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Late-onset Alzheimer’s Disease (LOAD) is a devastating neurodegenerative disorder

that causes significant cognitive debilitation in tens of millions of patients worldwide.

Throughout disease progression, abnormal secretase activity results in the aberrant

cleavage and subsequent aggregation of neurotoxic Aβ plaques in the cerebral

extracellular space and hyperphosphorylation and destabilization of structural tau

proteins surrounding neuronal microtubules. Both pathologies ultimately incite the

propagation of a disease-associated subset of microglia—the principle immune

cells of the brain—characterized by preferentially pro-inflammatory cytokine secretion

and inhibited AD substrate uptake capacity, which further contribute to neuronal

degeneration. For decades, chronic neuroinflammation has been identified as one of the

cardinal pathophysiological driving features of AD; however, despite a number of works

postulating the underlying mechanisms of inflammation-mediated neurodegeneration,

its pathogenesis and relation to the inception of cognitive impairment remain obscure.

Moreover, the limited clinical success of treatments targeting specific pathological

features in the central nervous system (CNS) illustrates the need to investigate alternative,

more holistic approaches for ameliorating AD outcomes. Accumulating evidence

suggests significant interplay between peripheral immune activity and blood-brain barrier

permeability, microglial activation and proliferation, and AD-related cognitive decline. In

this work, we review a narrow but significant subset of chronic peripheral inflammatory

conditions, describe how these pathologies are associated with the preponderance

of neuroinflammation, and posit that we may exploit peripheral immune processes to

design interventional, preventative therapies for LOAD.We then provide a comprehensive

overview of notable treatment paradigms that have demonstrated considerable merit

toward treating these disorders.

Keywords: Alzheimer’s disease, osteoarthritis, osteoporosis, rheumatoid arthritis, inflammation, mesenchymal

stem cells

INTRODUCTION

Canonical CNS Targets for AD Therapy
Pathological β-amyloid accumulations were among the earliest recorded physiological
manifestations of AD (Tomlinson et al., 1970) and, along with neurofibrillary tangles, are
considered a hallmark of AD-related neurodegeneration. It is therefore understandable that
herculean efforts have been made in past decades to uncover their etiological contributions and
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evaluate whether interventions targeting plaque accumulations
ameliorate patient outcomes. While numerous animal studies
have demonstrated significant dose-dependent attenuation of Aβ

accumulation when such therapies were administered to a variety
of transgenic disease models (Wiessner et al., 2011; Eketjäll et al.,
2016), these results were rarely—if ever—recapitulated in clinical
trials (Holmes et al., 2008; Salloway et al., 2011; Egan et al., 2018).

Interest in tau-targeting therapies has drastically increased
in recent years, in part due to the overall failure of Aβ-
directed treatment paradigms. Under neurotypical conditions,
tau proteins surround neuronal microtubules in an organized
lattice, affording structural integrity and facilitating inter-
neuronal nutrient transport (Vershinin et al., 2007). In AD,
however, through a series of complex immunological and
neurophysiological events that transpire well before the onset
of cognitive impairment (Braak et al., 2006), tau proteins
undergo a series of post-translational modifications—including
and chiefly hyperphosphorylation. These not only disrupt their
standard microstructure but also promote aggregation into
fragments which both directly and indirectly incite neuronal
necrosis (Gong and Iqbal, 2008). While tauopathies present
as a heterogenous mixture of paired helical filaments, straight
filaments, twisted ribbons and oligomeric aggregates in the AD
brain, oligomeric tau has recently emerged as the current research
focus, owing to its strong cytotoxic effect in preclinical models
and its prominence in early stages of AD and mild cognitive
impairment (MCI) (Mufson et al., 2014; Guerrero-Muñoz et al.,
2015). Unfortunately, as with Aβ-targeting therapeutics, a
variety of promising drugs and immune therapies designed to
target tau protein modification, prevent tau aggregation, or
promote phagocytosis of cytosolic tau have either produced
modest or negligible clinical benefits, resulted in adverse effects,
or demonstrated suboptimal long-term pharmacokinetics. The
results of these recent clinical studies, representing a broad gamut
of tau-targeting therapies, have been comprehensively reviewed
elsewhere (Congdon and Sigurdsson, 2018).

Of unclear significance to the neurodegenerative cascade in
the AD brain is the generation, activation, and proliferation
of disease-associated microglia (DAMs). Despite the intrinsic
phenotypic heterogeneity of microglia, DAMs are functionally
and pathologically distinct from their neurotypical counterparts:
they express significantly lower levels of genes related to
microglial homeostasis (including a host of purinergic receptors)
and express far greater levels of genes associated with AD
risk, including Apolipoprotein E (APOE), Lipoprotein lipase
(LPL), and Triggering Receptor on Myeloid Cells 2 (TREM2)
(Keren-Shaul et al., 2017; Ofengeim et al., 2017). Likely due
to sustained neuroinflammation, microglia proximal to sites of
neuronal necrosis or pathological protein aggregation transition
to a semi-activated state, demonstrating abrogated expression
of homeostatic regulatory genes and robustly upregulated
chemotactic cytokine activity. A TREM2-mediated secondary
activation event then occurs, wherein microglia are rendered
incapable of phagocytizing AD substrates, develop a “frustrated”
phenotype, and subsequently contribute to the secretion of
neuroinflammatory factors (Michaud and Rivest, 2015; Kabba
et al., 2018). It is yet uncertain whether the net effects of

DAMs in the early- and late-stage AD brain are beneficial yet
insufficient, or altogether detrimental. While microglia-mediated
neuroinflammation has garnered tremendous interest in recent
years, no specific microglia-targeting therapy has reached clinical
trials at the time of this review.

The dysregulation of microglial behavior in late stage
AD has recently been credited to a series of missense
mutations in TREM2-encoding genes at various loci. TREM2
is a transmembrane glycoprotein commonly expressed on
granulocytes and monocytes. Its primary function is the
modulation of leukocytic function; specifically, immunocyte
activation following antigen recognition (Martin and Delarasse,
2018). A mutation at exon 2 of TREM2—which encodes a
substitution of histidine for arginine at index 47 (R47H)—has
been shown to result in abrogated TREM2 signaling potential.
This loss of function prevents effective microglial phagocytosis
of AD substrates and is believed to be one of the main sources of
pathogenic effects in the AD brain (Doens and Fernández, 2014).
Microglia-mediated neuronal degradation could be attributed
to the aggressive encircling of synaptic clefts when microglia
carrying the mutated variant interact with AD substrates—an
effect further intensified by the microglial spread of insoluble
tau. Indeed, TREM2 missense has been implicated in the
spread of tau aggregates via cyclical failed phagocytosis and
subsequent exocytosis, irrespective of synaptic transmission
(Colonna and Holtzmann, 2017). Clinical deficits associated with
the R47H mutation are apparent: patients carrying the missense
variant exhibited lower-than-average performance on a series
of cognitive assessments, particularly those involving a series
of temporal memory tasks (Jonsson et al., 2013). The observed
decline implicates TREM2 missense in the early cognitive
deterioration that results in AD and is in line with the prevailing
hypothesis that the disease manifests in accelerated mental aging.
Nonetheless, despite the abundance of correlative genome-wide
and preclinical studies involving this key microglial receptor,
the specific mechanisms by which TREM2 missense propagates
in a neuro-degenerative pathology are poorly understood and
methodologies for targeted therapeutic intervention have yet to
be realized. Moreover, while TREM2 research has undoubtedly
offered new insight into the underlying pathological processes
of AD, its mutation, along with mutations in Presenilin 1 (PS1),
Presenilin 2 (PS2), and Amyloid precursor protein (APP) account
for <5% of all AD cases (National Institute of Aging, 2011).

Chronic Peripheral Inflammation—A Novel
Paradigm for Therapeutic Intervention
The limited clinical success of the above treatment paradigms
illustrates the need to investigate alternative features implicated
in AD pathogenesis and exacerbation. Considerable evidence has
recently emerged that chronic systemic inflammation originating
in the periphery is associated with the neurodegenerative
cascade in AD. Multiple systematic meta-analyses indicate
elevated peripheral whole blood concentrations of inflammatory
cytokines tumor necrosis factor alpha (TNF-α), interleukin 6
(IL-6), IL-1β , transforming growth factor beta (TGF-β), IL-
12, and IL-18 in AD patients relative to age-matched healthy
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controls (Swardfager et al., 2010; King et al., 2018; Walker
et al., 2019a). Increases in C-X-C motif chemokine 10 (CXCL10),
a chemokine that binds to C-X-C receptor 3 (CXCR3) and
subsequently primes T-cell proliferation and natural killer cell
maintenance, and vascular cell adhesion protein 1 (VCAM-1),
a molecule involved in microvasculature permeability, have also
been observed (Lai et al., 2017). Importantly, several studies
have indicated that AD patients begin presenting aberrant pro-
inflammatory cytokine profiles at early disease stages—levels
which drop precipitously with disease progression (Engelhart
et al., 2004; Kuo et al., 2005). Recent investigations have
reiterated these findings in whole peripheral blood and plasma
samples: in a heterogenous population of patients with Lewy-
body dementia (LBD), advanced AD, and MCI, significantly
higher levels of IL-1β , IL-4, and IL-2 were observed in MCI
patients relative to healthy controls. The severity of cognitive
decline—evaluated through performance assessments including
the Mini Mental State Examination (MMSE) and Addenbrooke’s
Cognitive Examination Revised (ACE-R)—was found to be
inversely proportional to serum levels of inflammatory markers
(King et al., 2018). Longitudinal clinical studies further implicate
early chronic peripheral inflammation in the preponderance
of neurodegenerative disease: individuals with higher levels of
pro-inflammatory cytokines in midlife are at a significantly
higher risk for cognitive decline as they age (Walker et al.,
2019b)—those who maintained aberrant levels for multiple
decades were found to be especially prone to debilitating
neurodegeneration via reduced brain volume and abnormal
white matter microstructural integrity (Walker et al., 2017, 2018).
Altogether, these data posit a putatively temporal relationship
between chronic, systemic immune activation and cognitive
deterioration and suggest that inflammation—which may occur
decades before the onset of AD symptoms—exacerbates or
directly mediates neurodegeneration.

Integral to our current understanding of the elaborate
interplay between CNS immune activity and that of the
periphery is the discovery that inflammatory cytokines are
capable of traversing the blood-brain barrier (BBB) (Gutierrez
et al., 1993; Banks et al., 1995). Where it was once believed
that the tight junctions formed by capillary endothelial lining,
astrocyte sheaths, and pericytes embedded in the capillary
basement membrane conferred nearly complete immune
privilege (Pollack and Lund, 1990), numerous studies indicate
that circulating cytokines can induce signaling in the CNS
through multiple mechanisms: (1) traversal of circumventricular
organs (Buller, 2001; Roth et al., 2004), (2) vagus nerve
stimulation (Borovikova et al., 2000; Das, 2007), and (3) direct
cytokine-endothelial interactions, which result in tight junction
opening and subsequent cytokine diffusion (Walker et al.,
2019a). Indeed, systemic inflammation—whether caused by
infection, chronic illness, or sepsis—has been identified as the
primary catalyst of BBB permeability (Le Page et al., 2018),
is shown to simultaneously upregulate proinflammatory
(chiefly TNF-α, IL-1β , and IL-6) and downregulate
immunosuppressive (IL-1ra, IL-4, IL-10, TGF-β) markers
in whole blood, serum, and plasma samples (Su et al., 2019),
and activates resident microglia, which in turn locally release

proinflammatory cytokines that interfere with hippocampal
neurogenesis (Chesnokova et al., 2016).

The World Health Organization collectively classifies chronic
inflammatory diseases as the greatest threat to human health.
As of 2017, 92.1 million Americans either have doctor-
diagnosed arthritis or frequently report symptoms consistent
with an arthritis diagnosis—a metric predicted to increase
49% by 2040. Moreover, previous estimates, which largely
rely on doctor diagnoses, drastically undervalue the prevalence
of inflammatory arthritis in younger population segments:
indeed, a recent study found that 1 in 3 people aged 18–64
suffer from arthritis (Jafarzadeh and Felson, 2018). The animal
studies and clinical investigations reviewed herein demonstrate
that conditions like rheumatoid arthritis, osteoarthritis, and
osteoporosis significantly increase the risk of and putatively
accelerate cognitive decline in AD-related neurodegeneration.
Given their ubiquity, it is imperative to consider whether
effective treatment of these peripheral disorders before AD
onset can forestall or mitigate AD-related neurodegeneration and
subsequent cognitive decline. Therefore, while the pathogenic
mechanisms of immune dysfunction for these conditions remain
elusive, a thorough review covering the pathophysiology of
these disorders, identifying current treatment paradigms, and
discussing evidence of comorbid associations may provide new
insight into how systemic inflammation may contribute to and
mediate cognitive decline.

INFLAMMATORY AD COMORBIDITIES

Rheumatoid Arthritis (RA)
Pathophysiology
RA is a heterogenous chronic inflammatory disease that develops
as a consequence of complex interactions between the innate
and adaptive immune systems and is characterized by synovial
hyperplasia leading to painful joint swelling and functional
impairment (Catrina et al., 2017; Ghoryani et al., 2019).
Increasing evidence attributes excessive neutrophil extracellular
trap (NET) formation to the stimulation and maintenance of
autoimmunity and inflammation in RA (Angelotti et al., 2017).
Upon initiation of the typical inflammatory cascade, neutrophils
aggregate, sequester, and stimulate degradation of invading
pathogens including bacteria, viruses, and somemicroorganisms.
During a process called “NETosis,” which is thought to be elicited
at least partly via local IL-8 secretion (Yipp and Kubes, 2013),
neutrophils undergo “beneficial controlled suicide,” releasing
a milieu of intracellular components—nucleotides, proteins,
histones, and elastases—that facilitate the formation of web-like
structures that bind pathogens, rendering them inert (Takei et al.,
1996). In both early and late-stage RA, neutrophils demonstrate a
marked proclivity toward spontaneous NET formation (Corsiero
et al., 2016; Berthelot et al., 2017). Additionally, neutrophils
isolated from RA patients have been shown to favor NET
formation in vitro following antigenic and inflammatory cytokine
stimulation compared to those isolated from healthy controls
(Angelotti et al., 2017). Recent investigations have established
that, in RA, NETs promote pathogenic interferon gamma
(IFN-γ )-producing T helper subtype 1 (Th1) cell immune
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responses by increasing secretion of dendritic cell costimulatory
molecules cluster of differentiation 80 (CD80) and CD86,
as well as pro-inflammatory cytokine IL-6 (Papadaki et al.,
2016). Another pathological mechanism that has recently gained
traction is cyclical NETosis-mediated autoantibody production.
RA neutrophils strongly express protein-arginine deiminase 4
(PAD4), an enzyme that catalyzes the conversion of specific
arginine residues to citrulline, and as a result manufacture
citrullinated forms of fibrinogen and histones H2A and H2B
(Berthelot et al., 2017). These proteins, in turn, are recognized by
antibodies to citrullinated protein antigens (ACPAs) which incite
an autoimmune response that prompts inflammatory cytokine
secretion, further neutrophil infiltration, and NET formation
(Yipp and Kubes, 2013). Thus, NET-produced citrullinated
proteins fuel the ACPA autoimmune response within the RA
synovium, producing a positive-feedback loop that stimulates
exponential immune activity.

Substantial research has implicated aberrant pro-
inflammatory macrophage activity in the pathogenesis and
maintenance of synovitis in RA. TNF-α is heavily upregulated
in the synovial fluid (SF) of RA patients (Chu et al., 1991),
is known to directly impair endothelial function by inciting
production of nuclear factor κB (NF-κB) and reactive oxygen
species (ROS) (Di Minno et al., 2015), and plays a pivotal role in
disease pathogenesis (Ursini et al., 2017). Immunohistological
assessments of excised synovial tissues reveal that macrophages
are the principal TNF-producing cells in the inflamed RA joint
(Udalova et al., 2016). Localized abundance of TNF-α and
macrophage secretion of IL-8 and monocyte chemoattractant
protein 1 (MCP-1) results in the recruitment of peripheral
monocytes and neutrophils and activation of synovial fibroblasts,
which perpetuate the inflammatory response via addition of
IL-1β (Hamilton et al., 1993; Shigeyama et al., 2000). Activated
synovial fibroblasts, in turn, produce receptor activator of nuclear
factor κB ligand (RANKL) and macrophage colony stimulating
factor (M-CSF) which elicit osteoclast proliferation and enforce
pro-inflammatory macrophage polarization, respectively (Braun
and Zwerina, 2011). The pathological macrophage secretome
is likewise implicated in the dysregulation of adaptive immune
processes: IL-23 stimulates the activation and proliferation of
Th17 cells, putative regulators of autoimmunity in RA (Miossec
and Kolls, 2012). Sustained macrophage IL-12 expression has
been shown to upregulate Th1 activity (Aarvak et al., 1999).
Indeed, the maintenance of the pro-inflammatory environment
in RA appears to be due, at least in part, to the disruption
of Th(1,17)/Treg balance (Wang W. et al., 2012), but further
investigation is required to delineate the source(s) of this
phenotypic shift. Figure 1 summarizes these mechanisms.

Advancements in Current Treatments
The central role of TNF-α in synovial hyperplasia is emphasized
by the clinical benefits conferred by anti-TNF drugs. While the
therapeutic efficacy of conventional synthetic and biologic
disease-modifying antirheumatic drugs (DMARDs) are
thoroughly discussed elsewhere (Aletaha and Smolen, 2018), of
particular note are antibody-based TNF antagonists Etanercept,
Golimumab, and Certolizumab pegol. In a randomized,

controlled clinical trial involving 234 patients with active
RA, twice-weekly subcutaneous injections of Etanercept
significantly reduced disease activity in a dose-dependent fashion
(Moreland et al., 1999). In patients that had discontinued use
of conventional TNF-α inhibitors due to lack of effectiveness,
Golimumab significantly improved multiple patient outcomes,
including swollen joint count, tender joint count, and patient
assessments of pain, throughout the entire 24-week trial period
(Smolen et al., 2009). Its increased effectiveness is attributed to its
entirely human architecture and ability to bind both soluble and
transmembrane TNF (Radner and Aletaha, 2015). Comparable
therapeutic efficacy was observed in DMARD inadequate
responders with Certolizumab pegol which, significantly,
required half the administration frequency relative to standard
DMARDs (Fleischmann et al., 2009).

Recent preclinical studies have explored more targeted
approaches for correcting deviant mechanisms within the
innate and adaptive immune systems in RA. As mentioned
above, M-CSF is heavily upregulated in the SF of RA
patients. Binding of the cytokine to its cognate receptor
CSF1R is required for osteoclastogenesis and TNF-α induced
osteolysis. Prophylactic administration of muAB5, a CSF1R
antagonist, significantly reduced production of IL-6, CXCXL8,
C-C motif chemokine ligand 2 (CCL2), CCL7, and matrix
metalloproteinase 9 (MMP-9) in a collagen-induced arthritis
(CIA) mouse model of RA (Garcia et al., 2016). Yin yang 1
(YY1) is a transcription factor that regulates multiple complex
biological functions, has recently gained attention as a mediator
of autoimmune disease, and is over-expressed in both RA
patients and CIA mice. Lentiviral YY1 deactivation attenuated
IL-6 production, reduced Th17 activity, and slowed disease
progression in CIA mice (Lin et al., 2017). Jiang et al. targeted
synovial angiogenesis and discovered that subcutaneous IL-
35 administration attenuated arthritis in CIA mice via Th17
suppression, Treg stimulation, and inhibition of VEGF-mediated
angiogenesis (Jiang et al., 2016).

Relation to AD
Numerous preclinical, systematic, andmeta-analysis studies have
implicated RA in the pathogenesis of LOAD. Raised whole
blood and serum levels of several pro-inflammatory cytokines
and adaptive immune players (chiefly TNF-α, IL-1β , IL-6,
IFN-γ , Th1, and Th17) have been extensively studied for their
involvement in the pathogenesis of both RA and AD (Ravaglia
et al., 2007; Aletaha et al., 2008; Trollor et al., 2012; Pope
and Shahrara, 2013; Schoels et al., 2013; Chi et al., 2017). A
recent study found that inducing arthritis in APP/PS1 mice—
the canonical murine model of AD—led to glial activation and
exacerbation of amyloid pathology (Kyrkanides et al., 2011).
Perhaps more compellingly, a nationwide cohort study found
that the incidence of AD and other dementia-related illnesses
is higher in RA patients than that of the general population
(Lin et al., 2018). An independent nested case-control study
of more than 8.5 million adults validated this disparity and
found that it was maintained in both the young (average age
42.1 years) and the elderly (aged 65+) (Chou et al., 2016).
In fact, the presence of any inflammatory joint disorder (OR:

Frontiers in Aging Neuroscience | www.frontiersin.org 4 December 2020 | Volume 12 | Article 583884

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Culibrk and Hahn Chronic Bone and Joint Disorders and AD

FIGURE 1 | Model for the generation and maintenance of chronic inflammation in RA. Pathological neutrophils manufacture citrullinated forms of fibrinogen and

histones H2A and H2B which are recognized by proximal APCAs, prompting activation of the complement cascade and secretion of chemoattractant and

pro-inflammatory cytokines CXCL1, IL-6, and MCP-1. Local macrophages are “activated” by this milieu, inciting extensive angiogenesis, activation, and proliferation of

T-lymphocytes and synovial fibroblasts and further recruitment of circulating macrophages, monocytes, and neutrophils. Pro-inflammatory Th subsets dominate,

owing largely to the byproducts of NETosis. Elevated RANKL production and osteoclast proliferation have also been observed.

1.96), but especially RA (OR: 2.77) is significantly associated
with AD-related cognitive decline later in life—a correlation
that remains significant when considering AD only and not
general dementia (2.49) (Wallin et al., 2012). Interestingly, Vitturi
et al. reported RA patients demonstrate evidence of cognitive
impairment independent of canonical AD mechanisms earlier
in life: RA patients scored significantly lower in MMSE and
MoCA cognitive performance assessments relative to healthy
controls (p < 0.001). General neuropsychiatric impairment
was also found to be more prevalent in RA patients (59.5%)
than in age-matched controls (17.1%; p < 0.001) (Vitturi
et al., 2019). A recent systematic review recapitulated these
findings and found that RA patients—predominantly women—
exhibit significantly lower scores in attention, concentration,
memory, and verbal function than age-matched controls. Finally,
treatments including DMARD methotrexate (Judge et al., 2017)
and prescription NSAIDs (Zandi and Breitner, 2001; Weaver

and Carter, 2008), which target inflammation remission in
RA patients, have been found to decrease risk of AD-related
dementia particularly when administered early in disease. These
data posit a putative, temporal relationship between chronic
inflammation in RA and the onset and exacerbation of cognitive
impairment in AD. Moreover, they highlight the importance of
implementing treatments before AD symptom onset that target
aging-associated systemic inflammation.

Osteoarthritis (OA)
Pathophysiology
OA is a progressive chronic inflammatory disease identified
via gradual deterioration and loss of articular cartilage with
concomitant structural and functional changes throughout
the joint, including the synovium, meniscus, periarticular
ligaments, and subchondral bone (Buckwalter andMankin, 1998;
Mobasheri and Batt, 2016). While chronic immune activation in
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OA is considered low-grade relative to RA (Robinson et al., 2016),
synovial explants and synovial fluid extracted from OA patients
consistently demonstrate elevated levels of pro-inflammatory
mediators TNF-α, IL-1β , IL-6, IL-8, IL-15, IL-17, IL-18, IL-21,
PGE2, NO, and various complement components implicated in
perpetuating immune activation (Blom et al., 2007; Robinson
et al., 2016; Krishnasamy et al., 2018; Mora et al., 2018; Griffin
and Scanzello, 2019). Unlike RA, the clinical manifestations of
OA (pain, joint range of motion, radiographic pathology) are
heterogenous; nevertheless, canonical features of inflammatory
arthritis, including perivascular fibrosis and lymphoid follicles,
are essentially conserved (Griffin and Scanzello, 2019). Moreover,
like RA, synovial macrophages are considered key mediators of
synovitis, synovial hyperplasia, osteophytosis, and inflammatory
factor secretion (Blom et al., 2007; Bondeson et al., 2010).
The number and concentration of macrophages is significantly
upregulated in synovial tissue of OA patients and is known to
be proportional to the severity of articular cartilage degradation
(Kraus et al., 2016). Recent investigations posit a central role
for macrophages in established destructive pathways: upon
activation by damage-associatedmolecular patterns (DAMPs; the
byproducts of cartilage degeneration) (Roh and Sohn, 2018),
complement membrane attack complexes (MACs) (Ricklin et al.,
2016), and pathological chondrocytes and synovial fibroblasts via
toll-like receptors (TLRs) and CCR2, respectively, macrophages
secrete IL-1, which induces activation and proliferation of
matrix-metalloproteases MMP1, MMP3, and MMP13, as well
as PGE2 (Bondeson et al., 2010; Griffin and Scanzello, 2019),
cardinal mediators of cartilage catabolism. Various in vivo studies
incriminate macrophages further: Blom et al. observed that
macrophage depletion prior to OA induction via intra-articular
administration of clodronate significantly decreased MMP-
mediated cartilage damage in a CIA murine model (Blom et al.,
2007). More recently, it was found that selective inhibition of
macrophage pyroptosis—a novel apoptotic pathway implicated
in OA (Vande Walle and Lamkanfi, 2016)—rescued synovial
fibrosis and reduced inflammatory factor expression (Zhang L.
et al., 2019).

The adaptive immune constituents in the OA synovium share
many of the pathological features exhibited in inflammatory
arthritis. CD3+ T cells dominate synovial infiltrates, and
CD4+/CD8+ cells propagate at levels comparable to those
seen in RA synovial explants (Haseeb and Haqqi, 2013).
Pro-inflammatory Th1T cell subsets dominate their largely
immunosuppressive (Th2) counterparts (Li et al., 2017) and
directly contribute to the upregulation of inflammatory cytokines
IL-2 and IFN-γ found in most OA patients. While no
conclusive data exist identifying putative antigens responsible
for autoantibody production, CD20+ B-lymphocytes are found
in significantly higher concentrations in sclerotic regions of
subchondral bone (Weber et al., 2019a) and recent clonal
analyses indicate OA B-cells undergo antigen driven activation
suggestive of clonal selection (Da et al., 2007; Zhu et al., 2020).

Remarkably, osteoblasts have garnered increased attention
as another key player in OA pathogenesis. Alterations in the
physicochemical environment of subchondral bone may be
linked to the progression of OA, as osteoblast phenotype is

known to be modulated by a variety of stimuli including
intraosseous pressure, fluid shear, mechanical loading, and local
oxygen saturation (Hillsley and Frangos, 1994; Dodd et al., 1999;
Warren et al., 2001). Indeed, preclinical studies in guinea pig
models of OA have demonstrated that venous outlet syndrome
and decreased perfusion directly precede and radiographically
coincide with bone resorption and cartilage degeneration (Imhof
et al., 1997; Watt, 2009). Additionally, Tanaka et al. observed
that osteoblasts respond to changes in strain-induced fluid flow
by synthesizing cytokines involved in the extracellular matrix
(ECM) changes observed in OA including transcription factors
c-Fos and Egr1, intracellular inflammatory mediators COX2,
PGE2, and NO, and catabolic enzymes MMP1, MMP3, and
MMP13 (Tanaka et al., 2005). Likely as a result of interactions
with DAMPs and sustained exposure to the pro-inflammatory
microenvironment observed in OA, osteoblasts undergo a
discernable, pathological phenotypic shift that accelerates disease
progression by interacting with key regulators of cartilage
homeostasis: synovial chondrocytes. Conditioned media taken
from OA-derived osteoblasts has been shown to enhance GAG
release from normal cartilage (Westacott et al., 1997). Further,
co-cultures of OA-derived osteoblasts and chondrocytes result in
reduced expression of COL2A1, aggrecan, PTHrP/PTH-R, and
SOX9 (Sanchez et al., 2005b), increased expression of OSF-1,
MMP3, and MMP13 (Sanchez et al., 2005a), and induction of
chondrocyte hypertrophy and matrix calcification via p38 and
ERK-1/2 suppression (Aaron et al., 2017). See Figure 2 for an
overview of the pertinent pathological mechanisms.

Advancements in Current Treatments
Current clinical therapeutic goals for OA include inflammation
and concomitant pain remission, ameliorating existing damage
to or stimulating regeneration in articular cartilage, maximizing
range of motion, and in general enhancing patient quality
of life. Of the currently available treatments, topically and
orally administered NSAIDs still represent the most prescribed
medications for managing OA-related pain (Mora et al., 2018;
Nakata et al., 2018), though other treatments paradigms have
demonstrated some clinical success. Duloxetine, a serotonin
and norepinephrine reuptake inhibitor originally prescribed for
severe depression disorders, performed better than placebo at
reducing pain and improving function when administered for
at least 10 weeks (Citrome and Weiss-Citrome, 2012; Wang Z.
Y. et al., 2015). Correction of dysfunctional pain pathways is
considered the primarymechanism of action. Corticoids, another
common therapy modality, exert anti-inflammatory effects by
acting directly on nuclear receptors, decreasing production of
IL-1, leukotrienes, prostaglandins (PGs), and MMPs (Levy et al.,
2018). Significantly, >50mg doses of prednisone (an NF-κB
inhibitor) have been shown in multiple clinical trials to confer
more lasting pain relief compared to other corticoid-based
therapies (Bellamy et al., 2006; Law et al., 2015; Buyuk et al.,
2017); however, a recent meta-analysis suggests that longitudinal
corticoid administration may contribute to cartilage loss and
degenerative OA pathology, suggesting that systemic anti-
inflammatories possess limited efficacy in chronic conditions
(Zeng et al., 2019).
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FIGURE 2 | Mechanisms of chronic immune hyperactivity in OA. Clinical features of inflammatory arthritis, including perivascular fibrosis and lymphoid follicles, are

conserved. Upon activation by DAMPs, MACs, chondrocytes and synovial fibroblasts via TLRs and CCR2, respectively, macrophages secrete IL-1β, inducing

proliferation of MMPs 1, 3, and 13, and PGE2 production. Th1 cells dominate and directly contribute to upregulation of inflammatory cytokines IL-2 and IFN-γ. B-cells

undergo clonal selection and are implicated in RANKL production.

Hyaluronic acid (HA)—a glycosaminoglycan that provides
viscous lubrication and shock-absorbing properties in healthy
synovial tissue—is a common intraarticular supplement for
the management of mild to severe OA (Altman et al.,
2016). While some studies purport exogenous HA enhances
endogenous HA and proteoglycan synthesis, promotes articular
cartilage regeneration, and inhibits synovial production of pro-
inflammatory cytokines (Migliore and Procopio, 2015), evidence
for long-term clinical efficacy is conflicting (Richards et al., 2016;
Altman et al., 2018; Pelletier et al., 2018) and the American
Academy of Orthopedic Surgeons no longer recommends IA HA
injection for clinical use (Jevsevar, 2013). Platelet-rich plasma—
whole blood fractions prepared via centrifugation of autologous
blood—may provide a viable alternative. Multiple favorable
patient outcomes were observed in a series of randomized
controlled trials (Cerza et al., 2012; Patel et al., 2013; Vaquerizo
et al., 2013) due largely to its regenerative effect and anti-
inflammatory potential (Shen et al., 2017).

Relation to AD
Systemic chronic inflammation has been implicated in the
initiation and cyclical aggravation of a variety of age-related
disorders including OA and AD (Weber et al., 2019b). Systematic
reviews have identified multiple potential mechanisms through
which the chronic low-grade inflammation inOAmay contribute
to AD-related neurodegeneration: (1) disruption of the BBB and
subsequent influx of peripheral pro-inflammatory cytokines, (2)
active transport of pro-inflammatory cytokines across the BBB,
(3) a chain of activation events including brain endothelial cells,
perivascular cells, and brain parenchymal cells, and (4) aberrant
peripheral nervous system (PNS) activity (e.g., communications
between peritoneal cavity and neuronal populations in the brain
stem) (Banks et al., 2002; Konsman et al., 2002). Various studies
have demonstrated significant overlap between the pathological
cytokine profiles observed in OA and AD: one such work
found that high-mobility group box 1 (HMGB1) and its cognate
receptor for advanced glycation end products (RAGE) are found
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at greatly elevated levels in both OA (Sun et al., 2016) and
AD (Festoff et al., 2016). Multiple animal studies have linked
OA to AD exacerbation and pathogenesis: induction of OA in
APP/PS1mice resulted in accelerated development of Aβ plaques
and greater plaque deposition at later timepoints compared to
OA− controls (Kyrkanides et al., 2011). Moreover, transgenic
mice expressing the human APOE ǫ4 allele—an allele associated
with greater risk of LOAD onset—exhibited significantly greater
synovial thickening and 32% more cartilage damage relative to
APOE ǫ3 mice following 42 days of OA induction (de Munter
et al., 2017). This suggests that patients carrying the pathological
ǫ4 allele may be more susceptible to OA and other peripheral
inflammatory diseases in addition to AD.

The results of epidemiological and longitudinal meta-analyses
paint a similar picture. Age- and gender-adjusted cohorts of
OA patients were found to be at a significantly greater risk
for developing dementia later in life (OR: 1.36, p < 0.0001)
(Weber et al., 2019b). A recent nationwide cohort study in
Taiwan established a similar correlation, finding that OA patients
were 25% more likely to have dementia (Adjusted HR: 1.25,
p < 0.001) (Huang et al., 2015). In a study including 21,982
Appalachian adults aged 40 and older, participants with OA
were found to be 80% more likely to report frequent memory
loss independent of sleep or mood disorders (OR: 1.8, p <

0.001) (Innes and Sambamoorthi, 2018). Interestingly, in an
investigation representing nearly 42.7 million Americans aged
65 or older, patient-reported pain, and the extent to which
pain interfered with activities of daily living, was found to be
significantly and positively correlated with the incidence of AD
and related dementias, both in the presence (OR: 1.37) and
absence (OR: 1.44) of OA (p< 0.005) (Ikram et al., 2019). Further
investigation is required to decouple the contributions of pain to
disease pathology.

Osteoporosis (OP)
Pathophysiology
OP is an age-related bone disorder characterized by reduction
in bone mass and impairment of microarchitecture resulting in
fragility fractures and a preponderance in activity of osteoclasts
over osteoblasts (Pietschmann et al., 2016). Pathological bone
resorption in OP is caused in part by changes in relative
concentrations of RANKL and osteoprotegerin (OPG): RANKL
is a type II transmembrane protein expressed by osteoblasts,
proximal T-lymphocytes, and bone marrow stromal cells.
Binding of RANKL to its cognate receptor RANK induces
terminal differentiation of preosteoclasts and subsequent bone
resorption. OPG, produced by osteoblasts (Hofbauer et al.,
1999) and select B-cells, acts as a competitive inhibitor for
RANKL (Awasthi et al., 2018). Under normal circumstances,
completion of bone resorption initiates bone formation
via recruitment of preosteoblast cells, during which factors
including TGF-β , IGF-1, IGF-2, BMP-2, PDGF, and FGF inform
differentiation of mesenchymal stem cells into osteoblasts
(Clarke, 2008). Alternatively in OP, chronic pathological
levels of pro-inflammatory cytokines and mediators promote
bone resorption via osteoclast differentiation and activation,
enhancement of RANKL expression, and the inhibition
osteoblast survival (Clowes et al., 2005). Indeed, systemic

inflammation is implicated in the dysregulation of multiple
processes related to bone homeostasis: OP pathology propagates
through a complex interplay of endocrine (estrogen; Almeida
et al., 2017; Levin et al., 2018; Wu et al., 2018; Farr et al.,
2019, parathyroid hormone; Camirand et al., 2016; Noordin
and Glowacki, 2016; Williams et al., 2018; Lou et al., 2019,
androgen; Shin et al., 2018; Joseph et al., 2019) immune (T-
lymphocytes, cytokines), small molecule (Vitamin D; Ebeling and
Eisman, 2018; Shill et al., 2019), and canonical signal pathway
(Wnt/β-catenin; Johnson and Recker, 2017; Amjadi-Moheb and
Akhavan-Niaki, 2019) regulators (see Figure 3).

Inflammatory cytokine-mediated bone resorption appears
to occur through a variety of mechanisms. Both T- and B-
lymphocytes have been shown to constitutively overexpress
RANKL in pro-inflammatory conditions (Pietschmann et al.,
2016; Srivastava et al., 2018). The inflammatory milieu produced
by macrophages, dendritic cells, and local fibroblasts (TGF-β ,
IL-6, IL-1β , IL-23) incites proliferation of Th17 cells, which in
turn promote bone resorption via RANKL expression (Dar et al.,
2018c), upregulation of RANKL expression by osteoblasts and
fibroblasts via IL-17 (Raphael et al., 2015), and exacerbation
of the pro-inflammatory polarization of macrophages through
secretion of IL-6, IL-17, TNF-α, and IFN-γ (Komatsu and
Takayanagi, 2012). Activated B-lymphocytes, in addition to
secreting TNF-α (Weitzmann, 2014), generates autoantibodies
implicated in accelerating osteoclastogenesis (Pietschmann et al.,
2016). TNF-α secreted by dendritic cells, macrophages, and
CD4+/CD8+ cells is purported to act both indirectly by
activating stromal cell secretion of RANKL, M-CSF, and IL-
1, and directly by promoting osteoclast differentiation through
activation of TGF-β (Al-Daghri et al., 2017). While data
concerning inflammatory cytokine expression profiles in OP
patients is limited, one study of over 100 post-menopausal
OP patients found elevated pro-inflammatory cytokine levels
(TNF-α, IL-1β , IL-6) were inversely correlated with expression
of markers involved in inflammation remission (IL-4) and
osteogenesis (osteocalcin) (Al-Daghri et al., 2017). STAT3 and
the CXC (L1/R1) axis also merit further investigation: in an
RA-induced murine population, STAT3 activation driven by
pro-inflammatory cytokine expression led to increased RANKL-
mediated bone loss, and STAT3 inhibition via cycloheximide
significantly reduced expression of IL-6 family cytokines and
RANKL (Mori et al., 2011). In a study comparing pre-
and post-menopausal healthy controls to post-menopausal OP
patients, CXCL1 concentrations were inversely correlated to
bone mineral density and were directly proportional to bone
turnover (TRACP-5b, NTx) and inflammatory (IL-1β , IL-6)
markers (Chen et al., 2016), suggesting CXCL1 may be correlated
to degree of OP development. Viral-mediated suppression of
CXCR1 transcription resulted in a distinct reduction in RANKL-
induced osteoclastogenesis (Wojdasiewicz et al., 2019).

Advancement in Current Treatments
Antiresorptive drugs are the most common therapy for
osteoporotic patients and include selective estrogen response
modulators (SERMs), bisphosphonates, and antibody-based
RANKL inhibitors (Chapurlat and Genant, 2015). Estrogen
is known to mediate bone turnover by directing calcium
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FIGURE 3 | Aberrant immune mechanisms in OP. Chronic pathological levels of pro-inflammatory cytokines and mediators promote bone resorption via osteoclast

differentiation and activation, enhancement of RANKL expression, and the inhibition of osteoblast survival. The inflammatory milieu produced by macrophages,

dendritic cells, and local fibroblasts incites proliferation of Th17 cells, which in turn express RANKL, promote upregulation of RANKL expression by osteoblasts and

fibroblasts, and exacerbate the M1 polarization of macrophages. Multiple players contribute to osteoclastogenesis—both indirectly, as through activated stromal cell

secretion of RANKL, and directly as by promoting osteoclast differentiation through activation of TGF-β. The STAT3 and CXCL1/R1 axes, while clearly of clinical

significance, remain obfuscated and merit further investigation.

and Vitamin D homeostasis and conditionally promoting
upregulation of cytokines that either incite or inhibit bone
resorption (Lizneva et al., 2018). That OP is overwhelmingly
presented by post-menopausal women (four times more
common in women over 50 than similarly aged men) further
solidifies the preponderance of estrogen in disease pathology.
Thus, until recently, exogenous estrogen administration was
a popular antiresorptive therapy: several controlled trials have
demonstrated its ability to prevent bone mineral density (BMD)
loss and reduce the risk of hip fractures by ∼30% (Chapurlat
and Genant, 2015). Unfortunately, bone loss resumes at post-
menopausal levels following cessation of therapy (Greendale
et al., 2002) and prolonged treatment is linked to aberrant blood
coagulant activity and significant breast cancer risk (Rossouw
et al., 2009; Gennari et al., 2016).

The therapeutic mechanisms and longitudinal efficacies
of SERMs, bisphosphonates, and RANKL inhibitors have

been extensively reviewed elsewhere (Gennari et al., 2016).
Moreover, the limited clinical potency and risk factors associated
with existing treatments underscores the need to target
alternative pathways contributing to disease pathology. Recent
investigations have identified multiple treatments that remediate
bone loss through modulating immune activity. B cell depletion
via rituximab reduced synovial RANKL, expression of RANK+

osteoblasts, and sera levels of bone turnover markers in patients
with inflammatory OP (Wheater et al., 2011; Boumans et al.,
2012). In ovariectomized and post-menopausal murine models
of OP, administration of D-mannose (Liu et al., 2020), Bacillus
calusii (Dar et al., 2018a), and Lactobacillus acidophilus (Dar
et al., 2018b) attenuated bone loss, reduced expression of
pro-inflammatory cytokines IL-6, IL-17, TNF-α, and IFN-γ ,
and increased expression of anti-osteoclastogenic factor IL-
10 by stimulating the proliferation of Treg cells, restoring
Treg/Th17 balance. Antibody-based TNF-α inhibition in a rat
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model of OP elevated bone density, simultaneously increased
and decreased OPG and RANKL expression, respectively, and
enhanced osteogenic differentiation of endogenous stromal cells
(Yu et al., 2019). Collectively, these and other studies purport
inflammation as a viable target for therapeutic intervention
in OP.

Relation to AD
While AD and OP initially appear pathologically and
immunologically distinct, the results of numerous studies
suggest a bidirectional and mutually antagonistic interplay
between the two age-related disorders. Patients with AD exhibit,
on average, significantly reduced hip BMD and retain a nearly
2-fold risk of hip fracture relative to healthy age-matched
controls (Chen and Lo, 2017). Elevated TNF-α levels observed in
AD patients, even before the onset of cognitive impairment, are
known to induce osteoclastogenesis, inhibit bone formation by
suppressing Wnt signaling, and accelerate cartilage destruction
via production of MMPs and disintegrin and metalloproteinase
with thrombospondin motifs (ADAMTSs) (Osta et al., 2014).
Bone turnover proteins osteocalcin (OCN), osteopontin (OPN),
and sclerostin have been shown to exert potent neurological
effects in vivo (Yuan et al., 2019a): OCN can traverse the BBB,
enhance synthesis of serotonin, dopamine, and noradrenaline,
inhibit GABA secretion, and bind to neurons in the brainstem,
midbrain, and hippocampus (Oury et al., 2013). In a recent
study, intravenous (IV) injection of plasma derived from
OCN+/+ 3 month-old mice rescued cognitive function of 16
month-old WT mice, but this therapeutic effect could not
be replicated with OCN−/− mice, suggesting OCN may play
a role in mitigating age-related cognitive deficits (Khrimian
et al., 2017). OPN is found in higher levels in the plasma of
AD patients (Comi et al., 2010; Carecchio and Comi, 2011), is
known to enhance bone resorption (Luukkonen et al., 2019),
and reduces Aβ burden in murine models of AD (Rentsendorj
et al., 2018). Moreover, pathological variants of Aβ propagate in
osteoporotic bone (Xia et al., 2013) and BMD has been shown to
be inversely correlated with Aβ and APP expression in vertebral
trabecular bone specimens (r = −0.617 and −0.531 for Aβ42

and APP, respectively) (Li et al., 2014). In vitro, Aβ42 enhances
RANKL-induced bone resorption by silencing inhibitor of
nuclear factor kappa B (IκB), subsequently enhancing NF-κB
activity (Li et al., 2016). Finally, in AD, microglia-like cells
originating from bone marrow traverse the BBB and migrate
into the brain in a chemokine-dependent manner (El Khoury
and Luster, 2008), giving further credence to the hypothesis that
peripheral inflammation can directly contribute to pathological
microgliosis and subsequent neuronal degradation.

ADDITIONAL MECHANISMS UNDERLYING
SYSTEMIC PATHOLOGY

While no single theory exists concerning the underlying
mechanisms of these systemic disorders, cellular senescence,
dysregulation in peripheral nervous system activity, and a
disruption in autophagic homeostasis are considered hallmark

artifacts of arguably the most significant risk factor for all
the conditions discussed above: aging. Cellular and immuno-
senescence are highly conserved features in age-related
inflammatory bone and joint disorders, as well as in CNS
diseases including LOAD (Rodier and Campisi, 2011; Muñoz-
Espín and Serrano, 2014). Cell cycle suppression genes are heavily
upregulated with age and are implicated in the generation and
maintenance of chronic systemic inflammation and exacerbation
of disease pathology (Lebrasseur et al., 2015). Aberrant
peripheral nervous system activity provides a physiological
basis for the intimate, bidirectional relationship between bone
and joint disorders and dysregulated neurological homeostasis.
Not only are autonomic structures among the first impacted
in neurodegenerative illness, but select neuropeptides highly
expressed in bone are known to drive a host of osteo-homeostatic
processes including bone reformation, hematopoietic progenitor
cell (HPSC) niche maintenance, and innate and adaptive
immune activity (Asada et al., 2013). Finally, global reduction
in autophagy has been reported to exacerbate age-associated
inflammation and accelerate the progression of degenerative
diseases (Cuervo and Dice, 2000). Conversely, the maintenance
of proper autophagic activity has been credited with heightened
longevity and resistance to a host of age-related conditions
(Arensman and Eng, 2018). Therefore, while complex disorders
like AD result from a wide range of multifactorial mechanisms, a
comprehensive understanding of these age-related phenomena is
crucial to the development of effective interventional therapies.

Age-Related Cellular/Immuno-Senescence
Tissues affected in a variety of age-related diseases exhibit
a preponderance of senescent cells characterized by cell
cycle arrest, apoptosis resistance, and chronic secretion of
preferentially pro-inflammatory molecules (Rodier and Campisi,
2011; Muñoz-Espín and Serrano, 2014). In conventional aging,
cells assume a senescence-associated secretory phenotype (SASP)
which is believed to contribute to age-related tissue inflammation
(Lebrasseur et al., 2015). While SASPs surface from a variety of
factors, including cell type, mechanism of senescence induction,
and hormonal milieu (Wiley et al., 2016), inflammatory
cytokines, including IL-6 and IL-8, are highly conserved in SASPs
and are believed to play a crucial role in maintaining SASP
signaling and senescence (Acosta et al., 2008; Coppé et al., 2008;
Lasry and Ben-Neriah, 2015).

In AD, aggregating Aβ1−42 peptides have been shown to
directly trigger expression of senescence-associated marker
β-galactosidase in oligodendrocyte precursor cells (OPCs)
(Osso and Chan, 2019), indicating that senescent OPCs
commonly observed in AD brains may be generated through
direct stress from Aβ aggregates rather than, or in addition
to, canonical replicative senescence mechanisms. Indeed, in
5XFAD murine models of AD, the expression of cell cycle
suppression genes p53, p16, and p21 were all upregulated
in hippocampal homogenates. P16 demonstrated the most
significant discrepancy, increasing over 5-fold following the
onset of pathology—a result consistent for both genomic
and proteomic characterizations. Importantly, p16 expression
was inversely correlated with cognitive performance and
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immunofluorescent staining revealed predominantly neuronal
localization of the gene. These results were recapitulated in
vitro: the administration of 10 µM oligomeric Aβ significantly
upregulated p16 (but not p53) in neuron monoculture (Wei
et al., 2016). A similar senescent phenotype was discovered
in aged APP/PS11E9 mice and both short- and long-term
administration of quercitin, a senolytic drug providing targeted
ablation of senescent cells, conferred multiple benefits. Short-
term treatment eliminated senescent OPCs, ramified pathological
microglia proximal to plaques, and reduced IL-6 levels. Long-
term therapeutic intervention before the onset of plaque
pathology reduced overall hippocampal plaque burden later in
disease and attenuated overall inflammatory cytokine secretion
(Zhang P. et al., 2019).

P16 and p21 are also known to be heavily upregulated in
OP bone (Farr et al., 2019). In highly enriched cell populations
derived from murine bone and bone marrow with no in vitro
culture, expression of p16 was greater in B- and T-lymphocytes,
myeloid cells, osteoblast progenitors, osteoblasts, and osteocytes
in 24month-oldmice relative to 6month-oldmice. Conventional
aging was attributed to an over 500% increase in senescent
osteocytes (Khosla et al., 2018). Indeed, as they age, bone marrow
derived MSCs are known to not only lose their functional
and regenerative capabilities, but also develop an increased
propensity toward replicative senescence, contributing to chronic
systemic inflammation and exacerbation of disease pathology
(Qadir et al., 2020). Targeting senescent cells using genetic (Baker
et al., 2011), senolytic (Yi et al., 2016), or inflammatory SASP-
inhibiting compounds (Xu et al., 2015) for 2–4 months markedly
improved bone mass and microarchitecture in trabecular and
cortical bone.

Aberrant Peripheral Nervous System (PNS)
Activity
Autonomic dysfunction—postulated to surface due to deficits
in cholinergic function—is common in patients with dementia
(Allan et al., 2007; Femminella et al., 2014). In an observational
study, MCI patients were found to be ∼5.6 times more likely
to demonstrate parasympathetic dysfunction than age-matched
healthy controls (Collins et al., 2012). Central autonomic
structures, including the hypothalamus, amygdala insula, and
locus coeruleus are among the first neural structures afflicted in
neurodegenerative illnesses like AD (Ahmed et al., 2015). These
alterations culminate in markedly changed neuropeptide levels in
the brains and cerebrospinal fluid (CSF) of AD patients—among
them, reduced cortical calcitonin gene-related peptide (GCRP)
(Choi et al., 2014) and vasoactive intestinal peptide (VIP) (Zhou
et al., 1995; Sterniczuk et al., 2010), diminished CSF Substance P
(SP) (Friedberg et al., 1991; Quigley and Kowall, 1991; Waters
and Davis, 1997), and elevated norepinephrine (NE) (Gannon
and Wang, 2019), tyrosine hydroxylase (TH) (Szot et al., 2006,
2007), dopamine β hydroxylase (DBH) (Giubilei et al., 2004), and
neuropeptide Y (NPY) (Allen et al., 1984).

Importantly, these and other neuronal products are
expressed in bone and have been shown to exert multiple
immunomodulatory and osteo-homeostatic pathological

deviations in the periphery (Asmus et al., 2000). CGRP
increases proliferation and reduces apoptosis of osteoblast
progenitors, enhances osteogenic gene expression, and
stimulates osteoblast activity via cAMP and Wnt/β-catenin
signaling (Mrak et al., 2010). A decrease in VIP levels induces
a concomitant increase (>50%) in osteoclast-covered surface
in rat mandible and calvariae (Elefteriou, 2005). SP inhibition
exacerbates bone loss via decreased MSC recruitment, as
evidenced by increased osteoblast activity and decreased
OPG/RANKL ratio in ovariectomized murine models of OP
(Elefteriou, 2005). Adrenergic (NE) signaling directly stimulates
osteoclast differentiation through upregulation of RANKL by
binding β2AR, a β-adrenergic receptor highly expressed in
osteoblasts (Brazill et al., 2019). Inhibiting DBH signaling lowers
sympathetic tone, induces osteoblast proliferation, and increases
mean BMD in murine bones (Elefteriou, 2005). Deletion of NPY
and its major receptor, Y2, in selective knockout mice stimulates
osteoblast activity and increases both cortical and trabecular
bone formation (Baldock et al., 2002).

Given the above, that the hypothalamus enjoys a central
role in regulating bone homeostasis comes as no surprise.
Neural-osteo interplay appears to occur through two distinct
channels: (1) well-defined hormonal signals generated in the
hypothalamus and subsequently processed in the pituitary; (2)
efferent neuronal discharges originating from the hypothalamus
and processed through the brainstem (Driessler and Baldock,
2010). Chronic stimulation of sympathetic outflow is known
to have detrimental effects on bone: indeed, sustained β2AR
signaling on osteoblasts and osteocytes disrupts their capacity
to maintain the endosteal HPSC niche. Various immune players
have been implicated in regulating local neuropeptide secretion
(Serre et al., 1999) and, under certain conditions, uptake
(Pirzgalska et al., 2017), but further investigation is required
to determine whether these mechanisms can be exploited for
designing therapeutic interventions.

Dysregulated Autophagic Homeostasis
Autophagic lysosome deficits occur early in AD onset and
are hypothesized to be significant contributors to disease
pathology (Zare-shahabadi et al., 2015). As early as 1967,
abnormal aggregations of subcellular vesicles—subsequently
identified as immature autophagic vacuoles—were reported to
accumulate in dystrophic neurites in the AD brain (Suzuki
and Terry, 1967). Aberrant lysosomal activity in AD resembles
that induced by knocking out specific cathepsins or by
administering lysosomal protease inhibitors. Prevailing theory
suggests that failed protein and organelle catabolism by
dystrophic autophagosomes induces a compensatory mechanism
whereby autophagy is upregulated via ROS-dependent activation
of type III PI3 kinase. Unfortunately, because downstream
degradative pathways (chiefly lysosomal acidification) are
already dysregulated, this only accelerates disease pathology.
Promoting cathepsin activity via deletion of cystatin B (a
cathepsin inhibitor) rescues autophagic-lysosomal pathology,
reduces pathological Aβ accumulations, ubiquitinates proteins
within autophagosomes, and reduces intraneural Aβ peptide
(Yang et al., 2011). The pathological associations between
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dysregulated autophagic processes and neurodegeneration in
AD are emphasized by the similar clinical features observed
in certain lysosomal storage disorders: neurofibrillary tangles
are seen in human Niemann Pick Type C disease and
mucopolysaccharidosis type IIB (Ryazantsev et al., 2007).
Further, evidence suggests that APOE-ǫ4, considered a risk factor
toward the onset of sporadic AD, may work in concert with
Aβ peptides to incite lysosomal membrane disruption, release of
lysosomal enzymes, and subsequent neuronal degradation.While
counterintuitive, global inhibition of autophagy, when deviant
as in neurodegenerative disease, may be beneficial (Tung et al.,
2012).

While the role of autophagy in the pathogenesis of age-
related chronic inflammatory diseases like OP and OA requires
elucidation, autophagic processes are intimately ingrained in
the maintenance of bone and cartilage homeostasis. Increased
autophagy is assumed critical in osteogenesis due to the
requirement for rapid organelle recycling, preservation of
nutrients, and the increased environmental susceptibility to
hypoxia inherent to the osteoblast-to-osteocyte transition
(Manolagas and Parfitt, 2010). In articular cartilage, primarily
characterized by low cell turnover and limited vascularization,
autophagy is essential for maintaining cellular integrity, function,
and survival. Indeed, expression of ULK1, Beclin1, and
LC3, an inducer, regulator, and executor of autophagy,
respectively, was found to decrease with GAG loss in both
age-related and surgically induced OA (Caramés et al., 2010).
Importantly, autophagosome formation is heavily upregulated in
the superficial and medial zones of OA cartilage in early disease
stages and apoptotic factors dominate with disease progression,
suggesting a shift toward an apoptotic phenotype that may be
due, at least in part, to failed autophagy similar to that observed
in AD (Almonte-Becerril et al., 2010).

Recent studies have purported autophagy inhibition as
a novel treatment paradigm for inflammation-mediated
osteoclastogenesis. Overall resorptive activity decreased
in osteoclast monoculture following bafilomyocin (potent
autophagy inhibitor) administration (Neutzsky-Wulff et al.,
2010). These findings were later recapitulated in a murine model
of bone loss induced by both ovariectomy and glucocorticoid
treatment, where pharmacological (chloroquine) and genetic
(Atg7 deletion) suppression of autophagy in monocytes
reduced osteoclastogenesis and subsequent bone resorption
(Lin et al., 2016). Others, however, have reported the opposite:
promoting autophagy in osteoblasts rescued viability following
glucocorticoid treatment and reduced bone loss (Yao et al., 2016).
Deletion of FIP200 (involved in autophagosome formation) in
osteoblasts induces osteopenia in rats (Yao et al., 2016). Atg7
osteocyte knockout was shown to promote BMD loss in both
male and female mice, not unlike that seen during natural
aging (Onal et al., 2013). It appears that, overall, upregulation
of autophagy in osteocytes and osteoblasts relieves oxidative
stress, promotes cellular viability, and decreases bone resorption,
while increased autophagy in osteoclasts exacerbates and
accelerates bone and articular cartilage degradation in OP and
OA. This precludes the use of systemic autophagy inhibitors
for the treatment of these pathologies and underscores the

need to develop vehicles for targeted stimulation or inhibition
of autophagy in defined cell types. Moreover, the net effect of
aging on autophagy on the microscopic scale requires further
investigation: while age-related senescence contributes to a
global reduction in autophagy (Caramés et al., 2010), the
resulting accumulation of oxidative stress may induce autophagy
predominantly in inflammatory mediators involved in disease
pathology. A study delineating the propensity of different cell
types toward increased autophagy following ROS stimulation at
varied disease stages may provide some insight.

Pathological MicroRNA Profiles
Micro ribonucleic acids (miRNAs) are sentinels of post-
transcriptional regulation of gene expression: by binding
the 3’-untranslated regions (UTRs) of their target genes,
miRNAs prevent translation—either through direct translation
suppression or mRNA cleavage (Llave et al., 2002). Due
to the ubiquity of 3’-UTR motifs and the wide gamut of
complementary microRNAs discovered in recent years, these
short nucleotide strands are estimated to target and modulate
expression of over 80% of all genes in humans (Herrera-
Espejo et al., 2019). Dysregulation of miRNA profiles has
thus garnered considerable interest as a prominent driving
force of several systemic pathologies, including those discussed
herein. Indeed, a host of miRNAs regulate genes involved in
production of amyloid plaques (Jahangard et al., 2020) and
hyperphosphorylated tau (Femminella et al., 2015; Moncini et al.,
2017), as well as those encoding cytokines canonically associated
with chronic neuroinflammation (Ravari et al., 2017; Liu et al.,
2019)—most of which are downregulated in the AD brain
(Reddy et al., 2017b). Multiple target genes implicated in the
inception and maintenance of chronic peripheral inflammation
(Zhu et al., 2012; Bogunia-Kubik et al., 2016) and concurrent
cartilage degradation (Park S. J. et al., 2013) and osteopenia
(Kelch et al., 2017) likewise continue to be evaluated. While
dysregulated miRNA profiles in AD (Herrera-Espejo et al.,
2019), RA (Reyes-Long et al., 2020), OA (Sondag and Haqqi,
2016), and OP (Ko et al., 2020) have been thoroughly
reviewed elsewhere, Table 1 lists the miRNAs prominently
referenced in recent literature, identifies whether they are up-
or down-regulated in each condition, and provides a succinct
overview of their respective targets and putative contributions
to disease pathology. Inconsistencies in the expression of these
miRNAs taken from different patient cohorts and procurement
sites exemplify the complexity of miRNA biology: greater
standardization and experimentation is required to uncover any
direct correlation between those miRNAs differentially expressed
in peripheral inflammatory bone and joint disorders and the
onset and exacerbation of neurodegenerative disease.

MESENCHYMAL STEM CELL (MSC)
THERAPY

Cumulatively, the results of the above studies suggest that
effective treatment of RA, OA, and OP may delay and
ameliorate AD-related neurodegeneration and that they may do
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TABLE 1 | Dysregulated miRNA profiles implicated in the pathologies discussed herein.

Disease miRNA Expression vs.

Control

Relevant Target(s) || Putative contribution to pathology Source(s)

AD 9 Down FGFR1, SIRT1, REST || Downregulation correlates directly with reduced cortical thickness

and cognitive performance in AD patients

Kumar and Reddy, 2016;

Maldonado-Lasuncion et al.,

2019

16-5p Down APP || Inhibition leads to accumulation of APP, subsequent dysregulation of insulin pathway

and heighted expression of Raf and/or NF-κβ

Liu et al., 2012; Kirouac et al.,

2017

29 Down BACE1, BIM || Expression inversely correlated with BACE1; Treatment with exogenous

miR-29b has been shown to reduce expression of Aβ, and its pathological effects, in vitro

Jahangard et al., 2020

34a-5p Up p53 || Heightened miR-34 expression associated with tau hyperphosphorylation;

Downregulation has been found to rescue some cognitive abilities in murine models

Zovoilis et al., 2011; Femminella

et al., 2015

106 Down APP, ABCA1 || Overexpression may inhibit amyloid-associated tau aggregation Kim et al., 2012; Liu et al., 2016b

107 Down CDK5 || Heavily downregulated in the hippocampus and temporal cortex of AD patients;

CDK5 involved in tau hyperphosphorylation

Shukla et al., 2012; Moncini

et al., 2017

125-5p Up DUSP6, PPP1CA, Bcl-W || Upregulation associated with heightened neuroinflammation Banzhaf-Strathmann et al.,

2014; Reddy et al., 2017a

132-3p Down SIRT1, FOXO1, p250GAP || Reduction in miR-132 appears preclude neuron loss; in vitro

miR-132 protects neurons against both Aβ and glutamate; In early AD, expression is

increased and correlated to higher MMSE scores; In late AD, expression is abrogated in

both AD brain and neural exosomes

Wong et al., 2013; Hadar et al.,

2018; Cha et al., 2019

146a Up TLR2 || Key regulator of AD-related immune response and implicated in multiple

inflammatory pathologies including AD; Murine models demonstrate positive correlation

between miR expression, senile plaque density, and cognitive impairment

Li et al., 2011; Ravari et al.,

2017; Ansari et al., 2019

155 Up c-Maf, IFNGR1, SHIP1 || Regulates microglial inflammatory response; Heavily upregulated in

3xTg murine models of AD; elevated levels coincide with c-Jun expression, microglial and

astrocyte activation, and upregulated secretion of inflammatory mediators; Has also been

implicated in activation of a wide gamut of T lymphocytes

Song and Lee, 2015; Liu et al.,

2019; Zhao et al., 2019

181a/c/d Down SPTLC1, c-Fos, SIRT1 || Regulates cell proliferation, apoptosis, autophagy, mitochondrial

function, and immune response; Loss increases serine palmitoyltransferase

Ouyang et al., 2012;

Rodriguez-Ortiz et al., 2014;

Indrieri et al., 2020

212-3p Down SIRT1 || Correlations similar to those observed in 132-3p Hadar et al., 2018

RA 16-5p Up A2AaR || Results in upregulation and activation of NF-κβ pathways; upregulation in Th17

cells; treatment with anti-TNF agents or DMARDs led to significantly increased expression

Reyes-Long et al., 2020

23b-3p Up/Down NOX4, TAB2, TAB3, IKK-α || Immunosuppressive via regulation of NOX4, which in turn

inhibits expression of proinflammatory cytokines COX2, TNF-a, and IL-1β; Shown to be

protective of GABAergic and motor neurons; Regulates NF-κβ via TAB2, TAB3, and IKK-a

(genes through which TNF-α, IL-17, IL-1β activate the NF-κβ pathway); IL-17 creates

dysregulated feedback loop between 23b-3p and NF-κβ, leading to increased expression of

both

Zhu et al., 2012

124-3p Up/Down Iκβ, MCP-1, SIRT1 || Pathological downregulation leads to repression of inhibitors of κβ

(iκβ), ultimately increasing NF-kB expression

Chiu et al., 2020

146-5p Down TRAF6, JNK/CCL2, NF-κβ || Serum expression significantly reduced in RA patients

compared to controls, but found significantly increased in synovial tissue and synovial

fluid-derived monocytes; expression induced by TNF-α and IL-1β

Bogunia-Kubik et al., 2016;

Reyes-Long et al., 2020

155-5p Up SOCS1 || Overexpressed in synovial joints of RA patients, leading to suppression of SOCS1

and triggering expression of TNF-α and IL-6

Bogunia-Kubik et al., 2016

223-3p Up E2F1 || Predominantly expressed in Th cells; Overexpression in RA decreases E2F1 levels,

leading to dysregulation of T-lymphocyte phenotype and subsequent autoimmunity

Pawlik et al., 2003; Fulci et al.,

2010

OA 9 Down NF-κβ || Overexpression has been implicated in reduction of NF-κβ pathway signaling

factors including NF-κβ, TNF-α, IL-1β

Bazzoni et al., 2009; Liu et al.,

2016a

34a Up SIRT1 || Upregulation results in concomitant decrease in SIRT1 expression; injection of a

lentiviral vector encoding anti-miR-34a effectively abrogated OA progression in rat models

Yan et al., 2016

130 Down TNF || Downregulated in OA patients, with concomitant upregulation in TNF Li et al., 2015; Panagopoulos

and Lambrou, 2018

146a Up CAMK2D, PPP3R2 || Upregulation exacerbates proinflammatory cytokine secretion;

miR-146a overexpression murine model demonstrated significantly higher TNF-α, IL-1β

expression; TNF-α, IL-1β, and IL-17 administration appear to elevate miR levels in a positive

feedback loop manner

Zhang X. et al., 2017

(Continued)
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TABLE 1 | Continued

Disease miRNA Expression vs.

Control

Relevant Target(s) || Putative contribution to pathology Source(s)

149 Down MyD88, STAT3 || Effective modulator of a wide variety of pro-inflammatory factors; inhibits

hepatic inflammatory response via STAT3 pathway; Overexpression in macrophages linked

to inhibition of NF-Kb, TNF-a, and IL-6

Xu et al., 2014; Zhang Q. et al.,

2017; Tahamtan et al., 2018

199 Down SMAD1, MAPK || Involved in promotion of chondrogenesis; Promotes osteoblastic

differentiation of hMSCs via down- and up-regulation of SOX9 and aggrecan, respectively;

Downregulation in OA results in increased expression of COX-2

Laine et al., 2012; Zhang et al.,

2012

558 Down COX2 || Directly suppresses COX-2 mRNA activity and IL-1β induced catabolic events in

chondrocytes to promote homeostasis

Park S. J. et al., 2013

OP 9-5p Up WNT3A || Found to be highly expressed in OP patients relative to negative controls;

Promotes adipogenesis and inhibits osteogenesis

Zhang H. G. et al., 2019

21 Up/Down PDCD4 || Upregulated in senile osteoporosis, which leads to c-Fos expression and

subsequent osteoclastogenesis; Role in osteoblast differentiation is more controversial

Sugatani et al., 2011; Cheng

et al., 2019

23-3p Up RUNX2-SATB2 || Inhibition of SATB2 expression may incite osteoclastogenesis Yavropoulou et al., 2020

29b Down HDAC4, RUNX2 || Decrease in miR-29b causes concomitant increase in HDAC4 and

subsequent reduction in osteoblastic differentiation

Li Z. et al., 2009; Bellavia et al.,

2019

100 Up BMPR2, SMAD1 || Inhibits osteogenic differentiation of MSCs; Ex vivo study of osteoclasts

taken from OP patients revealed an inverse correlation between miR-100 expression and

BMD at the femoral neck

Fu et al., 2016; Bellavia et al.,

2019

124 Up Dlx2, Dlx3, Dlx5 || MiR-124 overexpression has been shown to drive MSC adipogenesis;

Significantly elevated in patients with low bone mass

Qadir et al., 2015; Yavropoulou

et al., 2017

125 Up CBFβ || Inhibition of osteogenesis via RUNX2 suppression; MiR-125 level found to be

inversely correlated with patient femoral head BMD; Circulating miR-125 found to be

significantly upregulated in osteoporotic patients

Huang et al., 2014; Liu et al.,

2015; Panach et al., 2015

133 Up RUNX2, CXCL11, CXCR3, SLC39A1, TCF-7 || Suppression of osteoblastic differentiation via

RUNX2 inhibition

Li et al., 2008; Wang Y. et al.,

2012; Liao et al., 2013

187 Down IL6, TNF || Elevated expression may lead to increased pro-inflammatory cytokine expression

and inhibited osteogenesis

Garmilla-Ezquerra et al., 2015

2861 Down HDAC5 || Significantly downregulated in osteoporosis patients, leading to HDAC5-mediated

inhibition of RUNX2 and BMD loss

Li H. et al., 2009

so through targeting mechanisms associated with aging. The
limited longitudinal clinical benefits conferred by the currently
administered pharmacological and antibody-based therapies
highlights the need to investigate novel paradigms for the
treatment of these disorders. Moreover, while conservative,
systemic anti-inflammatory treatments may suffice for short-
term improvement in patient-reported pain and range of motion,
their role in ameliorating the underlying structural abnormalities
in bone and cartilage remain limited (Jevotovsky et al., 2018).
The introduction and usage of stem cells represents an important
advance in regenerative cellular therapy: a number of works
report preclinical benefits through differentiation of induced
pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs)
into targeted cell types and these findings have been thoroughly
reviewed elsewhere (Burke et al., 2016; Duncan and Valenzuela,
2017); however, their tendency to incite teratoma growth
(Zakrzewski et al., 2019) as well as their immunogenicity (Deuse
et al., 2019) has precluded their mainstream usage. MSCs possess
excellent therapeutic potential for a broad range of chronic
inflammatory and neurodegenerative conditions, owing to their
accessibility relative to embryonic and induced pluripotent
stem cells, their relatively predictable behavior, and their
inherent ability to differentiate into osteoblasts, chondrocytes,
and adipocytes. Typically isolated from bone marrow, adipose
tissue, and more recently, the umbilical cord (Xu et al.,

2018), MSCsmediate wound-healing by exerting pro-angiogenic,
anti-fibrotic, and anti-inflammatory activity through direct
cell-cell interactions and via the secretion of potent trophic
factors (Shi et al., 2018). In addition to retaining oxidative
stress resistance in inflammatory environments (Cui et al., 2017),
MSCs modulate the activation, proliferation, and function of
key mediators of both the innate and adaptive immune systems
(see Figure 4). As such, they are uniquely suited to serve as
the foundation for multiple therapies designed to ameliorate
AD-related neurodegeneration, chronic systemic inflammation,
and arthritis-associated bone and cartilage degradation. Over
past decades, a plurality of studies have found that direct
intracerebral (AD) and intraarticular (RA, OP, OA) injection
of MSCs confers multiple benefits evidenced by three key
features: (1) inflammation remission, (2) stimulation of neotissue
formation, and (3) measurable improvements in behavioral
outcomes. While these investigations are thoroughly reviewed
elsewhere (Duncan and Valenzuela, 2017; Kim and Shon, 2020),
we here discuss current developments toward maximizing the
clinical usability and therapeutic potential of MSCs as they apply
to AD, inflammatory arthritis, and OP.

Systemic MSC Injection
Systemic or intravenous (IV), MSC administration confers a
key clinical benefit: minimization of the proximal tissue damage
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FIGURE 4 | Partly hypothetical model for the key immunosuppressive mechanisms of MSCs, which modulate the activation, proliferation, and function of prominent

mediators of both the innate and adaptive immune systems. In addition to quelling production of local inflammatory cytokines via secretion of PGE2, IL-1ra, and

TSG-6, primed MSCs have been shown to reverse the pro-inflammatory polarization of macrophages, inhibit proliferation of NK cells via IDO and PGE2, and prevent

the maturation of DCs. Local and systemic administration of MSCs has also been shown to restore normal Th1/Th17:Treg ratios, prevent the production of pathogenic

autoantibodies via CCL2, and inhibit osteoclastogenesis through OPG production. These and other findings contribute to the hypothesis that MSCs are uniquely

suited to treat a variety of chronic inflammatory diseases.

inherent to local MSC injection boluses. This coupled with
accumulating evidence that intravenously injected MSCs home
to sites of interest (Sui et al., 2016) and retain therapeutic efficacy
comparable to direct injection routes (Cui et al., 2017; Harach
et al., 2017) renders systemic administration an appealing and
viable treatment paradigm. In AD, intravenously injected MSCs
have been shown to traverse the BBB and, importantly, display no
evidence of eliciting a tumorigenic or immune response (Duncan
and Valenzuela, 2017). While the mechanisms by which MSCs
exert their therapeutic potential in the AD brain have yet to be
clarified, multiple studies have shown that MSCs can differentiate
into a plurality of neural cell types and enhance neurogenesis
through the secretion of neurotrophic factors (Park D. et al.,
2013; Garcia et al., 2014; Kim et al., 2015). Recent animal studies
reflect this paradigm: intravenous transplantation of 2×106

human umbilical cord (hUC)-MSCs into 12 month-old Tg2576
mice improved cognitive performance as assessed by the Morris
water maze 4 weeks after transplantation, attenuated oxidative
stress, promoted neuronal proliferation, supported neurogenesis
in the hippocampus, and increased expression of neurotrophic
factors Sirt1, brain-derived neurotrophic factor (BDNF), and
α-synuclein (SYN) (Cui et al., 2017). APP/PS1 mice given an
equivalent treatment of bone marrow (BM)-MSCs demonstrated
a significantly reduced escape latency in the Morris water
maze, decreased concentrations of pathological Aβ1−42 and beta-
secretase 1 (BACE1), and attenuated expression of inflammatory

cytokines IL-1, IL-2, TNF-α, and IFN-γ in whole blood samples
(Wei et al., 2018). Collectively, IV MSC treatment appears to
ameliorate cognitive dysfunction by promoting neurogenesis
and synaptic plasticity, increasing secretion of neurotrophic
factors, decreasing hippocampal oxidative stress, andmodulating
expression of Aβ-related genes.

Similarly encouraging results have emerged for its application
in inflammatory arthritis. In a Phase Ia clinical trial including
predominantly post-menopausal women, IV injection of 1×108

hUC-MSCs reduced whole blood levels of IL-1β , IL-6, IL-8,
and TNF-α 24 h post-injection (Park et al., 2018). In another
controlled trial including 53 patients, nearly 50% of those
receiving a single injection of autologous adipose-derived (A)-
MSCs achieved ACR20—a clinical benchmark for treatment
efficacy—within the first month; however, benefits were found to
diminish after 3 months, suggesting longitudinal efficacy would
require repeated treatments (Álvaro-Gracia et al., 2017). In a
macaque model of OA receiving 2 weekly injections of 1 ×

107 allogenicMSCs, immunohistochemical staining revealed that
the peripherally administered cells localized in and around the
injured synovium (Fernandez-Pernas et al., 2017). Surprisingly,
proliferation and activation of endogenous MSCs was heavily
upregulated 2 weeks post-infusion, suggesting injected MSCs
exert their therapeutic affects partly by recruiting and activating
endogenous senescent MSCs. Finally, systemic infusion of 1
× 106 allogenic BM-MSCs via the caudal vein maintained
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trabecular bone mass in glucocorticoid-challenged murine
models of OP and promoted osteoblast and osteoprogenitor
survival (Sui et al., 2016). As with previous studies, donor MSCs
were found to specifically home and engraft to recipient bone
marrow 4 weeks post-infusion.

Despite these encouraging findings, systemic MSC injection is
not free of limitations. While IV administration is less invasive
than established local injection paradigms and allows for the
therapeutic cells to disseminate throughout the body, significant
pulmonary MSC entrapment has been observed in a number of
animal models (Fischer et al., 2009; Ankrum and Karp, 2010;
Zheng et al., 2016). Before they attain systemic circulation,
MSCs pass through and agglutinate in the lungs, largely due to
interactions between the abundance of pulmonary fibronectin
and vitronectin, and select adhesion integrins on the MSC
surface (Wang S. et al., 2015). While promising advancements
have been made in mitigating this phenomenon—be it via
antibody-mediated integrin blockade (Wang S. et al., 2015) or
strategic culturing practices during the in vitro expansion of
MSCs from select sources (Nystedt et al., 2013)—pulmonary
MSC entrapment represents a significant clinical obstacle which
merits further investigation.

MSC Conditioned Medium
While MSCs exert potent immunosuppressive functions
following exposure to an inflammatory microenvironment
(Noronha Nc et al., 2019), recent studies suggest that longitudinal
interactions with pro-inflammatory cytokines and their
mediators may gradually reduce their clinical efficacy (Shi et al.,
2018). Researchers have identified several attributes inherent
to MSCs that limit their therapeutic efficiency in injections,
including low survival rates in pathological microenvironments
and the concomitant requirement for substantial overexpansion
prior to injection, and considerable variability in donor
properties, in vitro culture conditions, and clinical performance
assessment procedures (Noronha Nc et al., 2019). These and
other deficiencies have prompted investigation into the purely
paracrine modality of MSC-mediated immunosuppression
through utilization of MSC-conditioned medium (MSC-CM).
Conditioned medium extracted from primed MSCs presents
several hypothetical advantages: (1) CM can be manufactured
in tightly controlled in vitro culture conditions optimized for
mass production; (2) It can be freeze-dried, packaged, and
subsequently transported far easier than live MSC populations;
(3) A single CM batch preparation can be used for multiple
therapeutic injections; and (4) CM vastly decreases the
probability of host rejection and the aberrant immune response
inherent to allogenic stem cell transplantation (Chen et al., 2018).

The results of numerous animal studies support the clinical
efficacy of MSC-CM. Sustained microglial activation has been
implicated in the pathogenesis and exacerbation of AD (Colonna
andHoltzmann, 2017; Perea et al., 2018). Bothmurine carcinoma
(BV2) and primary human microglia showed a ∼50% reduction
in the secretion of pro-inflammatory cytokines TNF-α and IL-6
and increased IL-10 production following LPS activation when
cultured in MSC-CM for 24 and 6 h, respectively (Ooi et al.,
2015). A separate study found that MSC-CM protected BV2

microglia from Aβ35−45 challenge by reducing BV2 proliferation
and apoptosis, promoting Aβ phagocytosis, correcting aberrant
autophagic profiles, and upregulating expression of Aβ-
degrading enzymes (Xu et al., 2018). Intraarticular injection
of concentrated MSC-CM into antigen-induced arthritis (AIA)
murine models reduced TNF-α sera concentration, attenuated
aggrecan breakdown, increased production of IL-4 and FOXP3,
and restored Treg:Th17 balance (Kay et al., 2017). Incubation of
LPS-activated chondrocytes in concentrated MSC-CM decreased
transcription of proinflammatory genes at both 24 and 72 h
post-treatment, increased expression of ECM markers AGG and
COL1, and increased global chondrocyte viability relative to
untreated controls (Chen et al., 2018). Intriguingly, multiple
reports have proposed that MSC-CM can induce a similar
or stronger osteogenic effect than transplanted cells (Osugi
et al., 2012; Chen et al., 2018). In vivo imaging and
immunohistopathological staining of transgenic OP rats revealed
that MSC-CM treatment groups displayed a larger area of newly
regenerated bone and greater recruitment of native MSCs to
the defect area compared to MSC-injected groups (Osugi et al.,
2012). This finding adds further credence to the hypothesis
that MSCs exert their regenerative effects partly through the
mobilization of endogenous stem cells.

In the short term, MSC-CM exerts powerful neuroprotective,
chondroprotective, and anti-inflammatory effects; however, the
relatively short experimental timepoints of the above works
(∼3–7 days) highlight the need for elucidating the longitudinal
effects of MSC-CM treatment, dose requirements, and treatment
frequency to produce optimal therapeutic outcomes. Moreover,
tightly regulated manufacturing standards (e.g., basal media
formulations, MSC incubation period, MSC seeding density,
MSC age, donor, etc.) must be enforced to rigorously test
clinical efficacy. Isolation and utilization of MSC-derived
exosomes further diminishes potential immunogenicity concerns
associated with MSCs and their derivatives. Indeed, MSC-
secreted exosomes have recently been found to orchestrate—to
a significant degree—MSCs’ therapeutic mechanisms of action.
This exciting field of MSC therapy has been thoroughly reviewed
elsewhere (Mendt et al., 2019; Yin et al., 2019; Forsberg et al.,
2020).

Biomaterial-Based Approaches
The field of tissue engineering is dominated by two primary
strategies for creating regenerative tissue constructs: scaffolds
and spheroids. While spheroid architectures intrinsically
promote cell-cell interactions and cellular fusion into cohesive
constructs that endogenously produce ECM, they often
demonstrate inadequate mechanical properties, especially when
used to regenerate load-bearing tissues. Alternatively, scaffolds
are suitable for applications requiring compressive and torsional
strength, native cellular infiltration, and neotissue deposition.
In addition, scaffolds are remarkably versatile, enabling a broad
range of mechanical and degradative properties, and can be
tailored to release therapeutic molecules either via controlled
release or surface immobilization (McMasters et al., 2017;
Ovsianikov et al., 2018). Finally, combinatorial approaches
utilizing multiple substrates afford advanced characteristics

Frontiers in Aging Neuroscience | www.frontiersin.org 16 December 2020 | Volume 12 | Article 583884

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Culibrk and Hahn Chronic Bone and Joint Disorders and AD

like shape-memory and endogenous induction of targeted cell
phenotypes. Engineered scaffolds thus represent an appealing
paradigm for maximizing the therapeutic efficiency of MSCs,
either through directed differentiation or stimulation of
immunosuppressive phenotypes.

OP
Electrospun gelatin scaffolds, which demonstrate structural
properties similar to native collagen, have been shown to promote
MSC proliferation, survival, and osteogenic differentiation in
the absence of exogenous growth factors (Chang et al., 2012).
Following 21 days of osteogenic induction, BM-MSCs seeded
in pure gelatin scaffolds demonstrated significantly increased
mineralization relative to 2D controls (Moll et al., 2017). Poly(ǫ-
caprolactone) (PCL) is used commonly in general scaffold
design owing to its biocompatibility, biodegradability, low
immune reactivity, optimal biomechanical properties and the
ability to form complex 3D shapes; however, its usage in
osteogenic induction is limited as it lacks the surface reactivity
necessary for cell attachment. Application of composites like
hydroxyapatite, and more recently, powdered oyster shells
(OS), overcome these detriments by conferring hydrophilicity
and topographical variance. Seeding MSCs on OS-coated PCL
scaffolds enhanced MSC proliferation, significantly promoted
osteogenic differentiation, increased long-term MSC viability,
and demonstrated higher levels of alkaline phosphatase (ALP)
activity and calcium deposition than bare PCL scaffolds
(Didekhani et al., 2020).

Numerous studies have reported that applying HA coating
to polymer meshes supports osteoblast function and osteogenic
differentiation (Sato et al., 2006; Nguyen et al., 2013; Venugopal
et al., 2013). The application of HA nanoparticles to electrospun
PCL scaffolds dramatically increased hydrophilicity in the
absence of plasma treatment, increased ALP activity by 20%
compared to PCL/collagen controls, markedly increased
mineralization, and incited noticeable changes in cellular
morphology associated with osteogenesis (Venugopal et al.,
2013). Indeed, HA and other major bone constituents including
α- and β-tricalcium phosphate (TCP) are the most widely
investigated ceramic scaffold supplements for osteogenic
stimulation of MSCs; however, both lack vital elements related
to bone metabolism and TCP generates alkaline degradation
products that lead to proximal cytotoxicity and reduction in
scaffold mechanical properties. Zinc-containing hardystonite
(HS) has been shown in PCL scaffolds to surpass HA coating
in mechanical strength, MSC proliferation, scaffold infiltration,
ALP activity, and mineralization (Jaiswal et al., 2013). These
effects were later recapitulated in electrospun PLLA scaffolds,
which demonstrated increased osteonectin and OCN expression
(Tavangar et al., 2018). Other studies have indicated that HA
and TCP supplementation with various phytocompounds
enhances their osteogenic effects: incorporation of 20 µM
diosmin augmented ALP activity and calcium deposition, and
increased expression of RUNX2, ALP, COL1, OCN, and osterix
following 14 days of culture (Chandran et al., 2019). After 11
days, 10−8–10−6 M icariin increased ALP expression and bone
mineralization (Fan et al., 2011). 5–10 µM chrysin enhanced

ALP activity, produced a marked increase in mineralization
and calcium deposition, and sustained upregulation of RUNX2
expression (Menon et al., 2018).

OA
The mechanical stimuli produced in tissue microenvironments is
known to direct differentiation of stem cells to terminal, specific
fates. Hydrogel systems have demonstrated an excellent capacity
to enhance chondrogenesis of MSCs by approximating the
fibrous nanostructure of articular cartilage, but they are limited
in their ability to simultaneously recapitulate the most crucial
physiological properties of cartilage: compressive and viscoelastic
moduli, porosity, and complex in vivo geometry. To illustrate,
while the compressive modulus of human articular cartilage
ranges from 240 to 1,000 kPa, that of typical hydrogel systems
is lower by at least an order of magnitude (Beck et al., 2016).
Bioengineers andmaterial scientists are thus often presented with
a “tightrope walk,” where they must balance the high viscoelastic
moduli needed to intrinsically promote chondrogenesis with
requisite scaffold porosities enabling effective seeding, native
cell perfusion, and nutrient diffusion. To that end, Aliabouzar
et al. tested multiple pore geometries and found that small (700
× 690 µm) square pores stimulated significantly higher MSC
proliferation than hexagonal pores (Aliabouzar et al., 2018).
This finding coincided with those of other investigations which
indicated thatMSCs preferentially adhere to and proliferate more
rapidly on larger curvatures (Knychala et al., 2013; Zhou et al.,
2016).

In a recent study, various popular polymer chemistries were
evaluated for their inherent potential to direct chondrogenic
differentiation in seeded MSCs. Of the six formulations
tested, poly-L-lysin-coated polydioxanone (PDO) and poly-L-
ornithine (PLO) scaffolds best supported chondrogenic fate
commitment, resulting in increased sulfated GAG concentration
and chondrogenic matrix deposition. Notably, these effects
persisted in the absence of supplemented chondrogenic growth
factors (San-Marina et al., 2017). Scaffolds are frequently
implanted to sequester therapeutic cells to injury sites. Poly-
lactic-co-glycolic acid (PLGA) nano fibers (NFs) promote
MSC proliferation and differentiation into osteoblasts under
osteogenic culture conditions. Immunohistology revealed that
MSCs seeded in columnar-shaped PLGA NFs enjoyed greater
chondrogenic potential compared to 2D controls in equivalent
media, as shown by heavily upregulated SOX9 and COL10A1
mRNA expression (Sonomoto et al., 2016).

AD
Intracranially transplanted cells typically generate sparse
amounts of non-neuronal cells or unexpectedly die (Menon
et al., 2018). Additionally, limitations in real-time imaging
and human error often produce spatial disparities between
injury and therapeutic injection sites. Although there currently
exists no published literature pertaining to scaffold-based tissue
regeneration in AD, various pre-clinical studies in models of
related neurodegenerative disorders have produced encouraging
results. Collagen scaffold implantation of MSCs in a rat model of
TBI improved cell survival and neurite outgrowth in vivo, limited
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distribution of MSCs to the transplanted region, improved brain
metabolism, and resulted in improved neurite functional
recovery compared to direct MSC injection (Menon et al., 2018).
Following surgical resection-simulated chronic TBI in rats,
fibrous collagen scaffolds obtained from bovine aponeuroses and
seeded with hUC-MSCs improved locomotion, promoted neural
regeneration and remyelination, induced proximal neurogenesis,
and blocked astrocyte proliferation outside the lesion area
(Wang et al., 2018). Self-assembling nanofiber scaffolds (SANs),
characterized by a repetitive peptide sequence which mimics
native ECM properties, have garnered recent attention in AD
therapeutics owing to their inherent capacity to augment cellular
adhesion, enhance axon growth impacts, and stimulate synapse
development (Liedmann et al., 2012). Perhaps most importantly,
SANs have been shown to innately interfere with APP processing
by inhibiting BACE1 signaling, reducing the expression of
Aβ1−40 and Aβ1−42 in APP/PS1 transgenic mice.

ALTERNATIVE TREATMENT PARADIGMS

As of this review, MSCs are a predominant non-pharmacological
therapy applied toward peripheral chronic inflammatory
conditions including RA, OA, and OP. The plurality of
investigations reviewed herein support their usage, owing to
their tissue regenerative properties and their intrinsic propensity
to drive inflammation remission; unfortunately, current MSC
procurement and administration methods limit their therapeutic
efficacy and pose multiple clinical challenges. Firstly, the
accepted clinical procedure for the harvesting and intra-articular
injection of autologous MSCs is invasive—often entailing a
prolonged recovery period (Harrell et al., 2019). Moreover,
MSC injections are only approved for those with severe disease.
When the procedure is ultimately approved, IV-injected MSCs
have been shown to home to therapeutic areas of interest (Sui
et al., 2016); however, undesired cell scattering is inevitable and
degrades therapeutic efficiency (Zheng et al., 2016). Finally, few
of the clinical studies enumerated above involve sufficiently long
investigatory timepoints and thus fail to assess the longitudinal
(>6 months) effects of MSC administration.

While drawing attention to the prevailing need to investigate
novel methods for maximizing the clinical utility of MSCs
is a focus of this review, a plurality of other therapeutic
paradigms are under continual development and demonstrate
tremendous potential for treating and/or modeling the complex,
multifactorial conditions described herein. Following their
discovery in the seminal works of Takahashi et al. (2007), iPSCs
have contributed to astounding advancements in personalized
medicine, disease modeling, and cellular therapy; indeed, iPSCs
have been used as model system and treatment paradigm for
AD (Devineni et al., 2016; Tcw, 2019; Penney et al., 2020),
RA (Cassotta et al., 2020), OA (Dubey et al., 2018; Nakayama
et al., 2020); and OP (Paspaliaris and Kolios, 2019; Rana et al.,
2019). iPSCs retain several theoretical advantages over MSCs
when applied to cellular therapies: in addition to being capable
of unrestrained growth, they demonstrate relatively minimal
immunogenicity and can be differentiated into a wide gamut

of specific cell niches. When coupled with recent advances in
genome editing, iPSCs enable interrogation of the consequences
of various genetic and environmental perturbations in tightly
controlled settings. While their embryo-derived counterparts,
ESCs, represent the ideal source for cellular differentiation
studies, they are generally considered unsuitable for clinical
treatments due to their low differentiation efficiency, observed
overgrowth within tissue grafts, tumorigenicity, and the host of
ethical and safety concerns associated with their procurement
and usage (Rana et al., 2019). Interestingly, iPSC-derived MSCs
have gained abundant interest in recent years, as they integrate
the benefits of both iPSCs and MSCs: autologous somatic cells
can be harvested via relatively non-invasive procedures, and
differentiated MSCs ostensibly confer immunosuppression and
tissue regeneration with minimal risk of eliciting a host immune
response (Khan et al., 2019).

Systems for targeted genomic modification have likewise
gained considerable traction—particularly after the discovery
of the Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR)-Cas9 paradigm (Jinek et al., 2012). The Cas9
endonuclease, when paired with a single guide (sg)RNA, can
efficiently cleave specific sites of double-stranded (ds)DNA,
ultimately rendering specific gene segments inert (Lino et al.,
2018). These gene knock-out models have been employed
extensively toward refining searches for genetic disease
susceptibility loci. In preclinical models of AD, most CRISPR-
Cas9 mediated therapies are directed toward inhibiting the
neurotoxic form of Aβ proteins and deactivation of γ -secretase
activating protein (Karimian et al., 2020), and have demonstrated
encouraging results toward their therapeutic application in both
FAD and LOAD. The CRISPR-Cas9 system has also been
utilized to generate numerous knockout models of inflammatory
arthritis and OP. Following the identification of putatively
pathological gene segments via genome-wide association studies,
these genes of interest are either deactivated, modified, or
spliced into model systems (often incorporating iPSCs) to
faithfully recapitulate the diseased phenotype in controlled in
vitro and in vivo settings—these findings have been thoroughly
reviewed elsewhere (Adkar et al., 2017; Ding and Orozco,
2019; Wu et al., 2019; Yuan et al., 2019b). The simplicity, low
cost, and high cleavage efficiency of CRISPR-Cas9 compared
to earlier Transcription Activator-Like Effector Nuclease and
Zinc Finger Nuclease based systems is appealing; however, its
limitations merit serious consideration and currently preclude
its use in mainstream clinical settings. Firstly, Cas9 is known
to generate off-target modifications: a few mismatches distal
to the protospacer adjacent motif do not prevent activation of
the CRISPR-Cas9 system. Screening alternative Cas orthologs
with enhanced specificity and target range has been attempted
to mitigate this artifact (Wu et al., 2019). Founder mosaicism
is another boundary: in knockout and transgenic models
of disease, CRISPR-Cas9 components are injected into the
fertilized zygote and continuously target and cleave genes
during embryonic development, often causing mosaicism in the
introduced mutations. Certain strategies are being investigated
to combat mosaicism, including quickening the editing process
(introducing Cas9 at very early zygote stages), shortening the
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longevity of Cas9, and CRISPR-mediated germline modification
(Mehravar et al., 2019); these investigations are ongoing.

The conditions discussed in this review are complex and
multifactorial, resulting from a wide array of genetic, epigenetic,
and environmental factors; however, given that specific gene
segments have been shown to drastically increase the risk and
severity of these conditions, gene therapy has recently emerged
as another exciting avenue of research. Gene therapy entails
the delivery of therapeutic genes via specialized carriers, or
vectors, that are typically viral, polymeric, or lipid-based in design
(Deviatkin et al., 2020). Viral vectors have historically enabled
remarkably stable and longitudinal transgene expression, but
also demonstrate a host of safety concerns, including the risk of
insertional mutagenesis inherent to retroviruses and activation of
innate and adaptive immune mechanisms. Polymeric and lipid-
based vector systems effectively eliminate these safety concerns,
but are generally overlooked due to their comparatively low
induction of transgene expression (Young et al., 2020). As with
CRISPR-mediated treatments, the vast majority of gene therapy
strategies for AD involve inhibition of the pathological variants
of Aβ peptides, either through functional gene knockouts,
Aβ immunization, or viral-mediated overexpression of genes
encoding for enzymes that efficiently degrade Aβ (Choong et al.,
2016). Adeno-associated viruses (AAVs) are the most popular
vehicles for genetic therapies, owing to their proven efficacy
and safety in a large number of animal models (Naso et al.,
2017). Indeed, AAV-mediated enforcement of osteogenic and
chondrogenic gene overexpression in transplanted somatic cells
and infusion of exogenous recombinant growth and survival
factors appears to be the focus of current clinical investigations
in arthritis (Deviatkin et al., 2020; Young et al., 2020) as
well as OP (Ball et al., 2018). Unfortunately, the results of
multiple preclinical and clinical trials have made it yet unclear
whether viral-mediated delivery of growth/survival factors is
beneficial in these conditions (Ball et al., 2018; Honig, 2018;
Deviatkin et al., 2020). Nonetheless, these drug and gene delivery
vehicles—in conjunction with CRISPR-Cas9 and iPSCs—enable
the development of combinatorial therapeutic strategies that
bring us ever closer to truly personalized medicine.

CONCLUSION

Accumulating evidence from preclinical, clinical, systematic,
and meta-analysis studies reports that peripheral chronic
inflammatory conditions including rheumatoid arthritis,
osteoarthritis, and osteoporosis may contribute to AD
pathogenesis and exacerbate inflammatory neurodegeneration
with disease progression. While the mechanisms underlying
these disease pathologies remain elusive, chronic inflammation
is clearly implicated as a predominant driving force of
bone, cartilage, and neuron degeneration, and numerous
immunosuppressive therapeutic agents have produced positive
clinical outcomes in AD—especially when administered prior
to the onset of cognitive impairment. The chronic systemic

inflammatory conditions discussed herein are prevalent—
crucially, even among the young—and therefore merit
serious consideration as significant factors contributing to
AD pathogenesis. Moreover, the limited clinical success of
treatments geared toward canonical AD targets in the CNS
illustrates the need to consider more holistic approaches toward
generating interventional therapies. Given the above data, we
submit that effective treatment of these prominent peripheral
immune disorders in early- to mid-life may significantly
decrease the risk of and ameliorate inflammation-mediated
cognitive decline in AD. MSCs are uniquely suited to serve
as the foundation for multiple therapies designed to address
these aberrant aging-related inflammatory conditions due
to their robust immunosuppressive properties, their unique
ability to activate and recruit senescent cells, and their excellent
accessibility relative to their embryonic and pluripotent stem cell
counterparts. Nonetheless, current administration methods limit
their clinical and longitudinal efficacy, and increase the risk of
donor site morbidity and host rejection of transplanted allogenic
cells. Future studies, therefore, should investigate methods
of maximizing the therapeutic efficiency of MSCs and their
conditioned medium via isolation and concentration of select
paracrine factors and combinatorial biomaterials to improve
MSC localization to diseased regions of interest. Toward this
end, decoupling the direct cell-cell and paracrine mechanisms
by which MSCs exert immunomodulation is crucial. Emerging
technologies and treatment paradigms such as CRISPR-Cas9 and
vector-mediated gene therapy should be utilized in conjunction
with MSCs to generate combinatorial, personalized therapies.
Indeed, a holistic consideration of the contributions of peripheral
immune processes to changes in the CNS may incite a paradigm
shift in our understanding of AD pathogenesis and treatment.
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GLOSSARY

ABCA1, ATP-binding cassette transporter sub-family A; ACE-
R, Addenbrooke’s Cognitive Examination Revised; ACPA,
Antibodies to citrullinated protein antigens; AD, Alzheimer’s
Disease; ADAMTS, Disintegrin and metalloproteinase with
thrombospondin motifs; AGG, Aggrecan; AIA, Antigen-induced
arthritis; ALP, Alkaline phosphatase; A-MSC, Adipose-derived
mesenchymal stem cell; APOE, Apolipoprotein E; APP,
Apolipoprotein; BACE1, Beta-secretase; BBB, Blood-brain
barrier; BDNF, Brain-derived neurotrophic factor; BIM, Bcl-
2-like protein 11; BMD, Bone mineral density; BM-MSC,
Bone marrow-derived mesenchymal stem cell; CCL, C-C
motif chemokine ligand; CD##, Cluster of differentiation ##;
CDK5, Cyclin dependent kinase 5; CIA, Collagen-induced
arthritis; CNS, Central nervous system; Col1, Collagen-1; CSF,
Cerebrospinal fluid; CXCL, C-X-C motif chemokine; CXCR;
C-X-C motif receptor; DAM, Disease-associated microglia;
DAMP, Damage-associated molecular pattern; DBH, Dopamine
beta-hydroxylase; DMARD, Disease-modifying anti-rheumatic
drugs; ECM, Extracellular matrix; FGFR1, Fibroblast growth
factor receptor 1; GABA, Gamma aminobutyric acid; GCRP,
Calcitonin gene-related peptide; HA, Hydroxyapatite; HMGB1,
High-mobility group box 1; HPSC, Hematopoietic progenitor
cell; HS, Hardystonite; hUC-MSC, Human umbilical cord-
derived mesenchymal stem cell; IFN-γ, Interferon gamma; IL,
Interleukin; IV, Intravenous; IκB, Inhibitor of nuclear factor
κB; LBD, Lewy body dementia; LPL, Lipoprotein lipase; LOAD,

Late-onset Alzheimer’s Disease; LPS, Lipopolysaccharide;
MAC, Membrane attack complex; MCI, Mild cognitive
impairment; MCP-1, Macrophage chemoattractant protein 1;
M-CSF, Macrophage colony stimulating factor; MMP, Matrix
metalloproteinase; MMSE, Mini Mental State Examination;
MSC, Mesenchymal stem cell; MSC-CM, Mesenchymal stem cell
conditioned medium; NE, Norepinephrine; NET, Neutrophil
extracellular trap; NF, Nanofiber; NF-κB, Nuclear factor κB;
NPY, Neuropeptide Y; OA, Osteoarthritis; OCN, Osteocalcin;
OP, Osteoporosis; OPC, Oligodendrocyte precursor cell; OPG,
Osteoprotegerin; OPN, Osteopontin; OS, Oyster shell; PAD4,
Protein-arginine deiminase 4; PCL, Poly(ǫ-caprolactone); PDO,
Polydioxanone; PLGA, Poly-lactic-co-glycolic acid; PLO, Poly-
L-ornithine; PNS, Peripheral nervous system; RA, Rheumatoid
arthritis; RAF, RAF proto-oncogene serine/threonine-protein
kinase; RAGE, Receptor for advanced glycated end products;
RANKL, Receptor activation of nuclear factor κB; REST, RE1-
silencing transcription factor; ROS, Reactive oxygen species;
SAN, Self-assembling nanofiber scaffold; SASP, Senescence-
associated secretory phenotype; SERM, Selective estrogen
response modulator; SF, Synovial fluid; SIRT1, Sirtuin 1; SP,
Substance P; SYN, Alpha-synuclein; TCP, beta-tricalcium
phosphate; TGF, Transforming growth factor; TH, Tyrosine
hydroxylase; Th1, T helper subtype 1; TLR, Toll-like receptor;
TNF, Tumor necrosis factor; Treg, Regulatory T-cell; TREM2,
Triggering receptor on myeloid cells 2; VCAM, Vascular cell
adhesion protein; VIP, Vasoactive intestinal peptide; YY1, Yin
yang 1.
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