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Alzheimer’s disease (AD) represents the most common age-related neurodegenerative
disorder, affecting around 35 million people worldwide. Despite enormous efforts
dedicated to AD research over decades, there is still no cure for the disease. Misfolding
and accumulation of Aβ and tau proteins in the brain constitute a defining signature
of AD neuropathology, and mounting evidence has documented a link between
aggregation of these proteins and neuronal dysfunction. In this context, progressive
axonal degeneration has been associated with early stages of AD and linked to Aβ

and tau accumulation. As the axonal degeneration mechanism has been starting to be
unveiled, it constitutes a promising target for neuroprotection in AD. A comprehensive
understanding of the mechanism of axonal destruction in neurodegenerative conditions
is therefore critical for the development of new therapies aimed to prevent axonal loss
before irreversible neuronal death occurs in AD. Here, we review current evidence of the
involvement of Aβ and tau pathologies in the activation of signaling cascades that can
promote axonal demise.
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INTRODUCTION

Alzheimer’s disease (AD) is an adult-onset neurodegenerative disorder and the leading cause of
dementia in aged people. While most AD cases are sporadic, less than 5% of the cases are caused
by mutations in the amyloid precursor protein (APP) gene or presenilin 1 or 2 genes, leading to
excessive production and accumulation of amyloid-β peptide (Aβ; Citron et al., 1992; Hendriks
et al., 1992; Mullan et al., 1992; Suzuki et al., 1994; Harvey et al., 2003; Goate, 2006). Many risk
factors have been associated with the development of sporadic AD, including the apolipoprotein E
ε4 allele (Agosta et al., 2009), female gender (Koran et al., 2017), cardiovascular disease risk factors
(Samieri et al., 2018), traumatic brain injury (TBI; LoBue et al., 2017) and aging, which is the most
important one (Oh et al., 2014). Currently, there is no cure for AD and available treatments can
only modestly and briefly alleviate symptoms (Alzheimer’s Association, 2020). The progression
of AD, from alterations that include only changes in biomarkers but without the involvement of
cognitive decline, to changes that indeed translate into cognitive impairment, follows a continuum
that comprises three phases: preclinical AD, mild cognitive impairment (MCI), and dementia due
to AD. Clinical symptoms of the disease include deficits in short term memory and language
difficulties, as well as behavioral symptoms such as personality changes and depression. Progressive
cognitive decline characterized by severe memory loss occurs as the disease progresses. Basic vital
functions -such as swallowing- are altered at later stages of the disease, leading to death (Lopez and
Dekosky, 2008; Alzheimer’s Association, 2020).
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Protein misfolding and accumulation are prominent
hallmarks of the disease, with Aβ plaques and tau tangles
being the neuropathological signature of AD brains (Wang
et al., 2016). Numerous studies have demonstrated that these
toxic structures do not act independently and that rather, the
neurodegenerative process in AD depends on the interaction
between both Aβ and tau (Götz et al., 2001; Lewis et al., 2001;
Rapoport et al., 2002; King et al., 2006; Roberson et al., 2007;
Hurtado et al., 2010; Ittner et al., 2010; Vossel et al., 2010;
Nussbaum et al., 2012; Zempel et al., 2013; Wang et al., 2016).
Progressive build-up of these abnormal aggregates is associated
with synaptic disruption (Shankar et al., 2008; Koffie et al., 2009;
Moreno et al., 2011; Zempel et al., 2013; Rajmohan and Reddy,
2017; Pickett et al., 2019) and neuronal loss (Kadowaki et al.,
2005; Jawhar et al., 2012; DeVos et al., 2017; Fu et al., 2017),
leading to atrophy of specific brain regions (Spires-Jones and
Hyman, 2014; Ferreira et al., 2017; Ten Kate et al., 2018).

Remarkably, the evidence indicates that accumulation of
Aβ and tau is slow and that initiates more than two decades
before clinical symptoms appear (Jack et al., 2009; Braak
et al., 2011; Bateman et al., 2012; Villemagne et al., 2013),
which has important diagnostic and therapeutic implications.
In this context of early pathological changes during AD,
axonal degeneration constitutes a common, initial event in
several neurodegenerative conditions (Salvadores et al., 2017).
Supporting evidence comes from imaging analyses of individuals
with MCI -which are subjects at risk of developing AD- showing
a significant decrease in white matter volume. Importantly, these
results suggest that atrophy due to disruption of white matter
fibers might contribute to memory decline (Kalus et al., 2006;
Stoub et al., 2006; Rogalski et al., 2009; Ihara et al., 2010; Bozzali
et al., 2011). Additionally, the use of diffusion tensor imaging
to examine the microstructural integrity of white matter has
revealed a pattern of alterations characteristically observed in
axon-related pathologies. These changes correlate with cognitive
impairment and are consistent with loss of brain connectivity
(Huang and Auchus, 2007; Power et al., 2019).

Acute axonal degeneration, as the result of a traumatic
lesion in the central nervous system, is a rapid process
that takes hours to days depending on the organism and
degenerative stimuli (Court and Coleman, 2012). However, in
the case of neurodegenerative diseases, the degeneration of
axons might take much longer periods (Lingor et al., 2012).
Indeed, histopathological analyses using a mouse model of
AD showed that, despite extreme dystrophy, axons maintain
continuity throughout the disease course for several months
(Adalbert et al., 2009). Moreover, computer modeling using data
on neuron loss and neurofibrillary tangle (NFT) formation on
AD brains, revealed that NFT bearing neurons can survive for
up to 20 years (Morsch et al., 1999). This evidence suggests that
neurodegeneration is a slow process in AD, thus providing the
opportunity to target degenerating axons as an early therapeutic
intervention. Compelling experimental and pathological studies
have demonstrated that neurons in AD follow a dying-back
pattern of neurodegeneration, where axonal terminals and then
axons progressively degenerate toward the neuronal cell body
(Bell and Claudio Cuello, 2006; Kalus et al., 2006; Stoub et al.,

2006; Huang and Auchus, 2007; Adalbert et al., 2009; Rogalski
et al., 2009; Gilley et al., 2011; Nishioka et al., 2019). Despite
the difference in timing, axonal degeneration in the context
of both acute lesions and neurodegenerative diseases, share
morphologic features that include axonal swelling, microtubule
disruption, and fragmentation of neuronal processes (Wang
et al., 2012), suggesting that they correspond to similar processes.
Recent studies have shed light into the mechanisms that govern
acute axonal degeneration, revealing the dependence of NAD+

in this process, as well as the involvement of mitochondrial
dysfunction and necroptosis activation (Barrientos et al., 2011;
Osterloh et al., 2012; Neukomm et al., 2017; Hernández et al.,
2018; Arrázola et al., 2019; Ko et al., 2020; Loreto et al., 2020;
Oñate et al., 2020). Notably, all these pathways are associated to
the hallmarks of aging (Kennedy et al., 2014; Sun et al., 2016;
Deepa et al., 2018; Haas, 2019; Lautrup et al., 2019; Royce et al.,
2019; McReynolds et al., 2020). In the context of AD, different
pathogenic pathways have been shown to contribute to axon
demise, including calcium signaling imbalance, mitochondrial
dysfunction, alterations in axonal transport, and increased
oxidative stress (Bamburg and Bloom, 2009; Yu et al., 2009;
Ye et al., 2012; Cioffi et al., 2019; Guo et al., 2020). As stated
above, the accumulation of misfolded proteins constitutes a
salient feature of AD neuropathology and a large body of
evidence linking Aβ and tau pathologies with the disruption
of axons has been published. In this review, we will present
the pathways that contribute to the mechanism of acute axonal
degeneration. Then, we will critically evaluate the evidence
associating Aβ and tau pathologies with the disruption of
axons in AD.

CELLULAR MECHANISMS ASSOCIATED
WITH AXONAL DEGENERATION

Wallerian Degeneration
The degeneration of axons corresponds to a process activated
in response to several stimuli including chemotherapy drugs,
infection, inflammation, toxins, and mechanical injury, among
others. Recent advances in the study of the molecular
mechanisms that govern axon demise have contributed to
uncovering essential components of the axon degeneration
program. A schematic representation of the steps associated with
axonal degeneration is presented in Figure 1.

Initial studies performed by August Waller to study axonal
degeneration following nerve transection (Waller, 1850) led to
the discovery of an ordered process in which three distinctive
phases are typically observed. Initially, a latent period of about
36 h occurs, where the distal injured nerve fiber remains intact.
A rapid phase then takes place, where the cytoskeleton is
disrupted, and axons undergo fragmentation, which in vivo is
associated with glial activation (Catenaccio et al., 2017). Finally,
axonal disintegration and myelin degradation occurs, followed
by macrophage infiltration and clearance of cell debris. This
process is known as Wallerian degeneration (Coleman, 2005;
Court and Coleman, 2012).
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FIGURE 1 | Mechanisms underlying axon degeneration. Mechanical or toxic injury lead to nicotinamide mononucleotide adenylyltransferase (NMNAT) axonal loss
and SARM1 activation resulting in NAD+ depletion. Activated SARM1 promotes NAD+ destruction and NMAT loss decreases NAD+ synthesis. Reduced axonal
NAD+ levels lead to energy failure and ATP depletion. SARM1 also activates MAPK signaling pathways, which promotes SCG10 proteolysis. Increased reactive
oxygen species (ROS) production promotes mPTP formation that also can be triggered by necroptosis activation. Energy failure derived from both NAD+ depletion
and mitochondrial damage contributes to calcium unbalance, ROS production, and mPTP formation. Cumulative activation of mechanisms and structural damage
ultimately result in cytoskeleton fragmentation and axon degeneration.

NAD+ Metabolism in Axonal Degeneration
More than a 100 years later, studies performed on the Wallerian
degeneration slow (Wlds) mutant mice uncovered that upon
axotomy, denucleated axons actively execute their own
destruction, which is mediated by an evolutionarily conserved
signaling pathway (Lunn et al., 1989; Perry et al., 1990, 1991;
Lyon et al., 1993). Moreover, the discovery of the Wlds strain
supported the idea that axonal degeneration and cell body death
are two events regulated by different molecular mechanisms
(Lunn et al., 1989; Deckwerth and Johnson, 1994). InWlds mice,
the distal denucleated axon remains functional for 3–4 weeks
after nerve injury, suggesting that the Wlds gene confers a
protective effect intrinsic to the axon. Wlds phenotype is caused
by the overexpression of a chimeric Wlds gene, encoding the
full-length nicotinamide mononucleotide adenylyltransferase
(NMNAT1) and a short region of a ubiquitin assembly protein
(UFD2; Conforti et al., 2000). The two components of the
Wlds gene suggest the involvement of the ubiquitin-proteasome
system (UPS) and NAD+ metabolism in the process of axon
degeneration. Although genetic and pharmacological inhibition
of UPS activity delays axon degeneration, overexpression
of NMNAT1 alone can prevent axonal degeneration (Zhai
et al., 2003; Araki et al., 2004). In injured axons, NAD+ levels
decrease, and preventing this axonal NAD+ decline by exogenous
application of NAD+ protects axons from degeneration (Wang
et al., 2005). Since NAD+ is essential for glucose-dependent
ATP production, reduced levels of NAD+ impair axonal energy
production that contributes to axon degeneration (Gerdts et al.,

2016). These data suggest that NAD+ metabolism plays a crucial
role in axon degeneration.

SARM1 Mediates Axonal Loss
Mammals harbor three different isoforms of NMNAT proteins
(NMNAT 1–3) that differ in subcellular localization and kinetic
activity. NMNAT2 is the most labile isoform and it is constantly
replenished in axons through fast axonal transport. Upon
axotomy, NMNAT2 fails to be transported toward the axons and
its levels rapidly drop in axons before Wallerian degeneration
occurs (Gilley and Coleman, 2010; Gerdts et al., 2016).
Thus, specific depletion of NMNAT2 is sufficient to induce
Wallerian-like degeneration of uninjured axons. Moreover, the
overexpression of NMNAT3, which is predominantly located
in mitochondria, confers axonal protection after injury (Sasaki
et al., 2006). The loss of NAD+ is suppressed in sterile alpha
and TIR motif-containing 1 (SARM1) knockout (ko) axons both
in vitro and in vivo, suggesting that SARM1 is a key mediator
of axon destruction (Gerdts et al., 2013, 2015; Gilley et al.,
2015). SARM1 contains a C-terminal Toll-interleukin receptor
domain, which dimerizes and mediates the rapid breakdown
of NAD+ (Gerdts et al., 2016). Axonal defects and embryonic
lethality observed in Nmnat2 ko mice are suppressed by Sarm1
ablation, as Nmnat2/Sarm1 double-ko mice are healthy. This
indicates a relationship between NMNAT2 and SARM1 in the
control of NAD+ metabolism and axon degeneration. It has been
hypothesized that loss of NMNAT2 induces a decline in NAD+

levels, which in turn might lead to SARM1-dependent NAD+
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destruction, and consequently to a disastrous loss of NAD+ in
the axon (Gerdts et al., 2016).

Although current data indicates that NAD+ depletion occurs
downstream SARM1 activation after injury, additional evidence
suggests the participation of other signaling pathways in axonal
degeneration. Forced dimerization of the SARM1 TIR domain
which results in NAD+ depletion and axon degeneration, also
triggers MAPK signaling activation. Moreover, in damaged
axons, SARM1 is required for activation of MAPK and this
signaling disrupts axonal energy homeostasis leading to ATP
depletion (Yang et al., 2015). Thus, the deletion of mitogen-
activated protein kinase kinase 12 (MAP3K12), also known as
DLK, significantly delays the degeneration of distal axons (Miller
et al., 2009). DLK signals through the downstream target of
MAPK JNK and pharmacological inhibition of JNK leads to
axon protection similar to Dlk ablation. Although Dlk ablation
confers axon protection, this protective effect is weaker than the
one resulting from overexpression of Nmnat and Wlds genes.
Also, after injury activation of two additional members of the
MAPK cascade has been identified, MEKK4 (MAP3k4) and
MLK2 (MAP3K10), which promote axon degeneration. Genetic
ablation of all three MAP3Ks leads to robust axonal protection
(Yang et al., 2015). All these MAP3Ks converge in the activation
of the JNK pathway, which induces UPS-dependent degradation
of SCG10 (stathmin 2) after axon injury (Shin et al., 2012).

The Role of Mitochondria in Axonal
Degeneration
As aforementioned, a crucial role of NMNAT in the axonal
degeneration cascade has been proven. Supporting studies
demonstrated that NMNAT3 overexpression prevents axonal
loss mediated by oxidative damage induced by reactive oxygen
species (ROS) exposure (Press and Milbrandt, 2008). Additional
evidence supported this data and suggested that mitochondrial
localization of NMNAT activity has a key role in NMNAT-
mediated axonal protection (Yahata et al., 2009). Prompted by
this evidence and considering the involvement of mitochondrial
permeability transition (mPT) on neurodegenerative conditions
(Forte et al., 2007; Du et al., 2008; Martin et al., 2009),
Barrientos et al. (2011) sought to determine the role of the
mPT pore (mPTP) on the mechanism of axonal degeneration.
The researchers showed that degeneration of axons induced
by vincristine or nerve transection—in ex vivo and in vitro
models—was associated with activation of the mPTP and
targeting the mPTP component Cyclophilin D (CypD), either by
pharmacological or genetic means, significantly delayed axonal
disintegration (Barrientos et al., 2011). These results identify
the mPTP as a key effector of axonal degeneration, as well
as a potential target to prevent axonal loss triggered by both
mechanical and toxic stimuli. Further studies revealed that upon
axonal injury, mPTP formation is mediated by calcium release
from the axonal endoplasmic reticulum, constituting an early
step in the mechanism of axonal degeneration (Villegas et al.,
2014). Moreover, many studies have demonstrated that following
axotomy, an increase in intra-axonal Ca2+ occurs, constituting
a common step to activate the axonal degeneration cascade
(George et al., 1995; Adalbert et al., 2012; Avery et al., 2012;

Mishra et al., 2013; Vargas et al., 2015). Besides mitochondrial
calcium overload, mPTP opening can also be triggered by
oxidative stress (Brockemeier et al., 1992). In accordance, in vivo
work performed in both C. elegans and mice, recognized ROS as
key intermediates in the mechanism of axonal degeneration, as
increasing the anti-oxidative capacity of the neuron efficiently
prevented axon demise and functional loss triggered by the
hyperactivated degenerin channel MEC-4d (Calixto et al., 2012).
Moreover, in vivo studies carried out in a mouse model of
Charcot-Marie-Tooth 2A disease demonstrated an uncoupling
between ATP and ROS production in axonal mitochondria.
Similarly, in vivo-induced demyelination triggered reduced
levels of ATP, along with increased ROS production in axonal
mitochondria. These data suggest that mitochondrial ATP and
ROS imbalances may contribute to axonal degeneration (van
Hameren et al., 2019).

Necroptosis Involvement in the
Mechanism of Axonal Demise
Mitochondrial dysfunction, ROS production, and intracellular
calcium increase, which as mentioned above are key events that
mediate axonal degeneration, have also been associated with
activation of the necroptosis signaling pathway (Vandenabeele
et al., 2010). To test the involvement of necroptosis in the
mechanism of axonal degeneration, Hernández et al. (2018)
used an in vitro model of glutamate-induced excitotoxicity
in hippocampal neurons seeded in microfluidic devices.
The authors showed that axonal degeneration proceeds by
necroptosis, which involved the activation of the mPTP as well
as calcium dyshomeostasis in axons. Pharmacological inhibition
of the necroptotic kinase RIPK1 using Nec-1s, or genetic
downregulation of Ripk3 or Mlkl, significantly prevented axonal
degeneration and neuronal death (Hernández et al., 2018). In
the same line, it was also demonstrated that axonal demise
induced by mechanical and toxic stimuli in vitro—by axotomy
or vincristine, respectively—is dependent on RIPK1, as Nec-1s
prevented the degeneration of axons under those conditions.
This protective effect was also observed by genetic inhibition
of Ripk3 or Mlkl. Notably, the loss of the electrophysiological
nerve function was also prevented by blocking the necroptotic
machinery (Arrázola et al., 2019). Furthermore, investigating
the mechanisms of axonal degeneration in in vitro and in vivo
models of Parkinson’s disease, we also uncover the role of
the necroptosis signaling pathway in this process. Neurons
treated with 6-OHDA exhibited significant axonal degeneration,
as well as elevated expression levels of necroptotic markers,
which was prevented by Nec-1s or the pMLKL inhibitor GW80.
Similarly, intracerebral injection of 6-OHDA in mice triggered
axonal degeneration, which was accompanied by RIPK3 and
pMLKL upregulation. Nec-1s administration decreased axonal
degeneration and improved motor performance of 6-OHDA
injected mice, and similar results were obtained by Ripk3 or
Mlkl ko (Oñate et al., 2020). Together, these studies confirm that
necroptosis activation takes place to mediate the degeneration
of axons under different pro-degenerative stimuli, a process
we have named necroaxoptosis (Oñate et al., 2020). Recently,
a link between necroptosis and SARM1 was discovered using
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a neuroinflammatory model of glaucoma. TNF-α was injected
into the vitreous cavity of wild type mice, triggering axonal
and cell body loss, which was prevented in the SARM1 ko
mice. Increased levels of necroptosis markers in optic nerves
of both wild type and SARM1 ko mice suggested that
SARM1 functions downstream of necroptosis mediate axonal
degeneration. Additional experiments where necroptosis was
induced by direct MLKL dimerization, showed that necroptosis-
mediated calcium influx, loss of mitochondrial potential, and
axon degeneration were blocked in SARM1 ko axons, integrating
previous steps of the axonal degenerative pathway (Press and
Milbrandt, 2008; Barrientos et al., 2011; Villegas et al., 2014;
Arrázola et al., 2019; Ko et al., 2020). Therefore, necroaxoptosis
seems to be a common mechanism for axonal degeneration after
a variety of insults.

THE ROLE OF PROTEIN MISFOLDING IN
AXONAL DEGENERATION IN AD

Axonal degeneration and dysfunction are prominent features
of AD brains. White matter alterations revealed by in vivo
imaging can be observed at the early stages of the disease,
even in MCI patients. Importantly, these changes correlate with
clinical measures of cognitive disability (Kalus et al., 2006; Stoub
et al., 2006; Rogalski et al., 2009; Ihara et al., 2010; Bozzali
et al., 2011). Accumulation of misfolded proteins is also an
early pathological signature during AD, and cumulative evidence
documenting a link between these two neuropathological events
has been published, which is the focus of this section. A schematic
representation of the signaling cascades triggered by Aβ and tau
that contribute to axonal degeneration is presented in Figure 2.

Axonal Disruption Associated With Tau
Pathology
The first report describing tau pathology showed that
neurofibrillary changes in the form of NFT and neuropil
threads (NT) exhibit a characteristic distribution pattern
affecting vulnerable brain regions such as the cerebral cortex
and hippocampus (Braak and Braak, 1997). These lesions begin
with misfolded phospho-tau in the proximal axon and then
spreads into the somatodendritic compartment (Braak and Del
Tredici, 2011). Deterioration of the cytoskeleton in individual
neurons reveals a sequence of changes occurring in neuronal
processes suggesting that the disruption of microtubules
containing tau may cause the degeneration of axons (Kowall
and Kosik, 1987; Braak et al., 1994; Braak and Del Tredici,
2011). Moreover, analysis of hippocampal regions showed that
tau inclusions within dystrophic neurites correlate with several
measures of the mini-mental state examination, suggesting that
these pathological lesions contribute to cognitive dysfunction
(Ghoshal et al., 2002).

The Role of Tau-Mediated Axonal Transport
Disruption in Axonal Degeneration
Due to their polarized nature, neurons rely on an efficient axonal
transport system for delivering proteins, lipids, and organelles
from the cell body to the axon and synapses. The proper

function of axonal transport depends on the correct assembly
and functioning of all components including microtubules and
motor proteins. Therefore, alterations in axonal transport render
neurons vulnerable to the loss of synapses and can trigger
axonal degeneration (Mandelkow et al., 2003). Indeed, chemical
interventions that directly or indirectly affect axonal transport
result in a dying-back form of axonal degeneration (Fukuda et al.,
2017). Disruption of axonal transport as well as morphological
alterations of the axons occur early in the course of AD and
can be detected even a year before other neuropathological
abnormalities develop, including amyloid deposition (Stokin,
2005). Defects in axonal transport have been extensively studied
in the context of AD and it has been suggested to have a
causative role in the disease (Muresan and Muresan, 2009;
Vicario-Orri et al., 2014).

In AD, pathological changes associated with tau begin
as the granular accumulation of phosphorylated tau in the
cytoplasm, axon, and dendrites. Then, tau gradually aggregates
to form NT and NFT, which affect the neuronal process
that eventually undergoes degeneration (Braak et al., 1994;
Braak and Del Tredici, 2011). Tau is a microtubule-associated
protein involved in microtubules dynamics, which function as
a track for axonal transport (Gao et al., 2018). It has been
hypothesized that an imbalance in intracellular signaling causes
excessive tau phosphorylation and its subsequent detachment
from microtubules. This, in turn, promotes microtubule
destabilization and impairment of axonal transport. Several
studies have shown that tau overexpression in neurons increases
tau phosphorylation and inhibits axonal transport (Stamer et al.,
2002; Mandelkow et al., 2003; Chee et al., 2005; Thies and
Mandelkow, 2007). As a result of tau-dependent axonal transport
inhibition, organelles and vesicles are reduced in cell processes,
which lead to energy depletion, decreased oxidative defense, and
dying-back of neurites (Stamer et al., 2002; Mandelkow et al.,
2003). The NAD+ biosynthetic enzyme NMNAT2, a well-known
pro-survival factor that inhibits axonal degeneration after injury,
depends on constant replenishment by anterograde axonal
transport (Gilley and Coleman, 2010). Interestingly, in human
AD brains as well as in rTg4510 mice, NMNAT2 expression
is reduced, suggesting a possible mechanism by which tau
pathology can contribute to axonal degeneration (Ljungberg
et al., 2011; Ali et al., 2016). Thus, disruption of axonal
transport-associated to abnormal tau phosphorylation might
lead to decreased axonal NMNAT2 levels. The unbalance of
the NAD+/NMN index due to loss of NMNAT2 could lead to
SARM1-dependent NAD+ destruction in the axon and ultimately
axon degeneration. However, this remains to be established.

Also, to regulate microtubule dynamics, tau modulates the
function of the motor proteins dynein and kinesin, modifying
the axonal transport of proteins and organelles. Enhanced
tau phosphorylation also causes synaptic dysfunction as a
consequence of energy depletion, associated with a reduced
number of mitochondria in the pre-synapsis (Chee et al., 2005).
This reduced density of mitochondria in axons and presynaptic
terminals directly affects the energy status and calcium buffering.
Additionally, it has been shown that tau may directly affect the
endoplasmic reticulum-mitochondria interactions and therefore
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FIGURE 2 | Mechanisms linking Tau and amyloid-β (Aβ) in Alzheimer’s disease (AD) to axon degeneration. Unbalance between kinases and phosphatases leads to
the accumulation of abnormally phosphorylated tau, which in turn induces detachment form microtubules and microtubule destabilization (Köpke et al., 1993).
Several age-related factors contribute to the accumulation of Aβ oligomers. Accumulation of pathological tau and Aβ promote axonal transport impairment (Calkins
and Reddy, 2011; Tang et al., 2012; Wang et al., 2015; Sadleir et al., 2016; Zhang et al., 2018). This in turn causes loss of axonal NMAT2, decreased mitochondrial
density at the nerve terminal, and autophagy flux impairment (Gilley and Coleman, 2010; Ljungberg et al., 2011; Ali et al., 2016). Neuron loss and neurofibrillary
tangle (NFT) and Aβ oligomers also promote mitochondrial dysfunction, oxidative stress, and calcium dyshomeostasis (Stamer et al., 2002; Chee et al., 2005; Cieri
et al., 2018; Mata, 2018; Albensi, 2019). All these events drive the failure of critical mechanisms for axonal functioning and maintenance that lead to loss of axonal
homeostasis, and ultimately axon degeneration.

calcium handling (Cieri et al., 2018). Calcium unbalance may
lead to activation of calcium-dependent proteases, calpains,
which are implicated in the granular disintegration of the
axonal cytoskeleton, a hallmark of Wallerian degeneration.
Indeed, calpains are abnormally activated in AD brains, and
they have been implicated in the development of tau pathology
(Mahaman et al., 2019).

Phosphorylation plays a critical role in the regulation of tau
functions, including the regulation of microtubule stabilization
and assembly. Phosphorylation of tau is increased in AD
brains, suggesting an unbalance in tau-associated kinases and
phosphatases (Köpke et al., 1993). The expression of tau-tubulin
kinase1 (TTBK1), a brain-specific tau kinase, is significantly
up-regulated in the frontal neocortical region of the AD
brain and colocalizes with NFT-positive neurons (Sato et al.,
2006, 2008). Additionally, transgenic mice expressing human
TTBK1 show increased tau phosphorylation and significant
axonal degeneration in the entorhinal cortex (Sato et al., 2008;
Ikezu et al., 2020). On the other hand, the activity of PP2A,
the main tau phosphatase, is reduced in AD brains, and the
inhibition of PP2A activity in mice models of AD result in tau
pathology and cognitive impairment (Wang et al., 2010; Louis

et al., 2011; Braithwaite et al., 2012). Strikingly, PP2A activity can
be regulated by NMNAT2, hence reduced NMNAT2 expression
observed in AD might down-regulate PP2A activity resulting
in tau hyperphosphorylation (Cheng et al., 2013). Thus, in AD
pathogenesis the unbalance between kinases and phosphatases
may lead to abnormally hyperphosphorylated tau, which disrupts
axonal transport, triggering axonal degeneration.

Axons depend on the constant remodeling of damaged
proteins and organelles to maintain their correct functioning
and connectivity (Maday and Holzbaur, 2016). This remodeling
depends on homeostatic/degradation systems such as the UPS
and autophagy (Korhonen and Lindholm, 2004; Kulkarni and
Maday, 2018). Acetylation of tau inhibits the degradation
of phosphorylated tau by the UPS, and the accumulation
of acetylated tau has been identified in AD brains (Min
et al., 2010, 2015). Moreover, the loss of Sirtuin-1, which
deacetylate tau, is closely associated with the accumulation
of tau in the cerebellar cortex (Julien et al., 2009). Although
the UPS is responsible for the degradation of up to 80–90%
of proteins including tau, misfolded proteins and aggregates
are too large to be processed through the proteasome barrel
and impede UPS function by physical occlusion (David et al.,
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2002; Chung et al., 2019). However, in vitro studies have
demonstrated that tau aggregates can be degraded by autophagy.
Ultrastructural analysis of post-mortem brain samples from
AD patients showed the accumulation of autophagic vesicles
within swollen and dystrophic neurites. Interestingly, autophagic
vesicles were found more frequently in neurons bearing NFT
(Nixon et al., 2005). Inducing autophagy by pharmacological
interventions in different models of AD results in lower tau
accumulation and better cognitive performance (Li et al.,
2017). These observations suggest that autophagy impairment
is associated with the deposition of pathological tau and
contributes to neuronal demise in AD. Transport of autophagic
vesicles loaded with unfolded proteins and organelles from
distal axonal domains relies on a well-functioning retrograde
transport to reach the soma, where autophagy degradation
occurs (Maday and Holzbaur, 2014; Kulkarni and Maday, 2018).
Dysregulations of tau observed in AD can impair dynein-
retrograde axonal transport (Wang et al., 2015), which may
lead to autophagy disruption and accumulation of autophagic
vesicles within axons. Ultimately all these events might cause
the loss of axonal homeostasis that gradually dye back to
the soma.

Oxidative stress is another event associated with
axonal degeneration in AD at the early stages of the
pathologic process (Alavi Naini and Soussi-Yanicostas, 2015).
Increased susceptibility to oxidative stress is linked to tau
hyperphosphorylation, which leads to peroxisome depletion in
neurites due to the inhibition of microtubule transport (Stamer
et al., 2002). On the other hand, oxidative stress leads to increased
tau phosphorylation in neuronal cultures and animal models
of AD (Melov et al., 2007; Su et al., 2010). Indeed, antioxidant
treatment reduces oxidative stress, tau pathology, and improves
cognitive performance in 3xTg-AD mice (Clausen et al., 2012).
An imbalance between pro-oxidants and antioxidants at the
early stages of AD leads to increased oxidative stress, which
may promote dysregulation of tau phosphorylation. This
in turn might promote disruption of axonal transport that
exacerbates oxidative stress and tau phosphorylation. Thus,
tau phosphorylation and oxidative stress interplay is a key
component of a vicious circle that plays a crucial role in the
pathological process of AD. Then, ROS production might trigger
mitochondrial dysfunction and necroptosis activation, two
well-established mechanisms of axonal degeneration.

Analysis of postmortem brain samples suggests that tau
pathology begins before the formation of NFT, as the
accumulation of hyperphosphorylated tau is observed in young
AD patients (Braak et al., 2011). Several lines of evidence
suggest that abnormal phosphorylation of soluble tau causes
synapse loss, impaired synaptic function, disrupted axonal
transport, and cognitive deficits (DeKosky and Scheff, 1990;
Callahan and Coleman, 1995; Mandelkow et al., 2003; Thies
and Mandelkow, 2007; Hoover et al., 2010). Therefore, it has
been hypothesized that NFT occurs as a protective cellular
response, where NFT might scavenge the toxic monomeric or
oligomeric tau. However, these tau aggregates might sequester
other cell components or even cause an axonal clogging that
ultimately leads to axonal degeneration (Mandelkow et al., 2003).

Thus, tau pathology in AD likely initiates with a signaling
dysregulation leading to hyperphosphorylation of tau, which
causesmicrotubule destabilization and taumislocalization. These
events may drive the failure of critical mechanisms for axonal
functioning and maintenance that lead to loss of axonal
homeostasis. Finally, phospho-tau assembles into NFT, and the
aggregation of these tau oligomers eventually contributes to
axonal degeneration.

Evidence Linking Aβ to Axonal Disruption
Aβ-Related Axonal Dystrophy
In the first report describing the neuropathology of the
postmortem brain of an AD patient, the appearance of altered
neuronal processes (referred to as dystrophic neurites) was
described (Alzheimer, 1907; article translated in Stelzmann et al.,
1995). Subsequently, numerous studies examining AD brain
tissue, as well as transgenic animal models of the disease, have
revealed an intimate association between dystrophic neurites
(i.e., axons and dendrites) and Aβ deposition (reviewed in Spires
and Hyman, 2004; Woodhouse et al., 2005; Bell and Claudio
Cuello, 2006; Mokhtar et al., 2013). Dystrophic neurites are
defined as abnormal neuronal processes, characterized by the
presence of thick, tortuous, as well as swollen segments (Su et al.,
1993). The morphology of these irregular neuronal processes,
which correspond to regions with cytoskeletal alteration and
organelle accumulation, may change as the disease progresses
(Vickers et al., 1996; Su et al., 1998; Woodhouse et al., 2009;
Sanchez-Varo et al., 2012).

Although most research in AD has focused on the study of
the loss of dendrites and synapses associated with Aβ pathology,
as there is compelling evidence linking these alterations with
cognitive decline (Davies et al., 1987; DeKosky and Scheff,
1990; Terry et al., 1991; Scheff et al., 2006; Bastrikova et al.,
2008; Jackson et al., 2019), Aβ-related dystrophic axons are
widespread in diseased brains and several studies suggest that
they contribute to synaptic damage (Adalbert et al., 2009;
Sanchez-Varo et al., 2012).

In vivo evidence of the temporal course of Aβ-related axonal
pathology underwent by different AD mouse models—using
two-photon imaging—has revealed that the environment around
plaques is not uniform and that rather, it promotes a continuous
remodeling, suggesting that axonal dystrophies associated with
Aβ plaques are highly plastic structures, with a morphology
that varies over time (Tsai et al., 2004; Blazquez-Llorca et al.,
2017). Notably, although a re-growth phenomenon has been
observed, were newly formed axonal segments were visualized
in dystrophic axons, the elimination rates of neurites near
amyloid aggregates are significantly higher than the formation
rates, thereby leading to a progressive net loss over time (Tsai
et al., 2004). As the formation of dystrophic axons seems to
be a very dynamic process, with alterations appearing and
disappearing within short periods, it has been suggested that
early treatment to prevent amyloid accumulation may induce the
recovery of the neuronal networks (Blazquez-Llorca et al., 2017).
In agreement, different research groups have demonstrated that
Aβ clearance by immunotherapy can attenuate Aβ-related axonal
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degeneration in AD transgenic models (Lombardo et al., 2003;
Brendza et al., 2005; Liu et al., 2011).

Axonal Transport Disruption Associated With Aβ

Although there is a general notion that the development of
dystrophic axons occurs as a consequence of nearby amyloid
deposition, a growing body of evidence supports the converse
view of an axonal origin of Aβ substrates for extracellular
plaque formation, at sites were dystrophies are formed. Thus, the
cause and effect relationship between amyloid plaques and axon
damage remains a matter of debate.

Altered axonal transport constitutes a typical feature seen
in the brain of TBI patients (who are at high risk of
developing AD), as well as in TBI animal models (Choe, 2016).
Immunohistochemical assessment of TBI brain samples shows
increased levels of intra-axonal APP at swelling sites, and this
has been attributed to the neuroprotective functions of this
protein, as well as the products of its proteolytic processing
(Plummer et al., 2016). However, there is well-documented
evidence showing that widespread diffuse Aβ plaque deposition
occurs in TBI survivors, and this has also been demonstrated
in animal models of TBI (Johnson et al., 2012; Shishido
et al., 2016; Edwards et al., 2017; Abu Hamdeh et al., 2018).
Importantly, longitudinal studies performed to these individuals
have revealed that NFT and amyloid plaque pathologies persist,
and are associated with cognitive impairment (Johnson et al.,
2012). Moreover, compelling studies have demonstrated that
alterations in APP transport can promote the local release
of Aβ, which can further impair axonal transport (Rodrigues
et al., 2012; Mórotz et al., 2019). Thus, just as alterations
in axonal transport can lead to amyloid pathology, there is
also extensive evidence that Aβ itself can cause microtubule-
based transport defects (Pigino et al., 2009; Zhao et al., 2010;
Calkins and Reddy, 2011; Tang et al., 2012; Cruz et al., 2018;
Zhang et al., 2018). In this line, and considering the role of
microtubules in axonal transport, several studies have focused
on the effects of Aβ on the integrity of the microtubule
network (Fifre et al., 2006; Gevorkian et al., 2008; Silva et al.,
2011; Mota et al., 2012; Pianu et al., 2014; Wang et al.,
2018; Gao et al., 2019). For instance, Sadleir et al. (2016)
hypothesized that presynaptic dystrophies were triggered by
Aβ-mediated microtubule disruption. Using live-cell imaging
of primary neurons, the authors observed that exposure to
Aβ oligomers causes microtubule depolymerization, neuritic
beading, and altered axonal trafficking. These data were validated
in brain tissue from an AD mouse model as well as in human
AD samples, where dystrophic axons and terminals in the
proximity to Aβ deposits, displayed aberrant localization of
tubulin, as well as evidence of decreased lysosomal function
and autophagic vesicles accumulation, suggesting alterations in
the microtubule-based transport. Notably, elevated β-secretase-
1 and APP levels were also observed in peri-plaque dystrophies,
which caused local Aβ generation that may further exacerbate
extracellular amyloid pathology (Sadleir et al., 2016). Together,
this evidence points towards a mechanism in which Aβ-mediated
axonal defects, and the contribution of axonal dystrophies
to Aβ plaque formation, are not isolated processes. Rather,

a vicious circle seems to occur, where axons in the vicinity
of amyloid deposits undergo alterations that further enhance
Aβ accumulation.

As discussed above, defects in axonal transport occur early
in the onset of AD. Considering the architecture of axons,
transport along this structure is critical to preserve its integrity,
as a failure of intra-axonal trafficking can lead to deprivation of
cargoes that are essential for axon survival and can also impair
the communication with the cell body or other cells (Coleman,
2011; Kanaan et al., 2013). Accordingly, disruptions on this
vital cellular process can eventually lead to axonal degeneration
(Ferri et al., 2003; Coleman, 2005, 2011; Pigino et al., 2009;
Kanaan et al., 2013). In this regard, Aβ-mediated disturbances
in microtubule-based cellular transport block the trafficking of
vital cargoes to synapses. For example, many works reporting
impairment of mitochondrial transport induced by Aβ have been
published (Rui et al., 2006; Calkins and Reddy, 2011; Kim et al.,
2012; Umeda et al., 2015; Zhang et al., 2018). Mitochondria
are required at pre- and postsynaptic terminals for the correct
function of neurotransmission, as it has essential roles in ATP
production and buffering synaptic calcium (Li et al., 2004;
Sheng and Cai, 2012). Thereby, the abnormal function of axonal
transport induced by Aβ can block mitochondria trafficking,
triggering synaptic alterations, which can initiate retrograde
degeneration of axons. However, the exact mechanism that
mediates this process remains unclear. As previously mentioned,
alterations in NMNAT2 are associated with AD (Ali et al., 2016).
Although a direct link between Aβ and NMNAT2 has not been
proven, it is likely that, in the course of events leading to the
activation of the axon death cascade, tau -which indeed has been
related to NMNAT2 downregulation (Ljungberg et al., 2011)-
acts downstream Aβ.

Aβ and the Mechanism of Axonal Degeneration
As previously stated, white matter alterations, reflecting axonal
degeneration and dysfunction, are present not only in AD
brains but also in MCI patients. Growing data from in vivo
imaging studies have documented a relationship between such
white matter abnormalities and Aβ deposition (Collins-Praino
et al., 2014; Hoy et al., 2017; Schilling et al., 2018; Vipin et al.,
2019; Weaver et al., 2019; Caballero et al., 2020). Importantly,
recent longitudinal studies on the association between white
matter integrity and amyloid pathology in cognitively normal
individuals, revealed that Aβ aggregates build-up in white
matter fibers known to be affected in AD, in an age-dependent
manner (Vipin et al., 2019; Caballero et al., 2020). These
studies underscore the impact of Aβ load on early white matter
alterations in normal aged subjects at risk of AD. For this reason,
a thorough understanding of the signaling that mediates axonal
degeneration is crucial, as this would allow the identification of
potential therapeutic targets.

Several lines of investigation have demonstrated that rather
than senile plaques, Aβ oligomers are the most cytotoxic form
of the aggregates and that plaques might serve as reservoirs
from which oligomers can diffuse, reaching cellular targets
in their vicinity. Aβ oligomers can exert toxicity through
several different pathways, and many of them are involved in
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the process of axonal degeneration, including mitochondrial
dysfunction (Swerdlow, 2018; Albensi, 2019), oxidative stress
(Butterfield and Boyd-Kimball, 2018; Cheignon et al., 2018)
and calcium dyshomeostasis (Mata, 2018; Popugaeva et al.,
2018; Wang and Zheng, 2019). As discussed, previous work
by our group demonstrated that axonal degeneration triggered
by distinct insults is dependent on mitochondrial dysfunction
and activation of the mPTP (Barrientos et al., 2011). In this
line, Aβ oligomers were shown to target the mPTP regulator
cyclophilin D (CypD) in a transgenic mouse model of AD as well
as in AD brain samples. In this animal model, CypD deficiency
prevented Aβ-induced mitochondrial swelling and permeability
transition, improved calcium buffering capacity, and decreased
mitochondrial ROS (Du et al., 2008, 2011). in vitro, the absence
of CypD protected neurons from Aβ- and oxidative stress-
mediated cell death. Remarkably, inhibiting the mPTP by genetic
ablation of CypD improved cognitive and synaptic function in
the transgenic AD model (Du et al., 2008, 2011). Furthermore,
Aβ-induced impairment of axonal mitochondrial trafficking
depends on CypD-mediated mPTP activation. Genetic deletion
of CypD suppressed Aβ-mediated activation of the p38/MAPK
signaling pathway, reversed axonal mitochondrial alterations,
improved synaptic function, and prevented synapse loss (Guo
et al., 2013). These studies shed light on the mechanism by which
Aβ triggers mitochondrial dysfunction, which may promote
axonal degeneration in AD.

As mentioned, both oxidative stress and calcium
dyshomeostasis have shown to mediate axonal degeneration,
and these two events have been largely studied in the context of
Aβ-mediated neurodegeneration. However, most of the works
have focused on the neuron as a whole, instead of studying the
subcellular mechanisms that are activated in response to Aβ.
Thus, to comprehend the exact pathways that trigger the loss
of axonal structures, the use of compartmentalized microfluidic
devices, which allow the isolation of axons from cell bodies
and dendrites, represent a useful tool. In this regard, Song et al.
(2006) used a compartmented chamber to study the differential
effects of Aβ in somas and axons of sympathetic neurons.
The researchers demonstrated that exposure of axons to Aβ

triggered a caspase-independent mechanism of degeneration,
which lead to nuclear apoptosis, as caspase inhibitors prevented
apoptosis but did not protect neurons from axonal degeneration.
Interestingly, the treatment of axons with calpastatin to inhibit
calpains, which have been shown to mediate axonal cytoskeleton
disintegration duringWallerian degeneration, not only protected
axons from degeneration but also prevented nuclear apoptosis
(Song et al., 2006). Using the same approach, another research
group found that exposure of axons from hippocampal neurons
to Aβ oligomers activated intra-axonal translation and induced
local ATF4 synthesis. Retrograde transport of the protein to
the soma induced ATF4-dependent gene expression and cell
death. Similarly, intracerebral injection of Aβ in mice led to
ATF4 translation in cholinergic axons, which was required for
the retrograde transmission of Aβ-induced neurodegeneration
(Baleriola et al., 2014; Walker et al., 2018).

As described here, recent studies have unveiled that axonal
degeneration depends on necroaxoptosis activation (Hernández

et al., 2018; Arrázola et al., 2019; Ko et al., 2020; Oñate et al.,
2020). Although necroaxoptosis has not been demonstrated to
occur in the context of AD, the evidence of necroptosis activation
in AD brains (Caccamo et al., 2017) suggests that—similar to
the findings in PD (Oñate et al., 2020)—this process may indeed
contribute to axonal demise in AD.

Synergistic Contribution of Aβ and Tau to
Axonal Degeneration
Mounting data has proven not only a synergistic but also a
dependent neurotoxic effect of Aβ and tau pathologies (Bloom,
2014). To in vivo assess the pathological mechanism of Aβ

and tau interaction on axonal degeneration, Nishioka et al.
(2019) used a transgenic tau model and injected Aβ aggregates
into the axonal terminals of retinal ganglion cells. Diffusion
tensor imaging revealed a progressive white matter loss that
correlated with the histopathological observation of retrograde
axonal degeneration. Moreover, Aβ exposure triggered tau
phosphorylation that preceded axon loss, and treatment with the
microtubule-stabilizing compound Epothilone D inhibited tau
phosphorylation and prevented axonal degeneration (Nishioka
et al., 2019). This work emphasizes the cross-talk between Aβ

and tau proteins that trigger the degeneration of axons and
represents the first study to in vivo demonstrate the influence
of this interaction in the mechanism of axonal degeneration.
However, the exact signaling pathway activated downstream Aβ

and tau interaction, and responsible for the disintegration of the
axonal cytoskeleton, has not yet been explored.

Previous works have shown that reductions in tau can
prevent Aβ-induced neurodegeneration and cognitive alterations
in AD mouse models (Roberson et al., 2007; Ittner et al.,
2010). Considering both the evidence of Aβ-mediated axonal
transport deficits, as well as the interaction between tau and Aβ

to induce neuronal alterations, Vossel et al. (2010) studied the
effects of Aβ on axonal transport of mitochondria and TrkA,
in hippocampal neurons from tau deficient and wild type mice.
The researchers found that Aβ-dependent inhibition of axonal
transport of mitochondria and TrkA was prevented in tau-/-

neurons, stressing that a dependent degenerative effect between
both proteins might take place in AD (Vossel et al., 2010). In
line with this, in vitro and in vivo experiments showed that Aβ

trimers derived from postmortem human AD brains, induced
conformational changes in tau that led to reduced expression
of the kinesin-1 light chain and increased intra-axonal APP,
suggesting disruption of axonal transport (Sherman et al., 2016).

Although axonal transport deficits associated with misfolded
amyloid and tau have been largely studied in AD brains
and models, the signaling cascades acting downstream these
alterations that might activate axonal degeneration pathways
are not clearly defined. Thus, the evidence demonstrates that
axonal degeneration is an early event in AD, where Aβ and tau
pathologies interplay contributes to the degenerative process.
Nevertheless, besides the reduced NMNAT2 levels found in AD
brains, there is no evidence of the involvement of key molecules
that govern Wallerian degeneration—such as necroptosis-
associated proteins or SARM1—in the context of AD. Moreover,
whereas Wallerian degeneration proceeds rapidly, the evidence
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indicates that axonal degeneration in AD rather constitutes an
extended process that may take months or even years. Hence,
it is possible that, although some common players are indeed
involved, a mechanism different from the one activated during
Wallerian degeneration mediates axonal degeneration in AD.

CONCLUDING REMARKS

Aging is considered the main risk factor contributing to
the development of neurodegenerative diseases, including AD.
The age-dependent decrease of homeostatic systems such
as chaperones, degradation systems, and antioxidant defense
considerably contributes to the accumulation of misfolded
proteins in the brain. Although deposition of Aβ and tau
has been the center of AD drug development research, many
clinical trials on Aβ and tau clearing have been conducted, with
disappointing outcomes (Congdon and Sigurdsson, 2018; Huang
et al., 2020). As discussed in this review, a large body of evidence
has uncovered a link between the development of Aβ and tau
pathologies and the process of axonal degeneration. Nonetheless,
a clear mechanism that integrates the known signaling cascades
that activate axonal death, with the pathways that have been
shown to mediate axonal degeneration in the context of AD,
remains elusive. Many reports have documented that significant
decreases in NAD+ occur during aging (Lautrup et al., 2019;
McReynolds et al., 2020) and supplementation of this metabolite

has been suggested as a potential treatment for age-related
diseases including AD (Braidy et al., 2018; Hou et al., 2018).
Despite the importance of NAD+ in the mechanism of axonal
degeneration, its role in axon demise in AD is undefined.
Furthermore, whether necroaxoptosis is activated in AD, is still
unknown. Axonal loss in AD appears to be a slow process
that initiates early during disease progression, thus providing a
window for therapeutic intervention. An in-depth understanding
of the mechanism that governs axonal degeneration is critical for
the development of new therapies that allow to halt axonal loss
and therefore prevent cell death and cognitive decline in AD.
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