catheter
implantation in 50 PD patients for 8 months. Patients presented
side effects after drug administration, mainly weight loss, nausea,
and vomiting. At the end of treatment, patients did not present
improvements in the UPDRS motor scores (Nutt et al., 2003).
Similarly, delivery through Ipu infusion of recombinant hGDNF
in 34 PD patients did not observe significant improvements
in UPDRS motor scores (Lang et al., 2006). Furthermore, in a
completed clinical study with 42 PD patients, bilateral Ipu GDNF
infusions every 4 weeks for 9 months showed that 18F-DOPA
analyzed through PET scan imaging had a significant increase
in the putamen, but no significant changes in UPDRS scores
were registered. However, the extended treatment for 18 months
showed significant improvements in the UPDRS motor scores
(Whone A. et al., 2019; Whone A. L. et al., 2019). Additionally,
a phase I study showed an important improvement in UPDRS
motor scores after 1 year of GDNF Ipu therapy (Slevin et al., 2005,
2007). Completed clinical studies have demonstrated the safety
and potential efficacy of Ipu GDNF infusion, with no evidence of
GDNF-induced toxicity (Slevin et al., 2005). However, antibodies
were detected in some patients and device-related problems were
reported (Lang et al., 2006; Slevin et al., 2007). It has been shown
that the effect of GDNF in vitro and in vivo requires TGF-β
(Peterziel et al., 2002). The combined effect of GDNF-TGFβ
showed a strong neuroprotective effect in rodent PD models
(Peterziel et al., 2002) and future therapies may include the
simultaneous use of both molecules. Finding a non-invasive and
safe way to deliver GDNF is key to evaluate this NTF as an
effective treatment for PD.

Preclinical studies in rat models of HD have demonstrated
the benefits of ICV injection of GDNF in restoring the
excitotoxic-induced damage in the striatum, amelioration of
amphetamine-induced rotational behavior (Araujo and Hilt,
1997) and locomotor activity improvement (Araujo and Hilt,
1998). However, no registered clinical trials are testing the
efficacy of GDNF in HD patients.

Cerebral Dopamine Neurotrophic Factor
(CDNF) and Mesencephalic
Astrocyte-Derived Neurotrophic Factor
(MANF)
In 2003, a protein called mesencephalic astrocyte-derived
neurotrophic factor (MANF) was characterized and
demonstrated to promote survival of embryonic dopaminergic
neurons in vitro (Petrova et al., 2003). Then, a homologous
protein called CDNF was discovered with a protective role for
dopaminergic neurons. Several studies evidence the protective
role of CDNF and MANF in dopaminergic neurons against
the injury caused by α-syn oligomers (Latge et al., 2015). The
intrastriatal injection of CDNF prevents the loss of TH-positive
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neurons in a 6-OHDA-lesioned rat model of PD (Lindholm et al.,
2007), and protected dopaminergic neurons in 6-OHDA and
MPTP mouse models of PD (Lindholm et al., 2007; Voutilainen
et al., 2009). MANF has been tested in the 6-OHDA-lesioned
rat model showing beneficial effects (Voutilainen et al., 2009).
CDNF and MANF diffuse to the brain significantly better than
GDNF, and CDNF was more efficient in reducing amphetamine-
induced ipsilateral rotations in the 6-OHDA rat PD model in
comparison with GDNF treatment (Voutilainen et al., 2011). In
6-OHDA-lesioned monkeys, PET imaging showed a significant
increase of DA transporter (DAT) ligand-binding activity in
lesioned animals treated with CDNF (Garea-Rodríguez et al.,
2016).

The first phase I–II clinical trial using CDNF in PD patients
is being conducted since 2017. In this study, an implanted drug
delivery system (DDS) for Ipu of recombinant human CDNF
is used in patients with idiopathic mild-advanced PD (Table 1,
NCT03295786). Additionally, another phase I–II clinical trial to
evaluate the beneficial effects of CDNF in PD patients is still
on course (Table 1, NCT03775538). Currently, the delivery of
CDNF for HD treatment has not been described.

Brain-Derived Neurotrophic Factor (BDNF)
BDNF is the most abundant NTFs in the brain (Barde et al.,
1982), mostly involved in physiological processes including
morphological and functional synaptic plasticity, long-term
potentiation, learning and memory (Bramham and Messaoudi,
2005; Lu et al., 2014). In the CNS, BDNF binds specifically to
tropomyosin-related kinase receptors B (TrkB) receptors and
its signaling cascade is involved in neuronal survival (Kaplan
and Miller, 2000). Interestingly, MAOI (i.e., rasagiline and
selegiline) prevent dopaminergic neuron loss by increasing
BDNF expression and other NTFs (Weinreb et al., 2007;
Maruyama and Naoi, 2013).

Studies have demonstrated that a decrease of BDNF is
implicated in neurological disorders (Siegel and Chauhan,
2000; Takahashi et al., 2012; Lu et al., 2013). Thus, strategies
for developing quantification and modulation of BDNF levels
represent a viable approach for biomarker and treatment
development, respectively, being useful for a variety of
neurodegenerative diseases (Lu et al., 2013; Song et al., 2015).
Post-mortem studies reveal that BDNF is significantly reduced
in nigrostriatal dopaminergic neurons from PD patients (Mogi
et al., 1999; Parain et al., 1999; Howells et al., 2000). A
decrease of BDNF in serum from PD patients has also been
observed (Wang et al., 2016). Also, BDNF offers neuroprotection
of striatal neurons, and supporting studies have shown that
BDNF levels are decreased in the brains of HD rodent models
(Conforti et al., 2008) and patients (Ferrer et al., 2000;
Zuccato and Cattaneo, 2007).

A study with 42 HD patients revealed that BDNF serum
concentrations were significantly lower in patients compared to
healthy controls (Ciammola et al., 2007). However, a later study
analyzed 398 blood samples, indicating that mRNA and protein
levels of BDNF between HD and healthy controls were not
significantly different, questioning its potential as a biomarker
for early diagnosis of HD (Zuccato et al., 2011).

Although the contribution of BDNF on PD andHD pathology
is robust, no clinical trials are currently testing its safety and
efficacy for the treatment of these diseases.

Platelet-Derived Growth Factor (PDGF)
Classic studies indicate that PDGF has diverse functions in
organs, including the stimulation of cell proliferation (Heldin
and Westermark, 1999). Different isoforms of PDGF can be
found in tissues, in which the PDGF-BB isoform has shown a
protective effect in cultured dopaminergic neurons (Pietz et al.,
1996). After the treatment of rats with 6-OHDA, PDGF-BB
was increased, suggesting a compensatory response (Funa et al.,
1996) and PDGF-BB injections induced functional recovery and
provided neuroprotection of the nigrostriatal system in a PD
mouse model (Zachrisson et al., 2011). PDGF-BB might be
acting on neural progenitors and stem cells in the subventricular
zone, promoting neurogenesis (Zachrisson et al., 2011). A study
with 12 PD patients demonstrated that the administration of
PDGF-BB into the brain ventricles for 2 weeks was well tolerated
with no evident or aggressive side effects, and an increase in DAT
binding was noted in the putamen of PDGF-BB-treated patients
(Paul et al., 2015). Considering that PDGF-BB can stimulate
neurogenesis, it may be possible to evaluate the co-treatment with
PDGF-BB and other NTFs or drugs to restore the nigrostriatal
pathway and promote neuroprotection in PD.

Both in vitro (Nakao et al., 1994) and in vivo reports (Sjöborg
et al., 1998) have related the effect of PDGF in HD. PDGF-BB
exerts trophic effects in developing rat DARPP32-positive striatal
neurons in culture, suggesting the possibility that PDGF-BB
might participate in the development and maintenance of
striatal neurons in vivo, and could be used to modulate the
neurodegeneration in HD models (Nakao et al., 1994). Then,
the same group published the expression profile of PDGF in a
rat model of HD, generated by unilateral intrastriatal ibotenic
acid injections (Table 4). The evidence showed the accumulation
of PDGF in astrocytes, suggesting a role of PDGF in a repair
process in neurodegeneration (Sjöborg et al., 1998). Currently,
no PDGF-based clinical trials are in course for HD treatment.

Insulin-Like Growth Factor Family (IGFs)
The IGF system is composed of insulin, IGF1, and IGF2,
and its receptors: IR, IGF1R, and IGF2R, respectively (Cohen
et al., 1991). The use of IGFs as therapy might represent a
novel tool for the treatment of neurodegenerative disorders
(Ebert et al., 2008). Studies in vitro and in preclinical models
have demonstrated the neuroprotective effects of IGFs (Jarvis
et al., 2007). Administration of IGF1 after injury reduced
neuronal loss against several stressors such as oxidative stress,
excitotoxicity, hypoxia, hypoglycemia, among others (Suh et al.,
2013). Several studies using in vivo models of PD demonstrated
beneficial effects of IGF1 treatment by preventing dopaminergic
neuronal loss in the SN (Ebert et al., 2008), improving
motor performance in a rat model of PD (Guan et al., 2000;
Krishnamurthi et al., 2004).

IGFs have received interest due to its role in preventing and
rescuing striatal neuronal damage which is observed in HD
(Lewitt and Boyd, 2019). Increased IGF1 plasma levels were
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observed in the YAC128 mouse model of HD (Pouladi et al.,
2010). Similarly, high IGF1 plasma levels were observed in
HD patients and this was associated with cognitive impairment
characteristic in this disorder (Saleh et al., 2010), however,
the correlation between elevated IGF1 plasma levels and
the motor and cognitive impairment in HD remains to be
elucidated. Despite the high peripheral levels of IGF1, only
small amounts of IGF1 cross the BBB into the brain. In this
context, Lopes et al. (2014) showed that intranasal administration
of IGF1 significantly improve motor function and restores
metabolic changes in YAC128mice model of HD, demonstrating
that intranasal administration allows for the direct delivery of
IGF1 into the CNS through the olfactory pathway.

In a recently published study, it has been demonstrated
that the AAV administration of IGF2 into the striatum of
YAC128 and R6/2 mice decreased the levels of mHTT and
increased the levels of DARPP-32, a marker used to assess striatal
neurons survival (García-Huerta et al., 2020). Interestingly,
neuroprotective effects of IGF2 treatment have been described in
preclinical models of others neurodegenerative diseases such as
amyotrophic lateral sclerosis (Allodi et al., 2016), spinal muscular
atrophy (Brown et al., 2009) and Alzheimer’s disease (Pascual-
Lucas et al., 2014). However, today no clinical trials are studying
the safety and efficacy of IGF2 as a possible treatment for
PD or HD.

ELECTRICAL NEUROMODULATION
THERAPIES FOR PD AND HD

The cardinal motor symptoms of PD and chorea in HD are
caused by the progressive degeneration of dopaminergic neurons
in the SNpc (Figure 1B) and the loss of MSNs in the striatum
(Figure 1C), respectively. In both cases, the motor impairment is
attributed to alteration of functional connectivity of the striatum,
a principal input of the basal ganglia (Albin et al., 1989).

Hyperkinetic movement disorders are characterized by
uncontrollable and excessive motor activity, as chorea in HD.
Reports published between 1987 and 1989 showed that blocking
the activity of the STN produces hyperkinetic motor symptoms.
Similar results are observed when the GABAergic inputs from
the striatum are blocked, favoring the inhibitory (GABAergic)
modulation of the GPe over the STN (Crossman, 1987; Crossman
et al., 1988; Robertson et al., 1989). On the other hand,
hypokinetic disorders like akinesia and bradykinesia have been
described in PD. In this case, the decrease in striatal DA levels,
as a result of the decrease in its synthesis, release, and reuptake
(Lundblad et al., 2012) alter the corticostriatal balance causing an
increase in the activity of the indirect pathway and reducing the
activity of the direct pathway, that leads to a breakdown of the
internal balance of the basal ganglia, and consequently the loss of
movement control (Obeso et al., 2008; Galvan et al., 2015). These
symptoms, unlike hyperkinetic movements, are treated with DA
agonists as L-dopa (Cotzias et al., 1967, 1969). However, as stated
in previous sections, the chronic use of this pharmacological
therapy has a limited effect, which in the case of PD can induce
a motor complication known as LID and on-off phenomenon

(Fahn et al., 2004; Stacy, 2009; Ammal Kaidery et al., 2013;
Cacabelos, 2017).

Among the therapeutic alternatives proposed in recent
decades, electrical neuromodulation therapies, i.e., Deep
Brain Stimulation (DBS) and Spinal Cord Stimulation
(SCS) have emerged as interesting options for treatment of
neurodegenerative pathologies associated with movement
disorders such as PD and HD (Figure 2). The effect of
stimulation on different basal ganglia nuclei in patients is
described below.

Deep Brain Stimulation (DBS)
DBS is a neurosurgical strategy based on the implantation of
electrodes on subcortical nuclei that, through electrical signals,
can modulate the neuronal activity of different regions of the
brain. The use of DBS for the treatment of motor disorders was
first proposed in 1971 by Natalia Bekhtereva (Bekhtereva et al.,
1972; Hariz et al., 2010). But it was until 1996 when the FDA
approved the stimulation of the ventral intermediate nucleus
(VIM) of the thalamus for the treatment of essential tremor
and severe tremor in PD. Later in 2002, the stimulation of the
STN and GPi for the treatment of bradykinesia and rigidity
in advanced cases of PD was included (Strotzer et al., 2019).
It has been suggested that the stimulation of the STN induce
the suppression of aberrant oscillatory synchronization at low
frequency (13–35 Hz, beta band) and this contributes to motor
amelioration, mainly bradykinesia and rigidity. However, more
studies are necessary to understand the mechanisms involved.
Currently, a group at the University ofMinnesota is performing a
clinical trial to investigate how the brain activity in PD patients is
related to DBS and pharmacological management, by the chronic
recording of local field potential (LFP) in the cortex (Table 1,
NCT02709148).

The underlying molecular and cellular mechanisms of DBS
are still not sufficiently identified and different assumptions
about functional principles have been proposed (Jakobs et al.,
2019). Studies in neurotoxin pre-clinical models of PD (Table 3)
have suggested that STN-DBS can induce neuroprotective effects
by reducing the loss of dopaminergic neurons (Maesawa et al.,
2004; Temel et al., 2006; Wallace et al., 2007; Harnack et al., 2008;
Spieles-Engemann et al., 2010; Wu et al., 2012). Additionally,
it has been described that STN-DBS induces an increase in the
striatal expression of BDNF (Spieles-Engemann et al., 2011),
which is described as a powerful anti-apoptotic factor that
favors the maintenance and survival of the nigral dopaminergic
population (Zhao et al., 2017). As stated before, BDNF would
exert its effect by signaling downstream of the TrkB receptor
(Fischer et al., 2017). Nevertheless, reports in a genetic model
of PD have revealed contradictory results. Musacchio et al.
(2017) have reported that DBS reduces the loss of dopaminergic
neurons, but it did not rescue the DA deficit. On the other side,
Fischer et al. (2017) revealed that STN-DBS cannot counteract
the axonopathy and dopaminergic loss progression induced
by α-syn overexpression, but the differences in the starting
time of application protocol must be considered. Moreover, the
application of STN-DBS in pre-clinical models of PD has shown
both metabolic and physiological effects on the nigrostriatal
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DA system, inducing an increase in the levels of striatal DA
and its metabolites (Bruet et al., 2001; Meissner et al., 2003;
He et al., 2014). Genetic screening has revealed that high
frequency-DBS can induce a differential expression of genes
involved in apoptosis, growth, and neuroplasticity (Lortet et al.,
2013). Studies also revealed that DBS increased the activity of
the enzyme TH (Meissner et al., 2003) and the expression of the
D1 receptor (Carcenac et al., 2015).

For this reason, different ongoing clinical trials are
assessing the long-term neurological, neurophysiological,
and neuropsychological effects of DBS treatment (Table 1,
NCT00053625, NCT03021031), as well as improving the
administration of the treatment (Table 1, NCT03021031).
The technical difficulty of STN-DBS in PD patients is that a
case-by-case parameter adjustment is necessary. Therefore,
different studies are looking for electrophysiology biomarkers
that can predict and improve the effectiveness of DBS therapy,
as well as new stimulation methodologies (directional DBS
system) by invasive and non-invasive recording (Table 1,
NCT03353688). Another limitation of DBS is the incapacity
to alleviate the freezing of gait (FoG), a symptom observed in
more than half of PD patients. Using electroencephalography
(EEG) it is crucial to determine electrophysiological biomarkers
present in FoG episodes that can be modulated by GPi-DBS
or pedunculopontine nucleus stimulation (PPN-DBS, Table 1,
NCT02548897). Furthermore, studies are evaluating different
parameters of STN-DBS protocols to improve gait disorders
(Table 1, NCT04184791, NCT02022735).

DBS of the GP is a promising alternative target for the
treatment of chorea, motor symptoms classic in the early stages of
HD (Albin et al., 1990). DBS has been considered an alternative
to pallidotomy, a neurosurgical strategy for the treatment of
choreic movement published in 1952, showing good effects in
four HD patients (di Cianni et al., 1992). In 2004, Moro and
colleagues (Moro et al., 2004) reported the first case of a 43-
year-old patient with an 8-year history of HD submitted to
bilateral GP stimulation. They found that stimulation at 40 Hz
and 130 Hz improved motor symptoms, reducing chorea and
dystonia, although the high frequency worsened bradykinesia.
The improvement in the patient’s performance of a motor
task was associated with an increase of the activation of the
sensorimotor cortex, premotor cortex, supplementary motor
area, and anterior cingulate cortex, although high frequency
did not modulate the activity in premotor cortex (Moro et al.,
2004). Moreover, the simultaneous stimulation of the STN and
GPi has shown beneficial effects (Gruber et al., 2014), however,
if the simultaneous stimulation has an additive effect is not
clear. To date, two prospective, randomized, and double blind
studies have been posted. One published in 2015 (Wojtecki
et al., 2015), and others still on course (Table 2, NCT02535884).
In the first study, six patients, four with chorea-dominant and
two with Westphal-variant (rigid-hypokinetic syndrome, often
associated with juvenile-onset of HD), underwent DBS treatment
for 6 months and showed a reduction of chorea (Wojtecki
et al., 2015). Nevertheless, the Westphal-variant patients did
not show any improvements, suggesting that GP-DBS cannot
ameliorate bradykinesia.

There is no doubt that optimizing DBS systems is a
great challenge. Furthermore, understanding the correlation
between abnormal brain activity and motor symptoms is
necessary to obtain major beneficial results. For a more
detailed review of this topic, we suggest some reviews published
elsewhere (Anderson and Lenz, 2006; Miocinovic et al., 2013;
Fasano and Lozano, 2015).

Spinal Cord Stimulation (SCS)
Generally used for the treatment of chronic pain since 1967
(Shealy et al., 1967; Dones and Levi, 2018), SCS consists of the
application of electrical pulses in the dorsal columns of the spinal
cord (directly in the epidural space). It has been suggested that
the mechanism of action is based on the antidromic activation
of the dorsal column fibers, which activate the inhibitory
interneurons within the dorsal horn (Yampolsky et al., 2012).
However, the exact mechanisms are not fully elucidated.

Currently, the use of this therapeutic strategy has gone beyond
nociceptive control. In 2009, Fuentes and colleagues (Fuentes
et al., 2009) proposed the use of SCS for the treatment of motor
symptoms in PD. Like this report, in the last decade several
studies have evaluated SCS effects in advanced cases of PD,
showing interesting effects in axial symptoms (gait and postural
dysfunction) both in preclinical (Santana et al., 2014) and clinical
studies. These benefits are not observed with other treatments
like DBS or L-dopa. The mechanism involved in the effects
of SCS in motor symptoms of PD is not fully understood. It
has been proposed that SCS, by releasing biphasic electrical
pulses of high frequencies (300 Hz), would increase locomotor
activity mainly through modulation of activity in the cortex and
basal ganglia (Fuentes et al., 2009; Santana et al., 2014). This
modulation would occur by activating the path of the dorsal
columns, which in turn would modulate the activity of the
thalamus, and from there to the cortex and striatum, causing
the breakdown of aberrant low-frequency oscillations [beta
(10–30 Hz)] observed in preclinical models (Fuentes et al., 2009;
Santana et al., 2014) and PD patients (Kuhn et al., 2006), similarly
as described for DBS treatment. Nevertheless, this does not
explain the effect of SCS on gait and postural dysfunction. The
participation of the brainstem, specifically the pedunculopontine
nucleus (PPN), has been suggested, given its connection with
different structures involved in themotor system, summarized by
Chambers et al. (2019).

SCS treatment application methodologies differ among
reports. The position of the electrodes varies between patients
depending on the study. Electrodes can be placed at the cervical
or thoracic level (Cai et al., 2020), showing that in general,
both strategies ameliorate motor impairments. The first studies
assessing SCS as a treatment for motor symptoms involved PD
patients with chronic pain as a primary indication. In most
cases, SCS reduced the pain and improved motor function,
which could reflect a synergistic effect (Thevathasan et al.,
2010; Fénelon et al., 2012; Hassan et al., 2013; Nishioka and
Nakajima, 2015; Kobayashi et al., 2018; Mazzone et al., 2019).
Recently, Samotus et al. (2018) showed the effectiveness of SCS
(300–400 µs/30–130 Hz) in the treatment of FoG and gait
in five patients without pain for 6 months. This evidence is
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encouraging for the search of treatments for symptoms that, to
date, have not been satisfactorily controlled. This is the case for
gait dysfunctions that affect nearly 40–60% of PD patients and
are not improved by dopaminergic therapy (Giladi et al., 2001).
Additionally, Pinto de Souza et al. (2017) reported the use and
effectiveness of SCS as a complementary strategy to rescue the
loss of efficacy of DBS and DA medication. But other studies
are currently in a course to evaluate the efficacy of SCS in gait
disorders (Table 1, NCT03079310).

To date, three studies in preclinical models have suggested
that SCS could counteract the progression of PD through a
neuroprotective effect. Shinko et al. (2014) showed in rats
that SCS applied regularly for 2 weeks (one session of 1 h
daily) starting 2 days before 6-OHDA injection, decreases
dopaminergic neuronal loss by 20–25%, and increase the
expression of VEGF, which could favor neuroprotection given
its ability to reduce dopaminergic neuronal death by suppressing
apoptosis (Yasuhara et al., 2004). Similarly, Yadav et al. (2014)
demonstrated that the application of an SCS protocol for 6 weeks
(two sessions of 30 min per week) that started a week post-
6-OHDA injection reduced the loss of dopaminergic neurons
by 10%. Furthermore, both studies showed a positive effect
in preserving the dopaminergic innervation of the striatum,
reducing its loss by 30–35%. Recently, an investigation showed
that continuous application of SCS (24 h ON SCS), starting
immediately after injection of 6-OHDA, reduced the loss of
dopaminergic neurons and their striatal projections by ∼35%
and ∼32% respectively, while a regular SCS protocol (8 h
SCS ON/16 h SVS OFF) counteracted the degeneration of the
nigrostriatal dopaminergic pathway only by ∼23% (Kuwahara
et al., 2020). Thus, the periodicity of the treatment application
reflects on different degrees of neuroprotection (Kuwahara et al.,
2020). These data suggest that SCS could have a neuroprotective
effect that might contribute to the relief of the observed
motor symptoms in PD, given the relevance of dopaminergic
projections in modulating the functioning of the circuit of
the nuclei of the base through the regulation of cortical and
subcortical neuronal activity during movement (Gerfen and
Surmeier, 2011; Canessa et al., 2016). Nevertheless, additional
studies are necessary to understand the mechanism involved
in the beneficial effects associated with SCS in the long-term.
More detailed reviews on this topic can be found elsewhere (de
Andrade et al., 2016; Cai et al., 2020).

For HD, SCS treatment has not been suggested, probably
because SCS has better effects in alleviating gait and posture
problems, while DBS is still the best option for the treatment of
involuntary movements, such as chorea.

GENE THERAPIES FOR PD AND HD

For the development of new therapies for PD and HD, it is
important to include, especially for HD and genetic forms of
PD, genetic correction/editing of themutated gene(s). Nowadays,
there are several gene silencing/editing technologies, including
RNA interference (RNAi), antisense oligonucleotides (ASO), and
clustered interspaced short palindromic repeats (CRISPR/cas9),
which can be used as therapies for the treatment of PD and HD.

For a more in-depth knowledge of gene therapy delivery systems
and other cellular targets, reviews are published elsewhere
(Sudhakar and Richardson, 2019; Chen et al., 2020).

As previously stated, PD is characterized by the selective
degeneration of dopaminergic neurons in the SN, thus
approaches aiming to revert this loss based on the delivery
of genes encoding for enzymes required for DA synthesis
could be useful. The first enzyme for DA synthesis is TH,
which requires the enzyme GTP-cyclohydrolase-1 (GCH-1) to
synthesize a cofactor for DA biosynthesis (Daubner et al., 2011).
TH converts tyrosine into L-dopa, which finally is converted
into DA by the aromatic L-amino acid decarboxylase (AADC;
Hadjiconstantinou and Neff, 2008). Therapies to deliver enzymes
involved in DA synthesis have been proved in preclinical and
clinical studies showing its benefits.

Initially, gene therapy was based on the delivery of separate
AAV vectors to transfer two or three enzymes critical for DA
biosynthesis. These strategies showed behavioral benefits in
rat and non-human primate PD models (Kirik et al., 2002a;
Muramatsu et al., 2002). Furthermore, a clinical study in patients
with moderate to advanced PD demonstrated the safety and
tolerability of a 6 months treatment with a bilateral Ipu of AAV
vector encoding for the human AADC gene (AAV-hAADC;
Eberling et al., 2008). Importantly, PET scans using an AADC
tracer demonstrated an increase in gene expression throughout
the study. Similarly, administrating the AAV-hAADC vector in
the putamen of PD patients showed to be safe and tolerable
(Muramatsu et al., 2010). This study demonstrated the efficacies
of AAV vectors for gene delivery, which persisted up to
2 years with a 46% improvement of the UPDRS motor scores
(Muramatsu et al., 2010). Another completed study showed
that bilateral Ipu infusion of the AAV-hAADC vector improves
UPDRS mean scores by 30% in PD patients after 6 months
(Table 1, NCT00229736). However, this study reported 3 cases
in which surgical procedures caused intracranial hemorrhage,
showing an important limitation of the surgical procedure,
but not necessarily of the therapeutic strategy of gene delivery
(Christine et al., 2009). Consequently, a long-term evaluation
study of AAV-hAADCdemonstrated stable transgene expression
over 4 years after vector delivery in PD patients (Mittermeyer
et al., 2012).

To potentiate the effects and benefits of the enzyme therapy
for DA synthesis, researchers have developed a strategy using
a simple vector, which carries the genes that encode for the
three key enzymes for DA biosynthesis. One of these strategies
uses a lentiviral-based vector derived from the equine infectious
anemia virus (EIAV; Azzouz et al., 2002). This tricistronic
lentivirus vector encodes TH, AADC and CH1 (Lenti-TH-
AADC-CH1) in a single vector (ProSavin). Delivery of Lenti-TH-
AADC-CH1 vector into the striatum of a non-human primate
PD model restored extracellular concentrations of DA and
improved motor function for up to 12 months (Jarraya et al.,
2009). Furthermore, ProSavin was administered into the striatum
of PD patients, demonstrating a significant improvement in
mean UPDRS motor scores at 6 months post-treatment, with no
adverse effects detected (Table 1, NCT00627588). Additionally,
a long-term study of ProSavin showed that the treatment was
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well-tolerated and safe, but its clinical benefits are still under
observation after 4 years (Palfi et al., 2014).

Other alternatives using gene delivery for PD treatment are
focused on lowering α-syn levels in dopaminergic neurons.
One study used a ribozyme combined with an AAV vector
(rAAV-SynRz). Nigrostriatal injection of rAAV-SynRz inMPP+-
treated adult rats, which has increased expression of α-syn (Kühn
et al., 2003), resulted in down-regulation of α-syn, preventing its
accumulation in the SN, and significantly protected TH-positive
neurons (Hayashita-Kinoh et al., 2006). Despite these positive
results, no clinical trials using gene therapy for silencing α-syn
to treat PD are being conducted.

One important branch of investigation regarding HD
therapies is the reduction of HTT DNA, RNA, and/or
protein levels. Using a conditional transgenic mouse model
of HD, it has been demonstrated that the reduction of
mHTT ameliorates motor and psychiatric-like deficits, forebrain
weight loss, cortical and striatal volume decrease, presynaptic
and postsynaptic markers changes, and electrophysiological
changes in these mice (Wang et al., 2014). One possible
alternative to reduce mHTT levels is the use of DNA-targeting
strategies (Ambrose et al., 1994). Thus, permanent and selective
deletion of mHTT gene could be an interesting therapeutic
approach for HD with no negative effect on patient health.
The CRISPR/Cas9 system has been investigated for its utility
for HD therapy but is still in the preclinical stage. Using
fibroblasts (Shin et al., 2016; Monteys et al., 2017; Dabrowska
et al., 2018) and iPSCs-derived NPCs (Shin et al., 2016)
from an HD patient, it has been demonstrated that the
selective deletion of a fragment of the mHTT gene using
the CRISPR/Cas9 strategy is possible. This approach led to a
near-complete reduction of mHTT protein and left intact the
wild type HTT gene (Shin et al., 2016). Furthermore, using
CRISPR/Cas9 and a transposon-based approach, the precise
correction of the CAG expansion in HD iPSCs has been
achieved (Xu et al., 2017). These cells retain pluripotency,
have a normal karyotype, and could be differentiated into
NPCs and MSNs-like neurons, which presented some electrical
properties of neurons. Interestingly, the corrected cells were
deprived of some phenotypic abnormalities observed in the
HD iPSC-derived neurons, including increased susceptibility to
growth factor withdrawal, impaired neural rosette formation,
and mitochondrial dysfunction (Xu et al., 2017).

Using BACHD mice (Table 4) it has been shown that mHTT
expression is reduced when Cas9 and a single guide RNA
(sgRNA) are delivered using AAVs in the striatum, causing the
deletion of a fragment around exon 1 (Monteys et al., 2017).
Likewise, AAV-mediated injection of Cas9 and 2 sgRNA into the
striatum of HD140Q-KI mice (Table 4) achieved a significant
reduction in mHTT levels, accompanied by improved motor
performance, decrease in reactive astrocytes and attenuation of
bodyweight reduction (Yang et al., 2017). Similar results have
been found using the R6/2 mice model, in which AAV-mediated
delivery of Cas9 and sgRNA into the striatum caused a near
40% reduction in mHTT inclusions and around a 50% decrease
in mHTT protein levels (Ekman et al., 2019). These mice
presented increased mean survival, better motor performance,

and decreased hindlimb clasping, an established indicator of
dystonia (Ekman et al., 2019).

Despite the promising results, there is still a need for
validation of this approach for human research. Given that
many studies use CRISPR/Cas9 technology based in the
recognition of short repeat sequences in the DNA, intensive
studies must be performed to find these short sequences in
the mHTT gene that is not present in another codifying
gene sequence, so off-target genomic removal could be
avoided. Moreover, single-nucleotide changes can occur in the
mHTT gene in every patient affected, therefore sequencing
of the mutant gene would be necessary for each patient.
Another important issue of using CRISPR/Cas9 technology
in humans is that the deletion of the mutated gene is
permanent and irreversible. Also, the transduction of Cas9,
a protein of bacterial origin, could activate the patients’
immune system and edited cells would be effectively eliminated
(Wignakumar and Fairchild, 2019). Despite this, CRISPR/Cas9-
mediated deletion of the mHTT gene could be perfectly
coupled with cell replacement strategies, with a correction of
the mutation.

A second strategy for lowering mHTT levels is based on
RNA-targeting strategies. One of the most studied methods
to achieve this is through RNAi. These include the use of
microRNAs (miRNAs) and short hairpin RNAs (shRNAs), all
using the Dicer-RISC machinery for the targeted degradation
of mRNAs (Ghosh and Tabrizi, 2017). Initially, using shRNAs
and HD-N171-82Q HD mice (Table 4), it was shown a
partial reduction of mHTT mRNA by 50% and decreased
mHTT protein accumulation in the striatum, accompanied by
a significant improvement in motor performance (Harper et al.,
2005). Similarly, using R6/1 HD mice (Table 4), it has been
demonstrated that AAV-mediated delivery of shRNAs against
mHTT significantly reduces mHTT mRNA and protein levels
(Rodriguez-Lebron et al., 2005). shRNA-injected striatum had
smaller and less intense intranuclear mHTT inclusions, which
was accompanied by increased MSNs mRNAmarkers. However,
this group showed just a mild effect on the clasping phenotype
observed in these mice (Rodriguez-Lebron et al., 2005).

These and other studies have demonstrated that the reduction
of mHTT using RNAi in the brain of HD mice decreases both
mHTT mRNA and protein levels, which is accompanied by
improved motor behavior. However, in these studies the RNAi
was designed to target human mHTT, leaving endogenous
mouse HTT unaltered. This represents a problem when we
think about patients’ treatment, given that both alleles differ in
the expanded polyQ in the mutated gene and different single
nucleotide polymorphisms (SNPs) present. Even though several
SNPs have been identified to be differentially present in the
mutant and wild type allele, this accounts just for 80% of the
population with HD, leaving an important number of patients
without a therapeutic alternative (Pfister et al., 2009). Therefore,
RNAi has been tested for the reduction of both mHTT and wild
type HTT mRNA. Using an HD mouse model that expresses
both mouse wild type and human mutant HTT, non-allele
specific miRNA-mediated knockdown of both mRNAs in
the striatum can significantly improve motor coordination
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(Boudreau et al., 2009). Notably, these mice survived and had
no phenotypic changes after a 75% reduction of wild type HTT
for 4 months (Boudreau et al., 2009). Using AAV-mediated
miRNA injection into the putamen of rhesus monkeys to target
both HTT and mHTT mRNAs, it has been demonstrated that
a 45% reduction of HTT mRNA did not induce motor deficits
in these animals, nor neurodegeneration, astrogliosis, microglial
activation or neuroinflammation (McBride et al., 2011).
These phenotypes were also maintained in rhesus monkeys
treated with AAV-shRNA for HTT mRNA for 6 months
(Grondin et al., 2012).

One important limitation of double-stranded RNAs (shRNAs
and miRNAs) is that they are not capable of crossing the BBB
and do not easily cross the plasma membrane of cells. Given that
they demonstrated positive effects when targeted to the brain,
methods to deliver these molecules are under study (Chernikov
et al., 2019). Despite this limitation, in 2019 the first clinical trial
using AAV5-mediated delivery of a miRNA against HTT was
initiated (Table 2, NCT04120493). Early manifest HD patients
will be assessed for motor and cognitive functions, with miRNA
and exploratory biomarkers measured in the CSF. The same
AAV5-miRNA was proven to lower mHTT mRNA specifically
in rat and minipig HD model. Suppression of mHTT mRNA
levels was associated with lower mHTT protein levels, inclusion
formation, and neuronal dysfunction (Miniarikova et al., 2017;
Evers et al., 2018).

Another strategy used for RNA targeting is through ASOs.
These are short, synthetic single-stranded DNA molecules that
are complementary to a pre-mRNA target sequence in the
nucleus, and have been widely studied for the treatment of
neurological disorders (Rinaldi and Wood, 2018). Using IONIS-
HTTRx against HTT mRNA, Tabrizi et al. (2019) reported
the first results obtained from a phase I–II multicenter clinical
trial in which this ASO was intrathecally administered in
early-manifest HD patients. IONIS-HTTRx demonstrated to be
safe and well-tolerated, and importantly, mHTT levels in the
cerebrospinal fluid (CSF) of patients treated with IONIS-HTTRx
decreased dose-dependently. In this trial, no changes in motor
and cognitive functions were observed between the placebo and
the treated group, which can be explained by the slow progression
of the disease and the narrow window of time in which these
changes were measured (Tabrizi et al., 2019). Some of these
patients participated in a 15-month extension study, which ended
by October 2019 (Table 2, NCT03342053). The original clinical
trial is now under phase III, with more than 900 patients in
101 locations around the world, which is expected to end by
September 2022 (Table 2, NCT03761849).

A second and third phase Ib/IIa clinical trials are underway
to evaluate single and multiple doses of two ASOs against
two specific SNPs found in the mHTT gene. PRECISION-HD1
clinical trial will evaluate the ASO WVE-120101 against the
SNP rs362307 (Table 2, NCT03225833) and PRECISION-HD2
clinical trial will use the ASO WVE-120102 against the SNP
rs362331 (Table 2, NCT03225846). These multicenter clinical
trials, in which 60 patients with early-manifest HD are
participating, started in 2017 and are expected to finish by the
end of this year.

The results of the IONIS-HTTRx clinical trial are encouraging
and bring us closer to therapy for HD. Given that ASOs
bind directly to the DNA sequence, it is less likely that
off-target suppression occurs. Moreover, as in the PRECISION
clinical trials, unique SNPs found specifically in the mHTT
DNA sequence allows for the design of specific ASOs,
avoiding off-target suppression. However, the use of ASOs has
disadvantages. In the PRECISION clinical trials, the ASOs
evaluated target specific SNPs found in the mHTT gene, but they
are not present in all HD patients. On the other hand, the IONIS-
HTTRx clinical trial targets both wild type andmHTT genes, so it
can be used in all HD patients. However, to date, there is no data
available on the possible effects of wild type HTT suppression
in patients. As mentioned before, non-human primates with
sustained suppression of wild type HTT did not show adverse
effects in motor and cognitive skills (McBride et al., 2011;
Grondin et al., 2012), results that could be escalated to humans.
Nevertheless, evaluation of long-term suppression of wild type
HTT is key in HD patients. Also, repeated administration of
ASOs could be necessary to maintain therapeutic benefits.

DISCUSSION

PD and HD are movement disorders characterized by the
presence of aberrant and unwanted involuntary movements.
The main cause for the variety of motor symptoms observed in
patients is the selective neuronal loss in brain areas implicated
in movement fine-tuning. Despite this knowledge, current
treatments are not able to stop, reverse, or slow down PD and
HD. Current treatments are directed to keep to line the motor
symptoms, but with limited efficacy. Thus, continuous strong
efforts are being made for the development of new therapeutic
strategies for both diseases. Moreover, the development of small
molecules for the treatment of these neurodegenerative diseases
has a particularly high failure rate. Thus, strong efforts are being
made for the development of new therapeutic strategies for
both diseases.

Currently, no approved drugs can modify the progression of
either PD orHD. Nevertheless, pharmacology provided therapies
to reestablish DA levels in PD patients and to reduce DA
neurotransmission in HD patients. Unfortunately, different and
aggressive side effects appear during these treatments. New
formulations have been developed to control the additional
psychomotor and autonomic complications produced by some
anti-parkinsonians drugs, however, it is important to reduce
all the events that can affect or deteriorate the quality life
of patients, and maybe the answers are out of the classical
pharmacology approach.

Among the first strategies used for the treatment of PD
and HD were cellular replacement therapies, in which fetal
tissue was transplanted into the patient’s brain. Even though
some functional recovery was observed, this strategy had several
limitations. The number of fetuses used generates important
religious and ethical concerns. Besides, in some cases, tumor
formationwas observed in the site of transplantation, andmost of
the studies required immunosuppressive therapy. Although new
strategies have been developed for obtaining dopaminergic and
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GABAergic neurons from ESCs and iPSCs, these have not yet
escalated into clinical trials.

Deregulation of NTFs’ levels has been reported in PD
and HD patients, and the administration of NTFs has shown
beneficial effects in patients with these diseases. The reported
neuroprotective effect can be explained by the prevention of
neurodegeneration, restoring, and delaying the occurrence of
motor symptoms. Moreover, therapy with NTFs has proven
to be effective not only in preclinical stages but has also
shown a positive effect in clinical trials. However, one main
limitation of NTFs therapy is its poor brain availability
after oral administration, which can only be solved by
direct administration to the brain. Clinical studies directly
administrating NTFs to the brain have reported side effects
such as nausea, vomiting, headache, as well as infection when
catheter implantation is used. Despite side effects, these studies
have observed promising effects with this therapy, however,
improvement and development of new delivery methods are key
for successful NTF-base treatments.

Without a doubt, the development of electrical
neuromodulatory therapies to treat motor symptoms in PD
and HD has brought encouraging news for patients, doctors,
and their families. Clinical reports carried out in recent decades
have validated the use of DBS or SCS as a complement to
classical pharmacological therapies that, due to their chronic
use, decrease their effectiveness or induce more complex motor
symptoms. Additionally, studies in PD patients have reported
that the simultaneous use of DBS and SCS would bring important
benefits, since DBS is effective in relieving motor symptoms
such as tremor, bradykinesia, and stiffness, while SCS has to
relieve symptoms associated with walking and posture. Although
this has not been validated in the clinic, it opens the discussion
about the possibility of using both strategies for the synergistic
treatment of cardinal and axial symptoms of PD. When it comes
to HD treatment, DBS has emerged as a promising alternative
after showing positive effects similar to pallidotomy, reducing
choreic movements and dystonia, but with the advantage of
being a flexible option that adjusts to the patient’s requirements.
Since the mechanisms by which both strategies exert their effect
have not been fully elucidated, their use requires personalized
patient-to-patient care throughout the treatment, complicating
its application in countries with weak health systems. Moreover,
given their surgical complexity and high monetary cost, these
therapies continue to be considered as a last option, even when
reports in pre-clinical models, particularly in the case of PD,
have reported encouraging results regarding their effect in
counteracting neurodegeneration processes.

Worldwide excitement among HD patients and their families
arose after the report of a promising potential therapy (IONIS-

HTTRx) that was able to decrease mHTT levels in the CSF of
patients. Now, this treatment is under phase III clinical trial, in
which patients of more than 100 centers around the world have
been recruited. This is by far the closest that we have got to a
definite treatment for HD. Nevertheless, many questions need to
be answered during this clinical trial to ensure safety for patients.
Given that IONIS-HTTRx targets both HTT and mHTT, one
important question is whether long-term suppression of HTT is
deleterious for neurons and if patients present improvements in
motor and cognitive function.

Along with the development of new therapeutic approaches,
like the ones described in this review, comes the important need
to assess therapy response and disease progression. A key line of
investigation is focused on finding new and reliable biomarkers
that allow assessing changes in the disease course, helping
in the evaluation of therapeutic response. Several biomarkers
have been described for both PD and HD patients, but global
multicenter studies are necessary to validate those biomarkers
worldwide. Another important aspect to be considered in
the development of new therapies is the heterogeneity of
symptoms observed in both PD and HD patients, which suggest
that not all treatments are the best option for all cases,
as well as not all treatments are the best options for the
same symptoms, suggesting that future clinical approaches will
personalize the treatment or combine the strategies presented
in this article to increase their efficacy and/or reduce its
adverse effects.

Altogether, the presented data highlights the idea that we
are on the right track for the development of new therapeutic
strategies for PD and HD, but there is still a long road ahead to
find a definitive treatment that may stop the progression or even
cure the disease.
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